-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevalCPAR_CMAR_PRM_FOIL2.R
245 lines (220 loc) · 11.9 KB
/
evalCPAR_CMAR_PRM_FOIL2.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#require(devtools)
#on Debian the following may require sudo apt-get install libgsl-dev
#install_version("sbrl", version = "1.2", repos = "http://cran.us.r-project.org")
#this may not run on new versions of R (i.e. R 4 is not supported)
rm(list = ls())
#options(java.parameters = "-Xmx16000m")
options(java.parameters = c("-Xmx16192m"))
gc()
library(qCBA)
library(rCBA)
library(arulesCBA)
library(sbrl)
library(stringr)
###############################################################################
#This function is present in latest QCBA release and may be removed
arulesCBA2arcCBAModel <- function(arulesCBAModel, cutPoints, rawDataset, classAtt, attTypes )
{
# note that the example for this function generates a notice
# this should be fine according to https://cran.r-project.org/doc/manuals/r-release/R-exts.html#Suggested-packages
CBAmodel <- CBARuleModel()
ruleCount<-length(arulesCBAModel$rules)
if (sum(arulesCBAModel$rules@lhs@data[,ruleCount])>0)
{
#Both LHS and RHS in arules have the same dimension.
#positions 1 to number of distinct items in LHS are used for RHS
#remaining positions are used for RHS items
if ("default" %in% attributes(arulesCBAModel)$names)
{
itemCount<-nrow(arulesCBAModel$rules@lhs@data) #total for LHS and RHS items
emptyLHS<-rep(FALSE,itemCount)
arulesCBAModel$rules@lhs@data <- as(cbind(arulesCBAModel$rules@lhs@data,emptyLHS),"ngCMatrix")
RHSLevels<-nlevels(arulesCBAModel$default)
rhs <-emptyLHS
positionOfDefaultRuleInRHSLevels<-as.numeric(arulesCBAModel$default)
#RHS for default rule has only one bit on which corresponds to the position
#of the default rule in the item vector
rhs[itemCount - RHSLevels+positionOfDefaultRuleInRHSLevels] <- TRUE
arulesCBAModel$rules@rhs@data <- as(cbind(arulesCBAModel$rules@rhs@data,rhs),"ngCMatrix")
#arules data frame does not contain quality metrics for the default rule
arulesCBAModel$rules@quality <- rbind(arulesCBAModel$rules@quality, c(0,0,0,0) )
message("Last rule added based on default specification in the passed model ")
}
else
{
warning("Last rule is not a default rule with empty antecedent and could
not be automatically added as 'default' attribute is missing")
}
}
CBAmodel@rules <- arulesCBAModel$rules
CBAmodel@cutp <- cutPoints
CBAmodel@classAtt <- classAtt
if (missing(attTypes))
{
CBAmodel@attTypes <- sapply(rawDataset, class)
}
else
{
CBAmodel@attTypes = attTypes
}
return (CBAmodel)
}
###############################################################################
runSeparateCBAQCBA <-FALSE
basePath="./"
datasets <- c("anneal","australian","autos","breast-w","colic","credit-a","credit-g","diabetes","glass","heart-statlog","hepatitis","hypothyroid","ionosphere","iris","labor","letter","lymph","segment","sonar","spambase","vehicle","vowel")
#datasets <- c("hepatitis","ionosphere","sonar","spambase","australian", "breast-w", "colic", "credit-a", "diabetes", "heart-statlog","credit-g"
#,"kdd1000_","kdd10000_","kdd20000_","kdd30000_","kdd40000_"
# )
algs <- c("CMAR","CPAR","PRM","FOIL2")
foldsToProcess <- 10
maxFoldIndex <-foldsToProcess -1
iterations <-1
#algs <- c("CBA","QCBA","SBRL","SBRLQCBA")
#METAPARAM SETTING
# using default settings
defaultRuleOverlapPruningRange=c("noPruning","transactionBased")
for (defaultRuleOverlapPruning in defaultRuleOverlapPruningRange){
for (dataset in datasets[1:length(datasets)])
{
if (dataset == "kdd1000_" | dataset == "kdd1000_" | dataset == "kdd10000_" | dataset == "kdd20000_" | dataset == "kdd30000_" | dataset == "kdd40000_" )
{
minCondImprovement<-0
mciFilenameTAG<-""
if (defaultRuleOverlapPruning=="transactionBased")
{
print("Skipping transactionBased for kdd datasets ")
next
}
}
else{
minCondImprovement<--1
mciFilenameTAG<-paste0("_mci", minCondImprovement)
}
config <- "default"
skip=FALSE
algComputed<- c()
for (alg in algs)
{
algQCBA<-paste0(alg,"_QCBA")
modelsFolder <- paste0(alg,"_QCBA_Models")
dir.create(file.path(basePath, modelsFolder),showWarnings = FALSE)
ALGmodelsFolder <- paste0(alg,"_Models")
dir.create(file.path(basePath, ALGmodelsFolder),showWarnings = FALSE)
resultfolder = paste0("./",alg,"_results")
dir.create(file.path(basePath, resultfolder),showWarnings = FALSE)
resultfile_alg = paste(resultfolder,"/",alg,"-", config, mciFilenameTAG,"-",defaultRuleOverlapPruning,".csv",sep="")
resultfile_qcba = paste(resultfolder,"/",algQCBA,"-", config, mciFilenameTAG,"-",defaultRuleOverlapPruning,".csv",sep="")
message(paste0("reading from ",resultfile_qcba))
if (!file.exists(resultfile_qcba) | !file.exists(resultfile_alg) )
{
write(paste("dataset,accuracy,rules,antlength,buildtime"), file = resultfile_alg,
ncolumns = 1,
append = FALSE, sep = ",")
write(paste("dataset,accuracy,rules,antlength,buildtime"), file = resultfile_qcba,
ncolumns = 1,
append = FALSE, sep = ",")
}
file_text <- readLines(resultfile_qcba)
check_result <- TRUE %in% grepl(paste("^",dataset,",",sep=""),file_text)
if (isTRUE(check_result))
{
algComputed <- c(algComputed,TRUE)
}
else{
algComputed <-c(algComputed,FALSE)
}
if (all(algComputed))
{
message(paste("Skipping dataset",dataset, "with config:", config, "(already computed for qcba)"))
next
}
df <- data.frame(matrix(rep(0,8), ncol = 2, nrow = 4), row.names = c("accuracy","rulecount","rulelength","buildtime"))
colnames(df)<-c(alg,algQCBA)
for (fold in 0:maxFoldIndex)
{
foldTempResultsFile <- paste0("temp_",dataset,"_",config,"_",alg,"_",fold,"_",defaultRuleOverlapPruning,".csv")
message(paste("processing:", dataset, "FOLD", fold, "by",alg))
if (file.exists(foldTempResultsFile))
{
message(paste("Read temp results for ",alg,"and", algQCBA, "from",foldTempResultsFile))
dfTemp <- utils::read.csv(foldTempResultsFile, header=TRUE, check.names = TRUE, row.names=1)
df[,c(alg,algQCBA)] <- dfTemp[,c(alg,algQCBA)]
df
#This contains cumulative results up to the fold number, this needs to be divided by the number of folds
message(paste("skipping the rest of this iteration for curent fold"))
next
}
trainPath <- paste(basePath,.Platform$file.sep,"data",.Platform$file.sep,"folds_nodiscr",.Platform$file.sep,"train",.Platform$file.sep,dataset, fold, ".csv", sep="")
testPath <- paste(basePath,.Platform$file.sep,"data",.Platform$file.sep,"folds_nodiscr",.Platform$file.sep,"test",.Platform$file.se,dataset, fold, ".csv", sep="")
trainFold <- utils::read.csv(trainPath, header=TRUE, check.names = TRUE)
testFold <- utils::read.csv(testPath, header=TRUE, check.names = TRUE)
classAtt<-colnames(trainFold)[ncol(trainFold)]
trainFoldDiscTemp <- discrNumeric(trainFold, classAtt)
trainFoldDiscCutpoints <- trainFoldDiscTemp$cutp
trainFoldDisc <- as.data.frame(lapply(trainFoldDiscTemp$Disc.data, as.factor))
#Discretize test data
testFoldDisc <- applyCuts(testFold, trainFoldDiscCutpoints, infinite_bounds=TRUE, labels=TRUE)
start.time <- Sys.time()
f_rule_model<-get(alg)
message(paste("Training",alg,"for",iterations,"iterations"))
for (i in 1:iterations) model <- f_rule_model(as.formula(paste(classAtt, " ~ .")), trainFoldDisc)
end.time <- Sys.time()
averageExecTime<-round(as.numeric((end.time - start.time)/iterations,units="secs"),2)
message(paste(alg,"took:",averageExecTime, "seconds per iteration"))
df["buildtime",alg] <-df["buildtime",alg] + averageExecTime
yhat <- predict(model, testFoldDisc)
acc<-mean(as.integer(as.character(yhat) == as.character(testFoldDisc[, ncol(testFoldDisc)])))
message(paste("acc",alg, acc,"in fold", fold, "rules:",length(model$rules)))
df["accuracy",alg]<-df["accuracy",alg]+acc
df["rulecount",alg]<-df["rulecount",alg]+length(model$rules)
model_trans<-arulesCBA2arcCBAModel(model,trainFoldDiscCutpoints,trainFold,classAtt)
outputfile <- paste0(ALGmodelsFolder, "/",dataset,fold,".csv", sep = "")
message("writing transformed rules to QCBA format from ", alg, " to ", outputfile)
write.csv(as(model_trans@rules,"data.frame"), file = outputfile )
avgtemp <- sum(model_trans@rules@lhs@data)/length(model_trans@rules)
df["rulelength",alg]<-df["rulelength",alg]+avgtemp
message(paste("***", alg,"QCBA VERSION"))
message(paste("Running QCBA ON", alg, "OUTPUT", "for", iterations, "iterations" ))
start.time <- Sys.time()
for (i in 1:iterations) rmQCBA <- qcba(cbaRuleModel=model_trans,datadf=trainFold, extend="numericOnly",defaultRuleOverlapPruning=defaultRuleOverlapPruning,attributePruning=TRUE,trim_literal_boundaries=TRUE,
continuousPruning=FALSE, postpruning="cba", minImprovement=0,
minCondImprovement=minCondImprovement,loglevel = "WARNING")
end.time <- Sys.time()
averageExecTime<- round(as.numeric((end.time - start.time)/iterations,units="secs"),2)
message(paste(algQCBA, "took:",averageExecTime, "seconds per iteration"))
df["buildtime",algQCBA] <-df["buildtime",algQCBA] + averageExecTime
prediction <- predict(rmQCBA,testFold)
acc_qcba_alg <- CBARuleModelAccuracy(prediction, testFold[[rmQCBA@classAtt]])
message(paste("acc",algQCBA,acc_qcba_alg, "in fold", fold, " rules: ", rmQCBA@ruleCount))
df["accuracy",algQCBA]<-df["accuracy",algQCBA]+acc_qcba_alg
df["rulecount",algQCBA] <- df["rulecount",algQCBA]+ rmQCBA@ruleCount
avgtemp <- (sum(unlist(lapply(rmQCBA@rules[1],str_count,pattern=",")))+
# assuming the last rule has antecedent length zero - not counting its length
nrow(rmQCBA@rules)-1)/nrow(rmQCBA@rules)
df["rulelength",algQCBA]<-df["rulelength",algQCBA]+avgtemp
#This contains cumulative results up to the fold number, this needs to be divided by the number of folds
outputfile <- paste0(modelsFolder, "/",dataset,fold, "-",defaultRuleOverlapPruning,mciFilenameTAG,".csv", sep = "")
message(paste('Writing QCBA rules to',outputfile))
write.csv(rmQCBA@rules, file = outputfile )
message(paste('Writing intermediate resuts for ', alg, "and",algQCBA, "on dataset", dataset, "and FOLD", fold, " to ", foldTempResultsFile))
write.csv(df[,c(alg,algQCBA)],file=foldTempResultsFile)
}
message(paste("Finished processing all folds for dataset", dataset, "and algorithm", alg, "(", algQCBA, ")"))
message("Averaging fold results")
df<- df * 1/foldsToProcess
print(df)
message("Writing average result for all folds of ",dataset, " by ", alg, " to ", resultfile_alg)
write(c(dataset,df["accuracy",alg],df["rulecount",alg],df["rulelength",alg],df["buildtime",alg]), file =resultfile_alg,
ncolumns = 5,
append = TRUE, sep = ",")
message("Writing average result for all folds of ",dataset, " by ", algQCBA, " to ", resultfile_qcba)
write(c(dataset,df["accuracy",algQCBA],df["rulecount",algQCBA],df["rulelength",algQCBA],df["buildtime",algQCBA]), file =resultfile_qcba,
ncolumns = 5,
append = TRUE, sep = ",")
}
message(paste("Finished processing all algorithms for dataset", dataset))
}
message(paste("Finished processing all algorithms and dataset for default rule pruning setup ", defaultRuleOverlapPruningRange))
}
file.remove(dir(path=".", pattern="temp_*"))