-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtodo.py
114 lines (88 loc) · 3.55 KB
/
todo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import torch
from config import config
from data_io import DataReader, gen_embedding_from_file, read_tag_vocab
from config import config
from model import sequence_labeling
from tqdm import tqdm_notebook as tqdm
from todo import evaluate
import torch
from torch.autograd import Variable
import torch.nn.functional as F
#from ipywidgets import IntProgress
from randomness import apply_random_seed
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
#from data_io import DataReader, gen_embedding_from_file, read_tag_vocab
_config = config()
def evaluate(golden_list, predict_list):
def evaluate(golden_list, predict_list):
a = []
for i in golden_list:
a += i
b = []
for i in predict_list:
b += i
TP, FP, FN = 0, 0, 0
for i,j in zip(a,b):
if i=="O" and j != "O":
FP +=1
elif i!="O" and j == "O":
FN +=1
elif i!="O" and j != "O" and i != j:
FP += 1
FN += 1
elif i == j and i != "O":
TP += 1
# afn = np.sum(FN)
if TP+FP ==0:
precision =0
else:
precision = TP/(TP+FP)
if TP+FN==0:
recall=0
else:
recall = TP/(TP+FN)
if precision+recall==0:
f1 = 0
else:
f1 = ((precision*recall)/(precision+recall)) #np.mean((precision*recall)/(precision+recall))
return f1
# print(evaluate(golden_list,predict_list))
print(golden_list)
print(predict_list)
def new_LSTMCell(input, hidden, w_ih, w_hh, b_ih=None, b_hh=None):
if input.is_cuda:
igates = F.linear(input, w_ih)
hgates = F.linear(hidden[0], w_hh)
state = fusedBackend.LSTMFused.apply
return state(igates, hgates, hidden[1]) if b_ih is None else state(igates, hgates, hidden[1], b_ih, b_hh)
hx, cx = hidden
gates = F.linear(input, w_ih, b_ih) + F.linear(hx, w_hh, b_hh)
ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1)
ingate = torch.sigmoid(ingate)
forgetgate = torch.sigmoid(forgetgate)
cellgate = torch.tanh(cellgate)
outgate = torch.sigmoid(outgate)
cy = (forgetgate * cx) + ((1-forgetgate) * cellgate)
hy = outgate * torch.tanh(cy)
return hy, cy
def get_char_sequence(model, batch_char_index_matrices, batch_word_len_lists):
perm_idx, sorted_batch_word_len_lists = model.sort_input(batch_word_len_lists.view(-1))
_, desorted_indices = torch.sort(perm_idx, descending=False)
batch_char_index_matrices = batch_char_index_matrices.view((batch_word_len_lists.size()[0]*batch_word_len_lists.size()[1], -1))
char_embedding = model.char_embeds(batch_char_index_matrices)
sorted_input_embeds = char_embedding[perm_idx]
output_sequence = pack_padded_sequence(torch.tensor(sorted_input_embeds),
lengths=sorted_batch_word_len_lists.data.tolist(), batch_first=True)
# Make embeddings of 14,14,50
lstm_out, state = model.char_lstm(output_sequence.float())
lstm_out, state = pad_packed_sequence(lstm_out,batch_first=True)
temp = []
for i in range(len(sorted_batch_word_len_lists)):
temp.append(torch.cat([lstm_out[i, sorted_batch_word_len_lists[i] - 1, :model.config.char_lstm_output_dim], lstm_out[i, 0, model.config.char_lstm_output_dim:]],-1).unsqueeze(0))
# Used state 0
answer = torch.cat(temp,0)
answer = answer[desorted_indices]
# answer = torch.cat((state[0][0],state[0][1] ),1)
return answer.view((batch_word_len_lists.size()[0],batch_word_len_lists.size()[1],-1))
# #return result
# pass