-
Notifications
You must be signed in to change notification settings - Fork 7
/
calibrate_params.jl
435 lines (344 loc) · 15.4 KB
/
calibrate_params.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
module CalibrateParameters
include("calibration_utils.jl")
using JLD2, FileIO, ImpvolEquilibrium, Base.Test
function calibrate_parameters!(parameters, fname="../../data/impvol_data.jld2")
data = load(fname)
_, N, J, T = size(data["beta"])
parameters[:N], parameters[:J], parameters[:T] = N, J, T
parameters[:beta_j] = mean(data["beta"],(1,2,4))
parameters[:gamma_jk] = compute_gamma(parameters, data)
parameters[:S_nt] = zeros(1,N,1,T)
parameters[:d] = expenditure_shares(parameters, data)
parameters[:kappa_mnjt] = trade_costs(parameters)
final_expenditure_shares = calculate_expenditure_shares(parameters, data)
parameters[:final_expenditure_shares] = final_expenditure_shares
# broad country weights for final expenditure
country_weights = sum(data["va"], (1,3,4))
country_weights = country_weights ./ sum(country_weights, 2)
calculate_p_and_nu!(parameters, data, final_expenditure_shares, country_weights)
parameters[:w_njt] = calculate_nominal_wages(parameters, data)
parameters[:B_j] = calculate_B(parameters)
parameters[:xi] = calculate_xi(parameters)
parameters[:A] = calculate_A(parameters, data)
# total world expenditure in the data - needed to get reasonable starting values
parameters[:nominal_world_expenditure] = sum(data["va"] ./ parameters[:beta_j], (1,2,3))
# deflate trade imbalance to 1972 dollars
deflator = CES_price_index(parameters[:nu_njt][:,end:end,:,:], parameters[:p_sectoral][:,end:end,:,:], parameters[:sigma])
info(deflator[:])
parameters[:S_nt_data] = (data["trade_balance"] .- mean(data["trade_balance"],2)) ./ deflator
# global, all-time average of sector final expenditure shares
importance_weight = mean(parameters[:nu_njt], (1, 2, 4))
# special-case CES, when nu does not have direct meaning
if abs(parameters[:sigma]-1)>0.1
share = data["va"] ./ sum(data["va"], 3)
importance_weight = mean(share, (1, 2, 4))
end
parameters[:importance_weight] = importance_weight
decompose_shocks!(parameters, importance_weight)
draw_productivity_shocks!(parameters)
end
function compute_gamma(parameters, data)
N, J, T = parameters[:N], parameters[:J], parameters[:T]
beta = parameters[:beta_j]
io_values = data["io_values"]
total_output = data["total_output"]
output_shares = data["output_shares"]
intermediate_input_shares = data["intermediate_input_shares"]
# Summing sectors
# Agriculture & mining
io_values[1,:,:,:] = sum(io_values[1:2,:,:,:],1)
io_values = io_values[setdiff(1:end,2),:,:,:]
io_values[:,1,:,:] = sum(io_values[:,1:2,:,:],2)
io_values = io_values[:,setdiff(1:end,2),:,:]
total_output[:,1,:,:] = sum(total_output[:,1:2,:,:],2)
total_output = total_output[:,setdiff(1:end,2),:,:]
# Services
io_values[18,:,:,:] = sum(io_values[18:end,:,:,:],1)
io_values = io_values[setdiff(1:end,19:end),:,:,:]
io_values[:,18,:,:] = sum(io_values[:,18:end,:,:],2)
io_values = io_values[:,setdiff(1:end,19:end),:,:]
total_output[:,18,:,:] = sum(total_output[:,18:end,:,:],2)
total_output = total_output[:,setdiff(1:end,19:end),:,:]
# Split rows
dupl_idx = [1, 2, 2, 3, 3, 3, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 13, 13, 14, 15, 16, 17, 18]
io_values_dupl = io_values[dupl_idx,:,:,:]
output_shares_full = ones(size(io_values_dupl))
split_idx = [2, 3, 4, 5, 6, 8, 9, 17, 18, 19]
output_shares_full[split_idx,:,:,:] = permutedims(repeat(output_shares, outer = [1,1,size(io_values_dupl,2),1]),(2,3,1,4))
io_values_new = io_values_dupl .* output_shares_full
# Split columns
io_values_dupl = io_values_new[:,dupl_idx,:,:]
intermediate_input_shares_full = ones(size(io_values_dupl))
intermediate_input_shares_full[:,split_idx,:,:] = repeat(intermediate_input_shares, outer = [size(io_values_dupl,1),1,1,1])
io_values_new = io_values_dupl .* intermediate_input_shares_full
total_output = total_output[:,dupl_idx,:,:]
output_shares_full = ones(size(total_output))
output_shares_full[:,split_idx,:,:] = output_shares
total_output = total_output .* output_shares_full
# Correct order of sectors
io_values_new[18,:,:,:], io_values_new[19,:,:,:], io_values_new[20,:,:,:] = io_values_new[20,:,:,:], io_values_new[18,:,:,:], io_values_new[19,:,:,:]
io_values_new[:,18,:,:], io_values_new[:,19,:,:], io_values_new[:,20,:,:] = io_values_new[:,20,:,:], io_values_new[:,18,:,:], io_values_new[:,19,:,:]
total_output[:,18,:,:], total_output[:,19,:,:], total_output[:,20,:,:] = total_output[:,20,:,:], total_output[:,18,:,:], total_output[:,19,:,:]
# Compute gamma
gamma = io_values_new ./ repeat(total_output, outer = [size(io_values_new,1),1,1,1])
gamma = mean(gamma,4)
gamma = gamma .* permutedims(1-beta,(1,3,2,4)) ./ sum(gamma,1)
return gamma = squeeze(gamma,(3,4))
end
function compute_alpha(parameters, data)
N, J, T = parameters[:N], parameters[:J], parameters[:T]
va = data["va"]
beta = parameters[:beta_j]
gamma = parameters[:gamma_jk]
weights = parameters[:bp_weights]
alpha = zeros(J,T)
for t in 1:T
va_t = transpose(sum(va[1,:,:,t],1))
alpha[:,t] = (eye(J) - gamma) * diagm(1 ./ beta[:],0) * va_t / sum(va_t)
end
# Replace negative elements with 0
alpha = (alpha + abs.(alpha)) / 2
# Smooth the series
alpha_c, alpha_t = DetrendUtilities.detrend(alpha, weights)
# Normalization
alpha = alpha_t ./ sum(alpha_t,1)
return alpha = permutedims(cat(ndims(alpha) + 2,alpha),(3,4,1,2))
end
function trade_costs(parameters)
N, J, T = parameters[:N], parameters[:J], parameters[:T]
d = parameters[:d]
theta = parameters[:theta]
n_zero = parameters[:numerical_zero]
# smooth kappa over time so that it does not introduce shocks
weights = parameters[:bp_weights]
_, share_trend = DetrendUtilities.detrend(d, weights)
# DEBUG: undo all this
share_trend = d
kappa = zeros(size(d))
for j in 1:(J-1)
for t = 1:T
kappa[:,:,j,t] = ((share_trend[:,:,j,t] .* transpose(share_trend[:,:,j,t])) ./ (diag(share_trend[:,:,j,t]) * transpose(diag(share_trend[:,:,j,t])))).^(1 / (2 * theta))
end
end
kappa[kappa .< n_zero] = n_zero
kappa[:,:,end,:] = repeat(eye(N), outer = [1,1,1,T]) # Services
kappa = min.(kappa,1)
# smooth kappa over time so that it does not introduce shocks
_, kappa_trend = DetrendUtilities.detrend(kappa, weights)
# DEBUG: return kappa, not kappa_trend
return kappa
end
function expenditure_shares(parameters, data)
N, J, T = parameters[:N], parameters[:J], parameters[:T]
import_shares = data["import_shares"]
n_zero = parameters[:numerical_zero]
d = import_shares
within_import = d ./ sum(d, 2)
domestic_per_import = 1 ./ sum(d, 2) - 1
domestic_per_import[domestic_per_import .< n_zero] = n_zero
d = within_import ./ (1 + domestic_per_import)
for n in 1:N
d[n,n,:,:] = ones(J,T) - squeeze(sum(d[n,:,:,:],1),1)
end
d[d .< n_zero] = n_zero
return d ./ sum(d, 2)
end
function calculate_xi(parameters)
theta = parameters[:theta]
eta = parameters[:eta]
return gamma((theta + 1 - eta)/theta)
end
function calculate_B(parameters)
beta = parameters[:beta_j]
gamma = parameters[:gamma_jk]
gamma = permutedims(cat(ndims(gamma) + 2,gamma),[1,3,2,4])
return B = (beta .^ -beta) .* prod(gamma .^ -gamma, 1)
end
function calculate_nominal_wages(parameters, data)
nulla = parameters[:numerical_zero]
weights = parameters[:bp_weights]
value_added_shares = data["va"] ./ sum(data["va"], 3)
V_c, V_t = DetrendUtilities.detrend(value_added_shares, weights)
if parameters[:one_over_rho]>0.0
trend = 0.5*(V_t - parameters[:one_over_rho])
labor_share = trend .+ (trend .^2 .+ parameters[:one_over_rho]*value_added_shares) .^ 0.5
wage_ratio = value_added_shares ./ labor_share
info("Unweighted wage ratio should be 1: ", mean(wage_ratio))
else
# if no labor adjustment, the ratio of value added = the ratio of wages
wage_ratio = value_added_shares ./ V_t
end
nominal_GDP = sum(data["va"], 3)
return nominal_GDP .* wage_ratio
end
function calculate_p_and_nu!(parameters, data, final_expenditure_shares, country_weights)
N = parameters[:N]
J = parameters[:J]
T = parameters[:T]
p_sectoral_data = data["p_sectoral_data"]
d = parameters[:d]
kappa = parameters[:kappa_mnjt]
theta = parameters[:theta]
sigma = parameters[:sigma]
nulla = parameters[:numerical_zero]
p_sectoral_base = p_sectoral_data ./ p_sectoral_data[:,:,:,1]
# step 1: calculate nu and price index for base country
# NB: US as the last country in the matrix
p_sectoral_US = p_sectoral_base[:,end:end,:,:]
nu_US = final_expenditure_shares[:,end:end,:,:] .* p_sectoral_US .^ (sigma-1)
nu_US = nu_US ./ sum(nu_US, 3)
P_US = CES_price_index(nu_US, p_sectoral_US, sigma)
@test p_sectoral_US[1,1,:,1] ≈ ones(J) atol=1e-9
@test P_US[1,1,1,1] ≈ 1.0 atol=1e-9
# step 2: calculate sectoral prices from market shares relative to US
# US is assumed to be chosen as a base country (US = end), else pwt should be used to do the conversion
# normalization: p_sectoral[1,end,:,1] = 1.0
p_sectoral = array_transpose(exp.( mean(1 / theta * log.(d ./ permutedims(cat(ndims(d),d[end,:,:,:]),[4,1,2,3])) - log.(kappa ./ permutedims(cat(ndims(kappa),kappa[end,:,:,:]),[4,1,2,3])), 2) + repeat(permutedims(cat(ndims(p_sectoral_base),log.(p_sectoral_base[:,end,:,:])), [1,4,2,3]), outer = [size(d,1),1,1,1]) ))
@test any(isnan, p_sectoral[:,:,1:end-1,:]) == false
# step 3: calculate tradable nu and infer nontradable nu
nu = final_expenditure_shares .* (p_sectoral ./ (data["pwt"] .* P_US)) .^ (sigma-1)
@test any(isnan, nu[:,:,1:end-1,:]) == false
nontradable_nu = 1 .- sum(final_expenditure_shares[:,:,1:end-1,:], 3)
# Replace negative elements with second smallest positive
nu[:,:,end:end,:] .= DetrendUtilities.winsorize(nontradable_nu, 1)
nu .= nu ./ sum(nu, 3)
# demand shifter only varies across sectors and over time, not across countries
parameters[:nu_njt] = sum(country_weights .* nu, (1,2))
# enforce comformity of model with data
final_expenditure_shares = parameters[:nu_njt] .* (p_sectoral ./ (data["pwt"] .* P_US)) .^ (1-sigma)
nontradable_nu = 1 .- sum(final_expenditure_shares[:,:,1:end-1,:], 3)
# Replace negative elements with second smallest positive
final_expenditure_shares[:,:,end:end,:] .= DetrendUtilities.winsorize(nontradable_nu, 1)
final_expenditure_shares .= final_expenditure_shares ./ sum(final_expenditure_shares, 3)
# step 4: calculate nontradable prices
# NB: DO NOT recalibrate tradable prices, expenditure_shares are very noisy for small sectors
if abs(sigma-1)>0.01
p_sectoral[:,:,end:end,:] = data["pwt"] .* P_US .* (parameters[:nu_njt][:,:,end:end,:] ./ final_expenditure_shares[:,:,end:end,:]) .^ (1/(sigma-1))
else
p_sectoral[:,:,end:end,:] = (data["pwt"] .* P_US ./ (prod(p_sectoral[:,:,1:end-1,:] .^ parameters[:nu_njt][:,:,1:end-1,:], 3))) .^ (1 ./ parameters[:nu_njt][:,:,end:end,:])
end
parameters[:p_sectoral] = p_sectoral
parameters[:final_expenditure_shares] = final_expenditure_shares
end
function calculate_A(parameters, data)
N, J, T = parameters[:N], parameters[:J], parameters[:T]
p_njt = parameters[:p_sectoral]
p_mjt = array_transpose(p_njt)
beta_j = parameters[:beta_j]
gamma = parameters[:gamma_jk]
kappa_mnjt = parameters[:kappa_mnjt]
w_njt = parameters[:w_njt]
B = parameters[:B_j]
d_mnjt = parameters[:d]
xi = parameters[:xi]
theta = parameters[:theta]
z = zeros(1, N, J, T)
# use eq 15 in algorithm.pdf
rho_mnjt = kappa_mnjt .* p_mjt .* d_mnjt .^ (-1/theta)
rho_njt = exp.(mean(log.(rho_mnjt),1))
# nontradable input price equals output price
rho_njt[1,:,end,:] = p_njt[1,:,end,:]
input_price_index = exp.(rotate_sectors(gamma', log.(p_njt)))
A_njt = xi .* B ./ rho_njt .* w_njt .^ beta_j .* input_price_index
return A_njt
end
function calculate_expenditure_shares(parameters, data)
N, J, T = parameters[:N], parameters[:J], parameters[:T]
nulla = parameters[:numerical_zero]
weights = parameters[:bp_weights]
beta = parameters[:beta_j]
gamma = parameters[:gamma_jk]
d = parameters[:d]
# service import shares are NaN
for t=1:T
d[:,:,J,t] = eye(N)
end
va = data["va"]
#beta = squeeze(beta,(1,2,4))
revenue = va ./ beta
expenditure = zeros(revenue)
for j=1:J
for t=1:T
expenditure[1,:,j,t] = revenue[1,:,j,t]' * inv(d[:,:,j,t])
end
end
intermediate = rotate_sectors(gamma, revenue)
final_expenditure = expenditure - intermediate
# Smooth the series
_, nu_guess = DetrendUtilities.detrend(final_expenditure, weights)
# Replace negative elements with smallest positive
nu_guess .= DetrendUtilities.winsorize(nu_guess ./ sum(nu_guess, 3), 0)
# Smooth the series
nu_c, nu_t = DetrendUtilities.detrend(nu_guess, weights)
# Normalization
return nu_t ./ sum(nu_t, 3)
end
function estimate_AR1(data)
# data is M,N,J,T
_, N, J, T = size(data)
current = data[:,:,:,2:T]
lag = data[:,:,:,1:T-1]
constant = zeros(1, N, J, 1)
rho = zeros(1, N, J, 1)
sigma = zeros(1, N, J, 1)
# estimate a separate AR(1) for each series
for n=1:N
for j=1:J
y = current[1,n,j,:]
X = cat(2, ones(T-1), lag[1,n,j,:])
constant[1,n,j,1], rho[1,n,j,1] = X \ y
sigma[1,n,j,1] = std(y - X * [constant[1,n,j,1], rho[1,n,j,1]])
end
end
return (constant, rho, sigma)
end
function draw_productivity_shocks!(parameters)
S, T = parameters[:S], parameters[:T]
parameters[:global_sectoral_shock_njs] = draw_random_realizations(parameters[:global_sectoral_shock], S)
parameters[:country_shock_njs] = draw_random_realizations(parameters[:country_shock], S)
parameters[:idiosyncratic_shock_njs] = draw_random_realizations(parameters[:idiosyncratic_shock], S)
parameters[:A_njs] = map(t ->
exp.(ImpvolEquilibrium.non_random_variable(parameters[:productivity_trend], t)
.+ parameters[:global_sectoral_shock_njs][t]
.+ parameters[:country_shock_njs][t]
.+ parameters[:idiosyncratic_shock_njs][t]),
1:T)
end
function draw_random_realizations(data, S)
# data is M,N,J,T
_, N, J, T = size(data)
constant, rho, sigma = estimate_AR1(data)
draws = Array{Array{Float64, 4}}(T)
draws[1] = ImpvolEquilibrium.non_random_variable(data, 1)
for t=2:T
innovation = sigma .* randn(1,N,J,S - 1)
random_realization = ImpvolEquilibrium.non_random_variable(data, t)
past_productivity = ImpvolEquilibrium.non_random_variable(data, t-1)
# reversion towards mean
draws[t] = cat(4, random_realization, constant .* (1-rho) .+ past_productivity .* rho .+ innovation)
end
return draws
end
function decompose_shocks!(parameters, sectoral_weights)
# M,N,J,T
# Smooth the series
weights = parameters[:bp_weights]
detrended_log_productivity, parameters[:productivity_trend] = DetrendUtilities.detrend(log.(parameters[:A]), weights)
global_sectoral_shock = mean(detrended_log_productivity, 2)
# weighted by sector importance, see https://github.com/ceumicrodata/impvol/commit/91d92905678df96d7068b8dd729e6f6d7cf470d8
country_shock = sum(sectoral_weights .* (detrended_log_productivity .- global_sectoral_shock), 3) ./ sum(sectoral_weights, 3)
idiosyncratic_shock = detrended_log_productivity .- global_sectoral_shock .- country_shock
parameters[:global_sectoral_shock] = global_sectoral_shock
parameters[:country_shock] = country_shock
parameters[:idiosyncratic_shock] = idiosyncratic_shock
end
function jld_saver(data, file_name="results.jld2")
jldopen(file_name, "w") do file
file["results"] = data
end
end
function jld_loader(file_name="results.jld2")
file = jldopen(file_name, "r")
return file["results"]
end
end