-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
81 lines (63 loc) · 4.07 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# COMP6714 Project
# DO NOT MODIFY THIS FILE!!!
import torch.nn as nn
import torch
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
from todo import new_LSTMCell, get_char_sequence
class sequence_labeling(nn.Module):
def __init__(self, config, pretrain_word_embeddings, pretrain_char_embedding):
super(sequence_labeling, self).__init__()
self.config = config
# employ the modified LSTM cell if the flag is True
if self.config.use_modified_LSTMCell:
torch.nn._functions.rnn.LSTMCell = new_LSTMCell
self.word_embeds = nn.Embedding(self.config.nwords, self.config.word_embedding_dim)
self.word_embeds.weight = nn.Parameter(torch.from_numpy(pretrain_word_embeddings).float())
# below variants may be used for char embedding
self.char_embeds = nn.Embedding(self.config.nchars, self.config.char_embedding_dim)
self.char_embeds.weight = nn.Parameter(torch.from_numpy(pretrain_char_embedding).float())
char_lstm_input_dim = self.config.char_embedding_dim
self.char_lstm = nn.LSTM(char_lstm_input_dim, self.config.char_lstm_output_dim, 1, bidirectional=True)
# employ char embedding if the flag is True
if self.config.use_char_embedding:
lstm_input_dim = self.config.word_embedding_dim + self.config.char_lstm_output_dim * 2
else:
lstm_input_dim = self.config.word_embedding_dim
self.lstm = nn.LSTM(lstm_input_dim, self.config.hidden_dim, 1, bidirectional=True)
self.lstm2tag = nn.Linear(self.config.hidden_dim * 2, self.config.ntags)
self.loss_func = torch.nn.CrossEntropyLoss(reduction='none')
self.non_recurrent_dropout = nn.Dropout(self.config.dropout)
def sort_input(self, seq_len):
seq_lengths, perm_idx = seq_len.sort(0, descending=True)
return perm_idx, seq_lengths
def _rnn(self, batch_word_index_lists, batch_sentence_len_list, batch_char_index_matrices, batch_word_len_lists):
input_word_embeds = self.word_embeds(batch_word_index_lists)
# employ char embedding if the flag is True
if self.config.use_char_embedding:
output_char_sequence = get_char_sequence(self, batch_char_index_matrices, batch_word_len_lists)
input_embeds = self.non_recurrent_dropout(torch.cat([input_word_embeds, output_char_sequence], dim=-1))
else:
input_embeds = self.non_recurrent_dropout(input_word_embeds)
perm_idx, sorted_batch_sentence_len_list = self.sort_input(batch_sentence_len_list)
sorted_input_embeds = input_embeds[perm_idx]
_, desorted_indices = torch.sort(perm_idx, descending=False)
output_sequence = pack_padded_sequence(sorted_input_embeds, lengths=sorted_batch_sentence_len_list.data.tolist(), batch_first=True)
output_sequence, state = self.lstm(output_sequence)
output_sequence, _ = pad_packed_sequence(output_sequence, batch_first=True)
output_sequence = output_sequence[desorted_indices]
output_sequence = self.non_recurrent_dropout(output_sequence)
logits = self.lstm2tag(output_sequence)
return logits
def forward(self, batch_word_index_lists, batch_sentence_len_list, batch_word_mask, batch_char_index_matrices, batch_word_len_lists, batch_char_mask, batch_tag_index_list):
logits = self._rnn(batch_word_index_lists, batch_sentence_len_list, batch_char_index_matrices,
batch_word_len_lists)
batch_tag_index_list = batch_tag_index_list.view(-1)
batch_word_mask = batch_word_mask.view(-1)
logits = logits.view(-1, self.config.ntags)
train_loss = self.loss_func(logits, batch_tag_index_list) * batch_word_mask
return train_loss.mean()
def decode(self, batch_word_index_lists, batch_sentence_len_list, batch_char_index_matrices, batch_word_len_lists, batch_char_mask):
logits = self._rnn(batch_word_index_lists, batch_sentence_len_list, batch_char_index_matrices,
batch_word_len_lists)
_, pred = torch.max(logits, dim=2)
return pred