-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathc3d_predict.py
164 lines (132 loc) · 4.67 KB
/
c3d_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#!/usr/bin/env python
import os
#os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
# The GPU id to use, usually either "0" or "1";
#os.environ["CUDA_VISIBLE_DEVICES"] = "3"
import numpy as np
import keras.backend as K
from keras.models import model_from_json
from keras.models import Model
from keras.layers import Dense, Dropout
from keras.optimizers import SGD
from keras.callbacks import ModelCheckpoint
from keras.callbacks import TensorBoard
import tensorflow as tf
from video_data_generator import VideoDataGenerator
from sklearn.model_selection import train_test_split
from configuration import cfg
import input_data
WORK_DIR = cfg['WORK_DIR']
CLASS_IND = cfg['CLASS_IND']
TEST_SPLIT_FILE = cfg['TEST_SPLIT_FILE']
CROP_SIZE = 112
BATCH_SIZE = 16
NUM_EPOCHS = 100
BATCH_SIZE = 16
NUMBER_OF_FRAMES = 16
MODEL_WEIGHT_FILENAME = './models/c3d_UCF_finetune_weights-99-0.94.h5'
MODEL_JSON_FILENAME = './models/c3d_ucf101_finetune_whole_iter_20000_tf.json'
def read_test_ids():
class_maping = {}
f_maping = open(CLASS_IND, 'r')
lines_maping = list(f_maping)
for i in range(len(lines_maping)):
line = lines_maping[i].strip('\n').split()
class_id = int(line[0]) - 1
class_name = line[1]
class_maping[class_name] = class_id
f_maping.close()
f = open(TEST_SPLIT_FILE, 'r')
lines = list(f)
its = range(len(lines))
IDs = []
labels = {}
for it in its:
line = lines[it].strip('\n')
dirname = line
IDs.append(dirname)
class_name = dirname.split('/')[0]
labels[dirname] = class_maping[class_name]
f.close()
print("Found %i files for total of %i classes." %
(len(IDs), len(class_maping.keys())))
return IDs, labels, class_maping
def predict_intermediate_output(path):
model = model_from_json(open(MODEL_JSON_FILENAME, 'r').read())
print("[Info] Loading model weights...")
model.load_weights(MODEL_WEIGHT_FILENAME)
print("[Info] Loading model weights -- DONE!")
model.compile(
loss='mean_squared_error', optimizer='sgd', metrics=["accuracy"])
img_np_array = []
img_np_array.append(
input_data.get_frames_data(path, NUMBER_OF_FRAMES, CROP_SIZE))
img_np_array = np.array(img_np_array)
#intermediate_model = Model(
# input=model.input, output=model.get_layer("fc7").output)
#intermediate_model.summary()
intermediate_output = model.predict(img_np_array)
K.clear_session()
return intermediate_output
def get_model():
model = model_from_json(open(MODEL_JSON_FILENAME, 'r').read())
print("[Info] Loading model weights...")
model.load_weights(MODEL_WEIGHT_FILENAME)
print("[Info] Loading model weights -- DONE!")
model.compile(
loss='mean_squared_error', optimizer='sgd', metrics=["accuracy"])
model._make_predict_function()
return model
def init_test_generator():
ids, ground_truth, class_maping = read_test_ids()
test_datagen = VideoDataGenerator(
list_IDs=ids,
labels=ground_truth,
crop_size=CROP_SIZE,
batch_size=BATCH_SIZE,
work_directory=WORK_DIR,
n_channels=3,
n_classes=len(class_maping.keys()))
return test_datagen
class C3dModel:
def __init__(self):
self.model = get_model()
self.graph = tf.get_default_graph()
def predict(self, path):
img_np_array = []
img_np_array.append(
input_data.get_frames_data(path, NUMBER_OF_FRAMES, CROP_SIZE))
img_np_array = np.array(img_np_array)
with self.graph.as_default():
intermediate_output = self.model.predict(img_np_array)
return intermediate_output
def main():
test_generator = init_test_generator()
print("[Info] Reading model architecture...")
FC_LAYERS = [4096, 4096, 487]
print(MODEL_WEIGHT_FILENAME, MODEL_JSON_FILENAME)
model = model_from_json(open(MODEL_JSON_FILENAME, 'r').read())
print("[Info] Loading model weights...")
model.load_weights(MODEL_WEIGHT_FILENAME)
print("[Info] Loading model weights -- DONE!")
model.compile(
loss='mean_squared_error', optimizer='sgd', metrics=["accuracy"])
log_dir = "./test_logs"
board = TensorBoard(
log_dir=log_dir,
write_images=True,
update_freq='epoch',
histogram_freq=0)
callbacks_list = [board]
result = model.evaluate_generator(
generator=test_generator,
steps=10,
workers=1,
use_multiprocessing=False,
verbose=1)
prediction_classes = []
for single_prediction in result:
prediction_classes.append(np.argmax(single_prediction))
print("result: ", result, model.metrics_names)
if __name__ == '__main__':
main()