forked from dermatologist/pyomop
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patht_install.py
59 lines (48 loc) · 1.78 KB
/
t_install.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from pyomop import CdmEngineFactory, CdmVocabulary, CdmVector, Cohort, Vocabulary, metadata
from sqlalchemy.future import select
import datetime
import asyncio
async def main():
cdm = CdmEngineFactory() # Creates SQLite database by default
# Postgres example (db='mysql' also supported)
# cdm = CdmEngineFactory(db='pgsql', host='', port=5432,
# user='', pw='',
# name='', schema='cdm6')
engine = cdm.engine
# Create Tables if required
await cdm.init_models(metadata)
# Create vocabulary if required
vocab = CdmVocabulary(cdm)
# vocab.create_vocab('/path/to/csv/files') # Uncomment to load vocabulary csv files
# Add a cohort
async with cdm.session() as session:
async with session.begin():
session.add(Cohort(cohort_definition_id=2, subject_id=100,
cohort_end_date=datetime.datetime.now(),
cohort_start_date=datetime.datetime.now()))
await session.commit()
# Query the cohort
stmt = select(Cohort).where(Cohort.subject_id == 100)
result = await session.execute(stmt)
for row in result.scalars():
print(row)
assert row.subject_id == 100
# Query the cohort pattern 2
cohort = await session.get(Cohort, 1)
print(cohort)
assert cohort.subject_id == 100
# Convert result to a pandas dataframe
vec = CdmVector()
vec.result = result
print(vec.df.dtypes)
result = await vec.sql_df(cdm, 'TEST') # TEST is defined in sqldict.py
for row in result:
print(row)
result = await vec.sql_df(cdm, query='SELECT * from cohort')
for row in result:
print(row)
# Close session
await session.close()
await engine.dispose()
# Run the main function
asyncio.run(main())