forked from varkenvarken/blenderaddons
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchainobjects.py
138 lines (112 loc) · 3.9 KB
/
chainobjects.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import bpy
from mathutils import kdtree
from itertools import permutations as perm
from functools import lru_cache
from time import time
from math import factorial as fac
bl_info = {
"name": "Chain selected objects",
"author": "Michel Anders (varkenvarken)",
"version": (0, 0, 201701220957),
"blender": (2, 78, 0),
"location": "View3D > Object > Chain selected objects",
"description": """Combine selected objects to a list of parent-child relations based on proximity""",
"category": "Object"}
def object_list(objects):
"""
Return the shortest Hamiltonian path through a collection of objects.
This is calculated using a brute force method that is certainly not
intented for real life use because for example going from ten to
eleven objects will increase the running time elevenfold and even
with caching expensive distance calculations this quickly becomes
completely unworkable.
But this routine is intended as our baseline algorithm that is meant
to be replaced with an approximation algorithm that is 'good enough'
for our purposes.
"""
@lru_cache()
def distance_squared(a,b):
return (objects[a].location-objects[b].location).length_squared
def length_squared(chain):
sum = 0.0
for i in range(len(chain)-1):
sum += distance_squared(chain[i],chain[i+1])
return sum
s = time()
shortest_d2 = 1e30
shortest_chain = None
n_half = fac(len(objects))//2
for i,chain in enumerate(perm(range(len(objects)))):
if i >= n_half:
break
d2 = length_squared(chain)
if d2 < shortest_d2:
shortest_d2 = d2
shortest_chain = chain
print("{n:d} objects {t:.1f}s".format(t=time()-s, n=len(objects)))
return [objects[i] for i in shortest_chain]
def object_list2(objects, active=0):
"""
Return an approximate shortest path through objects starting at the
active index using the nearest neighbor heuristic.
"""
s = time()
# calculate a kd tree to quickly answer nearest neighbor queries
kd = kdtree.KDTree(len(objects))
for i, ob in enumerate(objects):
kd.insert(ob.location, i)
kd.balance()
current = objects[active]
chain = [current] # we start at the chosen object
added = {active}
for i in range(1,len(objects)): # we know how many objects to add
# when looking for the nearest neighbor we start with two neigbors
# (because we include the object itself in the search) and if
# the other neigbors is not yet in the chain we add it, otherwise
# we expand our search to a maximum of the total number of objects
for n in range(2,len(objects)):
neighbors = { index for _,index,_ in kd.find_n(current.location, n) }
neighbors -= added
if neighbors: # strictly speaking we shoudl assert that len(neighbors) == 1
chain.extend(objects[i] for i in neighbors)
added |= neighbors
break
current = chain[-1]
print("{n:d} objects {t:.1f}s".format(t=time()-s, n=len(objects)))
return chain
class ChainSelectedObjects(bpy.types.Operator):
bl_idname = 'object.chainselectedobjects'
bl_label = 'Chain selected objects'
bl_options = {'REGISTER', 'UNDO'}
@classmethod
def poll(self, context):
return (context.mode == 'OBJECT'
and len(context.selected_objects) > 1)
def execute(self, context):
so = context.selected_objects.copy()
objects = object_list2(so, so.index(context.active_object))
for ob in objects:
ob.select = False
ob = objects.pop()
first = ob
while objects:
context.scene.objects.active = ob
child = objects.pop()
child.select = True
bpy.ops.object.parent_set(keep_transform=True)
child.select = False
ob = child
first.select = True
context.scene.objects.active = first
return {"FINISHED"}
def menu_func(self, context):
self.layout.operator(
ChainSelectedObjects.bl_idname,
text=ChainSelectedObjects.bl_label,
icon='PLUGIN')
def register():
bpy.utils.register_module(__name__)
bpy.types.VIEW3D_MT_object.append(menu_func)
def unregister():
bpy.types.VIEW3D_MT_object.remove(menu_func)
bpy.utils.unregister_module(__name__)