forked from worldbank/sdgatlas2018
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sdg17.R
493 lines (435 loc) · 20.5 KB
/
sdg17.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
library(ggplot2)
library(wbgdata)
library(wbgcharts)
library(wbgmaps)
library(wbggeo)
library(dplyr)
library(ggalluvial)
library(countrycode)
library(tidyr)
library(forcats)
library(readr)
library(readstata13)
library(readxl)
library(gtable)
source('styles.R')
fig_sdg17_aid_panel <- function(year = 2016) {
# Get OECD data
TRANSACTYPE_codes <- c(
oda = "1010",
oda_pc_gni = "2",
refugee = "1820"
)
df <- OECD::get_dataset("TABLE1", filter = list(NULL, NULL, TRANSACTYPE_codes, 1140, "A"), start_time = year, end_time = year)
meta <- OECD::get_data_structure("TABLE1")
df <- df %>% inner_join(
meta$DAC_DONOR %>%
filter(!grepl("20[0-9]{3}", id) & id != "918") %>% # id >= 20000 is aggregates, 918 is EU institutions
transmute(DAC_DONOR = id, donor_country = label)
)
df <- df %>% mutate(iso3c = countrycode(donor_country, "country.name", "iso3c"))
# Load DAC members, except EU
dac_members <- read_csv("inputs/sdg17/dac_members.csv")
dac_members <- dac_members %>% filter(iso3c != "EUE")
df <- df %>% filter(iso3c %in% dac_members$iso3c)
df <- df %>% transmute(
iso3c = iso3c,
indicator = setNames(names(TRANSACTYPE_codes), TRANSACTYPE_codes)[TRANSACTYPE],
date = obsTime,
value = obsValue * (10 ** as.numeric(POWERCODE))
)
df_wide <- df %>%
spread(indicator, value) %>%
mutate(refugee_pc_oda = refugee / oda * 100) %>%
select(-refugee)
df <- df_wide %>% gather(key = "indicator", value = "value", oda_pc_gni, oda, refugee_pc_oda)
figure(
data = df,
plot = function(df, style = style_atlas()) {
df <- df %>% mutate(iso3c = fct_reorder2(iso3c, indicator == "oda_pc_gni", -replace_na(value, 0)))
facet_labeller <- as_labeller(c(
oda_pc_gni = "ODA (% of GNI)\n",
oda = "ODA (US$ billions)\n",
refugee_pc_oda ="In-donor refugee\ncosts (% of ODA)"
))
p.oda_pc_gni <- ggplot(df %>% filter(indicator == "oda_pc_gni"), aes(iso3c, value)) +
geom_hline(
yintercept = 0.7,
linetype = style$linetypes$reference,
size = style$linesize_reference,
color = style$colors$reference
) +
geom_col(position = "dodge", fill = style$colors$spot.primary) +
scale_x_discrete(labels = wbgref$countries$labels) +
scale_y_continuous(expand = c(0, 0)) +
coord_flip() +
facet_wrap(~ indicator, labeller = facet_labeller) +
style$theme() +
style$theme_barchart()
p.oda <- ggplot(df %>% filter(indicator == "oda"), aes(iso3c, value)) +
geom_col(position = "dodge", fill = style$colors$spot.secondary) +
scale_x_discrete(labels = wbgref$countries$labels) +
scale_y_continuous(labels = billions(), expand = c(0, 0)) +
coord_flip() +
facet_wrap(~ indicator, labeller = facet_labeller) +
style$theme() +
style$theme_barchart() +
theme(axis.text.y = element_blank())
p.refugee_pc_oda <- ggplot(df %>% filter(indicator == "refugee_pc_oda"), aes(iso3c, value)) +
geom_percent_col(position = "dodge", fill = style$colors$spot.primary, fill.bg = style$colors$neutral) +
scale_x_discrete(labels = wbgref$countries$labels) +
scale_y_continuous(expand = c(0, 0), limits = c(0, 115), breaks = c(0,50,100)) +
coord_flip() +
facet_wrap(~ indicator, labeller = facet_labeller) +
style$theme() +
style$theme_barchart() +
theme(axis.text.y = element_blank())
pt.oda_pc_gni <- ggplotGrob(p.oda_pc_gni)
pt.oda <- ggplotGrob(p.oda)
pt.refugee_pc_oda <- ggplotGrob(p.refugee_pc_oda)
chart <- gtable_row(
"chart",
list(pt.oda_pc_gni, zeroGrob(), pt.oda, zeroGrob(), pt.refugee_pc_oda),
height = unit(1, "null"),
widths = unit(c(30,2,20,2,10), "null"))
chart$theme <- style$theme()
chart
},
title = "Official development assistance totaled $144 billion in 2016, but only six countries met the longstanding commitment to contribute 0.7 percent of GNI.",
subtitle = wbg_name(indicator = "Official development assistance (ODA) from members of OECD's Development Assistance Committee", year = 2016),
source = "Source: OECD International Development Statistics (database). http://dx.doi.org/10.1787/dev-data-en",
aspect_ratio = 0.5
)
}
fig_sdg17_regional_disbursements <- function() {
df<-read_xlsx("inputs/sdg17/bilateral_flows.xlsx") %>%
rename(from_iso3c = from, to_iso3c = to, value = disbursements)
df$to_iso3c <- recode(
df$to_iso3c,
"EAP" = "EAS", "ECA" = "ECS", "LAC" = "LCN", "MENA" = "MEA","SAS"="SAS","SSA"="SSF"
)
df <- df %>% mutate(value = value * 1e3) # Was in thousands, convert back to units
figure(data = df, plot = function(df, style = style_atlas()) {
stratum_fill <- c(
rev(c("EAS", "ECS", "LCN", "MEA", "NAC", "SAS")),
rev(c("EAS", "ECS", "LCN", "MEA", "SAS", "SSF"))
)
ggplot(df, aes(weight=value,axis1=from_iso3c,axis2=to_iso3c)) +
geom_alluvium(aes(fill=to_iso3c),width=1/10,alpha=0.75) +
geom_stratum(fill = style$colors$regions[stratum_fill], width=1/10, color = NA) +
geom_text(
aes(
label=as.numeric(billions(1)(value)),
alpha=(value > 2e9)
),
stat = "stratum",
hjust = 0.5,
nudge_x = 0,
family = style$theme()$text$family,
size = style$gg_text_size,
lineheight = 0.75,
color = style$colors$text.inverse
) +
scale_alpha_manual(values = c(`TRUE` = 1.0,`FALSE` = 0.0)) +
geom_text(
aes(label=str_wrap_lines(wbgref$regions$labels[from_iso3c], 2)),
stat="stratum",
hjust = 1,
nudge_x = -0.07,
family = style$theme()$text$family,
size = style$gg_text_size*0.8,
lineheight = 0.75
) +
geom_text(
aes(label=str_wrap_lines(wbgref$regions$labels[to_iso3c], 2)),
stat="stratum",
hjust = 0,
nudge_x = 0.07,
family = style$theme()$text$family,
size = style$gg_text_size*0.8,
lineheight = 0.75
) +
annotate("text", x = 0.93, y = 56.5e9, label = "Creditors,\nby region", hjust = 1, family = style$family, size = style$gg_text_size, lineheight = 0.9) +
annotate("text", x = 2.07, y = 56.5e9, label = "Borrowers,\nby region (a)", hjust = 0, family = style$family, size = style$gg_text_size, lineheight = 0.9) +
scale_fill_manual(values = style$colors$regions) +
scale_x_continuous(expand = c(0.15, 0)) +
style$theme() +
theme(axis.text=element_blank(), panel.grid = element_blank())
},
title = "Loan disbursements from bilateral creditors (governments and their agencies) to low- and middle-income countries reached $54 billion in 2016, an all-time high.",
subtitle = wbg_name(indicator = "Public and publicly guaranteed external debt, bilateral disbursements", denom = "US$ billions", year = 2016),
note = "Note: Represents drawings by the borrower on bilateral debt, including loans from governments and their agencies (including central banks), loans from autonomous bodies, and direct loans from official export credit agencies. a. Excludes high-income countries.",
source = "Source: World Bank Debtor Reporting System. Aggregates by borrower available in World Development Indicators (DT.DIS.BLAT.CD).",
aspect_ratio = 1.3
)
}
fig_sdg17_fdi_remittances_by_region <- function(years = 2007:2016) {
indicators = c(
"BX.KLT.DINV.CD.WD",
"BX.TRF.PWKR.CD.DT"
)
df <- wbgdata(
wbgref$regions_excl_high_income$iso3c,
indicators,
years = years,
indicator.wide = FALSE,
# Comment the next two lines to use live API data
offline = "only",
offline.file = "inputs/cached_api_data/fig_sdg17_fdi_remittances_by_region.csv"
)
df <- df %>% left_join(wbgref$regions_excl_high_income$regions)
figure(
data = df,
plot = function(df, style = style_atlas()) {
ggplot(df, aes(date, value, color = indicatorID)) +
geom_line(size = style$linesize) +
scale_color_manual(
values = c(
BX.TRF.PWKR.CD.DT = style$colors$spot.primary,
BX.KLT.DINV.CD.WD = style$colors$spot.secondary
),
labels = c(
BX.TRF.PWKR.CD.DT = wbg_name("BX.TRF.PWKR.CD.DT", denom = NULL),
BX.KLT.DINV.CD.WD = wbg_name("BX.KLT.DINV.CD.WD", denom = NULL)
)) +
scale_x_continuous(breaks = bracketed_breaks(df$date, closeness_threshold = 0.2)) +
scale_y_continuous(labels = billions()) +
facet_wrap(~region_iso3c, labeller = as_labeller(wbgref$regions$labels)) +
style$theme() +
style$theme_legend("top") +
theme(
panel.spacing = unit("0.05", "npc"),
strip.text.x = element_text(hjust = 0.5)
)
},
title = "Foreign direct investment and remittances to low- and middle-income countries totaled around $1 trillion in 2016.",
subtitle = wbg_name(indicator = "Foreign direct investment, net inflows, and personal remittances, received", denom = "US$ billions"),
note = "Note: Excludes high-income countries.",
source = "Source: World Bank, IMF, and UNCTAD. WDI (BX.KLT.DINV.CD.WD; BX.TRF.PWKR.CD.DT).",
aspect_ratio = 2.5
)
}
# Check: It seems that Kosovo is returned with a 2 letter code but not a 3 letter code, so we remove it - seems like an error in backend to report
fig_sdg17_enterprise_exports <- function(years = 2006:2017) {
indicator <- "IC.FRM.TRD.TR5"
df <- wbgdata(
wbgref$countries$iso3c,
indicator,
years = years,
indicator.wide = FALSE,
removeNA = TRUE,
# Comment the next two lines to use live API data
offline = "only",
offline.file = "inputs/cached_api_data/fig_sdg17_enterprise_exports.csv"
)
df <- df %>%
group_by(iso3c, indicatorID) %>%
filter(date == max(date)) %>%
ungroup()
df <- df %>% right_join(wbgref$countries$regions)
df$bins <- supercut(df$value, c(
"0–3" = "[0, 3)",
"3–6" = "[3, 6)",
"6 or over" = "[6, Inf)"
))
figure(
data = df,
plot = function(df, style = style_atlas(), quality = "low") {
g <- wbg_choropleth(df, wbgmaps[[quality]], style, variable = "bins")
g$theme <- style$theme()
g
},
title = "Exports can promote economic growth, but in many countries in Sub-Saharan Africa, firms tend to export little.",
subtitle = wbg_name(indicator, by = "manufacturing firms", mrv = df$date),
source = paste("Source: World Bank. Enterprise Surveys (IC.FRM.TRD.TR5)."),
aspect_ratio = 1.3
)
}
fig_sdg17_trade_dtf <- function(year = 2017) {
df <- read_xlsx("inputs/sdg17/DB18-Historical-data-complete-data-with-DTFs.xlsx", skip = 1)
# Doing Business is a tricky as they do multiple cities for some countries and
# use non-standard codes to record them.
# First use the special mappings. Otherwise, fall back on standard iso3c codes
iso3c_mapping <- read_csv("inputs/sdg17/db_main_city_iso3c_mapping.csv")
iso3c_mapping$iso3c[is.na(iso3c_mapping$iso3c)] <- "ZZZ" # a kind of sentinel
df <- df %>% left_join(iso3c_mapping, by = c(`Country code`= "db_country_code"))
df <- df %>% mutate(iso3c = ifelse(is.na(iso3c), `Country code`, iso3c))
# Now remove the sentinel rows and make sure everything left is WDI friendly
df <- df %>% filter(iso3c != "ZZZ")
unmatched <- df$iso3c[!(df$iso3c %in% wbgref$countries$iso3c)]
stopifnot(length(unique(unmatched)) == 1) # TWN will be unmatched
df <- df %>%
transmute(
iso3c = iso3c,
date = `DB Year` - 1, # DB year is publication year and usually has a reference of the previous year
value = `DTF - Trading across borders\r\n(DB16-18 methodology)`
) %>%
filter(date == year)
df <- df %>% right_join(wbgref$countries$regions)
df$bins <- supercut(df$value, c(
"0–25" = "[0, 25)",
"25–50" = "[25, 50)",
"50–75" = "[50, 75)",
"75–100" = "[75, 100]"
))
figure(
data = df,
plot = function(df, style = style_atlas(), quality = "low") {
g <- wbg_choropleth(df, wbgmaps[[quality]], style, variable = "bins")
g$theme <- style$theme()
g
},
title = "Engaging in international trade involves more barriers in low- and middle-income countries.",
subtitle = wbg_name(indicator = "Ease of trading across borders, composite distance to frontier score", denom = paste0(str_range(c(0,100)),", higher is better"), year = 2017),
source = "Source: World Bank Doing Business 2018 (database). http://www.doingbusiness.org",
aspect_ratio = 1.3
)
}
fig_sdg17_PPP_investment_time <- function(years = 2000:2016) {
ppp <- read.dta13("inputs/sdg17/PPI DB_090118.dta", nonint.factors = TRUE) # we don't use these fields but this shuts up a warning
ppp <- ppp %>%
filter(!(investment %in% c(-8888, -9999))) %>% # missing values
filter(type != "Divestiture") %>%
filter(stype != "Merchant") %>%
filter(sector != "ICT")
ppp <- ppp %>%
filter(IY %in% years)
ppp.totals <- ppp %>%
group_by(IY, income) %>%
summarise(investment = sum(investment)) %>%
ungroup()
ppp.totals <- ppp.totals %>%
transmute(
iso3c = unname(inv(wbgref$incomes$labels)[as.character(income)]), # as.char as factor is defined differently to ours
date = IY,
investment = investment * 1e6 # is in millions
)
indicator = "NY.GDP.MKTP.CD"
gdp <- wbgdata(ppp.totals$iso3c, indicator, years = years)
ppp.totals <- ppp.totals %>% left_join(gdp)
ppp.totals <- ppp.totals %>%
mutate(ppp_pc_gdp = investment / NY.GDP.MKTP.CD * 100)
figure(
data = ppp.totals,
plot = function(ppp.totals, style = style_atlas()) {
ggplot(ppp.totals, aes(date, ppp_pc_gdp, color = fct_reorder2(iso3c, date, ppp_pc_gdp))) +
geom_line(size = style$linesize) +
scale_color_manual(values = style$colors$incomes, labels = wbgref$incomes$labels) +
scale_x_continuous(
breaks = bracketed_breaks(ppp.totals$date),
expand = c(0, 0),
limits = c(1999, NA)) +
scale_y_continuous(sec.axis = dup_axis(
breaks = ppp.totals %>% filter(date == max(date)) %>% pull(ppp_pc_gdp),
labels = wbgref$incomes$labels[ppp.totals %>% filter(date == max(date)) %>% pull(iso3c)]
)) +
style$theme()
},
title = "Public private partnership investment, as a proportion of GDP, has declined in recent years.",
subtitle = wbg_name(indicator = "Investment commitments in public private partnerships", denom = "% of GDP", by = "by target income group"),
note = "Note: Excludes information, communications & technology projects.",
source = "Source: World Bank Private Participation in Infrastructure (database). https://ppi.worldbank.org",
aspect_ratio = 2
)
}
fig_sdg17_internet_by_income <- function(years = 1995:2016) {
indicator <- c("IT.NET.USER.ZS")
df <- wbgdata(
wbgref$incomes$iso3c, indicator,
years = years,
indicator.wide = TRUE,
# Comment the next two lines to use live API data
offline = "only",
offline.file = "inputs/cached_api_data/fig_sdg17_internet_by_income.csv"
)
reference_LIC_latest <- df %>% filter(iso3c == "LIC", date == max(date)) %>% pull(IT.NET.USER.ZS)
comparable_years <- df %>%
filter(IT.NET.USER.ZS <= reference_LIC_latest) %>%
group_by(iso3c) %>%
filter(date == max(date)) %>%
ungroup()
figure(
data = df,
plot = function(df, style = style_atlas()) {
df <- df %>% mutate(iso3c = fct_relevel(iso3c, rev(wbgref$incomes$iso3c)))
comparable_years <- comparable_years %>% mutate(iso3c = fct_relevel(iso3c, rev(wbgref$incomes$iso3c)))
ggplot(df, aes(date, IT.NET.USER.ZS)) +
geom_line(size = style$linesize, color = style$colors$spot.primary) +
geom_hline(yintercept = reference_LIC_latest, color = style$colors$reference, size = style$linesize_reference, linetype = style$linetypes$reference) +
geom_point(data = comparable_years, color = style$colors$spot.primary, size = style$point_size, shape = style$shapes$point) +
geom_text(data = comparable_years %>% filter(iso3c != "LIC"), aes(label = date), hjust = 0, vjust = 1, family = style$family, size = style$gg_text_size, color = style$colors$text, nudge_x = +1, nudge_y = -3) +
#scale_color_manual(values = style$colors$incomes) +
scale_y_continuous(limits = c(0, 100), breaks = c(0,25,50,75,100,reference_LIC_latest), labels = ones(0)) +
scale_x_continuous(breaks = range(df$date), expand = c(0.2,0)) +
facet_wrap(~iso3c, nrow = 1, labeller = as_labeller(str_wrap_lines(wbgref$incomes$labels,2,force=TRUE))) +
style$theme() +
theme(
strip.text.x = element_text(hjust =0.5, vjust = 0),
)
},
title = "Technology enables human development. In low-income countries only 12 percent of people use the Internet, but growth in access is beginning to accelerate.",
subtitle = wbg_name(indicator),
source = "Source: ITU. World Development Indicators (IT.NET.USER.ZS).",
aspect_ratio = 1
)
}
fig_sdg17_fixed_broadband_and_telephones <- function(broadband_years = 2000:2016, telephone_years = 1990:2016) {
broadband_indicators <- c(Fixed = "IT.NET.BBND.P2")
telephone_indicators <- c(Fixed = "IT.MLT.MAIN.P2", Mobile = "IT.CEL.SETS.P2")
df.broadband <- wbgdata(
c("SSF", "WLD"), broadband_indicators, years = broadband_years,
indicator.wide = FALSE, rename.indicators = TRUE,
# Comment the next two lines to use live API data
offline = "only",
offline.file = "inputs/cached_api_data/fig_sdg17_fixed_broadband_and_telephones-broadband.csv"
)
df.telephone <- wbgdata(
c("SSF", "WLD"), telephone_indicators, years = telephone_years,
indicator.wide = FALSE, rename.indicators = TRUE,
# Comment the next two lines to use live API data
offline = "only",
offline.file = "inputs/cached_api_data/fig_sdg17_fixed_broadband_and_telephones-telephone.csv"
)
df.broadband <- df.broadband %>% mutate(facet = "Fixed broadband")
df.telephone <- df.telephone %>% mutate(facet = "Telephone")
df <- rbind(df.broadband, df.telephone)
df <- df %>% mutate(facet = fct_relevel(facet, c("Telephone", "Fixed broadband")))
figure(
data = df,
plot = function(df, style = style_atlas()) {
ggplot(df, aes(date, value, color = iso3c, linetype = indicatorID)) +
geom_line(size = style$linesize) +
facet_grid(. ~ facet, scales = "free_x", space = "free_x") +
scale_x_continuous(breaks = c(range(broadband_years), range(telephone_years))) +
scale_y_continuous(limits = c(0, 100)) +
scale_color_manual(
values = c(style$colors$regions, style$colors$world),
labels = str_wrap_lines(wbgref$all_geo$labels, 2, force = TRUE),
guide = guide_legend(reverse = TRUE)) +
scale_linetype_discrete(guide = "none") +
style$theme() +
style$theme_legend("rightbottom") +
theme(legend.key.size = unit(1, "line"))
#theme(legend.position = c(0.01, 1), legend.justification = c(0, 1))
},
title = "Fixed broadband Internet uptake is still negligible in Sub-Saharan Africa, but as mobile technology improves, this may not matter.",
subtitle = wbg_name(indicator = "Subscriptions", denom = "per 100 people"),
source = "Source: ITU. World Development Indicators (IT.NET.BBND.P2). (a) GSMA 2017. https://www.gsma.com/mobileeconomy/sub-saharan-africa-2017/",
aspect_ratio = 1
)
}
# make_all("docs/sdg17/pdf", styler = style_atlas_cmyk, saver = figure_save_final_pdf)
make_all <- function(path = "docs/sdg17", styler = style_atlas, saver = figure_save_draft_png) {
# page 1
saver(fig_sdg17_aid_panel(), styler, file.path(path, "fig_sdg17_aid_panel.png"), width = 5.5, height = 6.75)
# page 2
saver(fig_sdg17_regional_disbursements(), styler, file.path(path, "fig_sdg17_regional_disbursements.png"), width = 5.5, height = 4.3)
saver(fig_sdg17_fdi_remittances_by_region(), styler, file.path(path, "fig_sdg17_fdi_remittances.png"), width = 5.5, height = 4.2)
# page 3
saver(fig_sdg17_enterprise_exports(), styler, file.path(path, "fig_sdg17_enterprise_exports.png"), width = 5.5, height = 4.25)
saver(fig_sdg17_trade_dtf(), styler, file.path(path, "fig_sdg17_trade_dtf.png"), width = 5.5, height = 4.4)
# page 4
saver(fig_sdg17_PPP_investment_time(), styler, file.path(path, "fig_sdg17_PPP_investment_time.png"), width = 5.5, height = 3)
saver(fig_sdg17_internet_by_income(), styler, file.path(path, "fig_sdg17_internet_by_income.png"), width = 5.5, height = 3)
saver(fig_sdg17_fixed_broadband_and_telephones(), styler, file.path(path, "fig_sdg17_fixed_broadband_and_telephones.png"), width = 5.5, height = 2.6)
}