-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_euclidean.py
39 lines (34 loc) · 1.34 KB
/
test_euclidean.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import torch
import torch.distributed as dist
dist.init_process_group('mpi')
rank = dist.get_rank()
size = dist.get_world_size()
from dist_stat import distmat
from dist_stat import distmm
import argparse
import os
from dist_stat.application.euclidean_distance import euclidean_distance_DistMat, euclidean_distance_tensor
num_gpu = torch.cuda.device_count()
if __name__=='__main__':
parser = argparse.ArgumentParser(description="All pairwise Euclidean distances")
parser.add_argument('--gpu', dest='with_gpu', action='store_const', const=True, default=False,
help='whether to use gpu')
parser.add_argument('--double', dest='double', action='store_const', const=True, default=False,
help='use this flag for double precision. otherwise single precision is used.')
args = parser.parse_args()
if args.with_gpu:
torch.cuda.set_device(rank % num_gpu)
if args.double:
TType=torch.cuda.DoubleTensor
else:
TType=torch.cuda.FloatTensor
else:
if args.double:
TType=torch.DoubleTensor
else:
TType=torch.FloatTensor
data = distmat.distgen_normal(10000, 1000, TType=TType)
r = euclidean_distance_DistMat(data)
print(r.chunk)
if rank==0:
print(euclidean_distance_tensor(data.chunk, data.chunk))