-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnnet.py
159 lines (138 loc) · 5.42 KB
/
nnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import theano, lasagne
import theano.tensor as T
import math, csv, time, sys, os, pdb, copy
from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams
from lasagne.layers import Conv2DLayer, conv, Upscale2DLayer
if theano.config.device.startswith("gpu"):
from lasagne.layers import cuda_convnet
import numpy as np
def get_init(m, t):
inits = {"zeros": lasagne.init.Constant(0.), "norm": lasagne.init.Normal(0.1)}
if t not in m:
if t == "b":
return lasagne.init.Constant(0.)
return lasagne.init.GlorotUniform()
elif isinstance(m[t], basestring):
return inits[m[t]]
elif isinstance(m[t], int):
return lasagne.init.Constant(m[t])
else:
return m[t]
def get_activation(activation):
if activation == "softmax":
output = T.nnet.softmax
elif activation is None:
output = None
elif activation == "tanh":
output = T.tanh
elif activation == "relu":
output = T.nnet.relu
elif "leaky_relu" in activation:
output = lambda x: T.nnet.relu(x, alpha=float(activation.split(" ")[1]))
elif activation == "linear":
output = None
elif activation == "sigmoid":
output = T.nnet.sigmoid
elif activation == "hard_sigmoid":
output = T.nnet.hard_sigmoid
else:
print "activation not recognized:", activation
raise NotImplementedError
return output
class MLP3D():
def __init__(self, input_size=None, num_options=None, out_size=None, activation="softmax"):
option_out_size = out_size
limits = (6./np.sqrt(input_size + option_out_size))/num_options
self.options_W = theano.shared(np.random.uniform(size=(num_options, input_size, option_out_size), high=limits, low=-limits).astype("float32"))
self.options_b = theano.shared(np.zeros((num_options, option_out_size)).astype("float32"))
self.activation = get_activation(activation)
self.params = [self.options_W, self.options_b]
def apply(self, inputs, option=None):
W = self.options_W[option]
b = self.options_b[option]
out = T.sum(inputs.dimshuffle(0,1,'x')*W, axis=1) + b
return out if self.activation is None else self.activation(out)
def save_params(self):
return [i.get_value() for i in self.params]
def load_params(self, values):
print "LOADING NNET..",
for p, value in zip(self.params, values):
p.set_value(value.astype("float32"))
print "LOADED"
class Model():
def __call__(self, *args, **kwargs):
return self.apply(*args, **kwargs)
def get_activation(self, model):
activation = model["activation"] if "activation" in model else "linear"
return get_activation(activation)
def create_layer(self, inputs, model, dnn_type=True):
if model["model_type"] == "conv":
if dnn_type:
import lasagne.layers.dnn as dnn
conv_type = dnn.Conv2DDNNLayer if dnn_type else Conv2DLayer
poolsize = tuple(model["pool"]) if "pool" in model else (1,1)
stride = tuple(model["stride"]) if "stride" in model else (1,1)
layer = conv_type(inputs,
model["out_size"],
filter_size=model["filter_size"],
stride=stride,
nonlinearity=self.get_activation(model),
W=get_init(model, "W"),
b=get_init(model, "b"),
pad="valid" if "pad" not in model else model["pad"])
elif model["model_type"] == "mlp":
layer = lasagne.layers.DenseLayer(inputs,
num_units=model["out_size"],
nonlinearity=self.get_activation(model),
W=get_init(model, "W"),
b=get_init(model, "b"))
elif model["model_type"] == "option":
layer = MLP3D(model, inputs, nonlinearity=self.get_activation(model))
else:
print "UNKNOWN LAYER NAME"
raise NotImplementedError
return layer
def __init__(self, model_in, input_size=None, rng=1234, dnn_type=False):
"""
example model:
model = [{"model_type": "conv", "filter_size": [5,5], "pool": [1,1], "stride": [1,1], "out_size": 5},
{"model_type": "conv", "filter_size": [7,7], "pool": [1,1], "stride": [1,1], "out_size": 15},
{"model_type": "mlp", "out_size": 300, "activation": "tanh"},
{"model_type": "mlp", "out_size": 10, "activation": "softmax"}]
"""
self.theano_rng = RandomStreams(rng)
rng = np.random.RandomState(rng)
lasagne.random.set_rng(rng)
new_layer = tuple(input_size) if isinstance(input_size, list) else input_size
model = [model_in] if isinstance(model_in, dict) else model_in
print "Building following model..."
print model
self.model = model
self.input_size = input_size
self.out_size = model_in[-1]["out_size"]
self.dnn_type = dnn_type
# create neural net layers
self.params = []
self.layers = []
for i, m in enumerate(model):
new_layer = self.create_layer(new_layer, m, dnn_type=dnn_type)
self.params += new_layer.get_params()
self.layers.append(new_layer)
print "Build complete."
print
def apply(self, x):
last_layer_inputs = x
for i, m in enumerate(self.model):
if m["model_type"] in ["mlp", "logistic", "advantage"] and last_layer_inputs.ndim > 2:
last_layer_inputs = last_layer_inputs.flatten(2)
last_layer_inputs = self.layers[i].get_output_for(last_layer_inputs)
return last_layer_inputs
def save_params(self):
return [i.get_value() for i in self.params]
def load_params(self, values):
print "LOADING NNET..",
for p, value in zip(self.params, values):
p.set_value(value.astype("float32"))
print "LOADED"
if __name__ == "__main__":
pass