forked from biomed-AI/GraphBepi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
94 lines (85 loc) · 3.61 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import os
import torch
import random
import warnings
import argparse
import numpy as np
import pickle as pk
import pytorch_lightning as pl
from tool import METRICS
from model import GraphBepi
from dataset import PDB,collate_fn,chain
from torch.utils.data import DataLoader,Dataset
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.callbacks import Callback,EarlyStopping,ModelCheckpoint
warnings.simplefilter('ignore')
from IPython.core.debugger import set_trace
def seed_everything(seed=2022):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
parser = argparse.ArgumentParser()
parser.add_argument('--lr', type=float, default=1e-6, help='learning rate.')
parser.add_argument('--gpu', type=int, default=0, help='gpu.')
parser.add_argument('--fold', type=int, default=-1, help='dataset fold. set it -1 to use the whole trainset')
parser.add_argument('--seed', type=int, default=2022, help='random seed.')
parser.add_argument('--batch', type=int, default=4, help='batch size.')
parser.add_argument('--hidden', type=int, default=256, help='hidden dim.')
parser.add_argument('--epochs', type=int, default=300, help='max number of epochs.')
parser.add_argument('--dataset', type=str, default='BCE_633', help='dataset name.')
parser.add_argument('--logger', type=str, default='./log', help='logger path.')
parser.add_argument('--tag', type=str, default='GraphBepi', help='logger name.')
args = parser.parse_args()
device='cpu' if args.gpu==-1 else f'cuda:{args.gpu}'
seed_everything(args.seed)
root=f'./data/{args.dataset}'
trainset=PDB(mode='train',fold=args.fold,root=root)
valset=PDB(mode='val',fold=args.fold,root=root)
testset=PDB(mode='test',fold=args.fold,root=root)
train_loader=DataLoader(trainset,batch_size=args.batch,shuffle=True,collate_fn=collate_fn,drop_last=True)
val_loader=DataLoader(valset,batch_size=args.batch,shuffle=False,collate_fn=collate_fn)
test_loader=DataLoader(testset,batch_size=args.batch,shuffle=False,collate_fn=collate_fn)
if args.fold==-1:
val_loader=test_loader
log_name=f'{args.dataset}_{args.tag}'
metrics=METRICS(device)
model=GraphBepi(
feat_dim=2560, # esm2 representation dim
hidden_dim=args.hidden, # hidden representation dim
exfeat_dim=13, # dssp feature dim
edge_dim=51, # edge feature dim
augment_eps=0.05, # random noise rate
dropout=0.2,
lr=args.lr, # learning rate
metrics=metrics, # an implement to compute performance
result_path=f'./model/{log_name}', # path to save temporary result file of testset
)
es=EarlyStopping('val_AUROC',patience=40,mode='max')
mc=ModelCheckpoint(
f'./model/{log_name}/',f'model_{args.fold}',
'val_AUROC',
mode='max',
save_weights_only=True,
)
logger = TensorBoardLogger(
args.logger,
name=log_name+f'_{args.fold}'
)
cb=[mc,es]
trainer = pl.Trainer(
gpus=[args.gpu] if args.gpu!=-1 else None,
max_epochs=args.epochs, callbacks=cb,
logger=logger,check_val_every_n_epoch=1,
)
if os.path.exists(f'./model/{log_name}/model_{args.fold}.ckpt'):
os.remove(f'./model/{log_name}/model_{args.fold}.ckpt')
trainer.fit(model, train_loader, val_loader)
model.load_state_dict(
torch.load(f'./model/{log_name}/model_{args.fold}.ckpt')['state_dict'],
)
trainer = pl.Trainer(gpus=[args.gpu],logger=None)
result = trainer.test(model,test_loader)
os.rename(f'./model/{log_name}/result.pkl',f'./model/{log_name}/result_{args.fold}.pkl')