forked from rweather/arduinolibs
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Ed25519.cpp
642 lines (582 loc) · 21.6 KB
/
Ed25519.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
/*
* Copyright (C) 2015 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "Ed25519.h"
#include "Curve25519.h"
#include "Crypto.h"
#include "RNG.h"
#include "utility/LimbUtil.h"
#include <string.h>
/**
* \class Ed25519 Ed25519.h <Ed25519.h>
* \brief Digital signatures based on the elliptic curve modulo 2^255 - 19.
*
* The first step in creating a digital signature with Ed25519 is to
* generate a key pair:
*
* \code
* uint8_t privateKey[32];
* uint8_t publicKey[32];
*
* Ed25519::generatePrivateKey(privateKey);
* Ed25519::derivePublicKey(publicKey, privateKey);
* \endcode
*
* The application can store both the private and public key for later
* signing operations. Or it can store just the private key and then
* derive the public key at the point where signing is to occur.
*
* Message signing produces a 64-byte signature as follows:
*
* \code
* uint8_t message[N];
* uint8_t signature[64];
*
* Ed25519::sign(signature, privateKey, publicKey, message, N);
* \endcode
*
* And then to verify the signature:
*
* \code
* if (!Ed25519::verify(signature, publicKey, message, N)) {
* // The signature is invalid.
* ...
* }
* \endcode
*
* \note The public functions in this class need a substantial amount of
* stack space to store intermediate results while the curve function is
* being evaluated. About 1.5k of free stack space is recommended for safety.
*
* References: https://tools.ietf.org/html/draft-irtf-cfrg-eddsa-05
*
* \sa Curve25519
*/
/** @cond */
// 37095705934669439343138083508754565189542113879843219016388785533085940283555
static limb_t const numD[NUM_LIMBS_256BIT] PROGMEM = {
LIMB_PAIR(0x135978A3, 0x75EB4DCA), LIMB_PAIR(0x4141D8AB, 0x00700A4D),
LIMB_PAIR(0x7779E898, 0x8CC74079), LIMB_PAIR(0x2B6FFE73, 0x52036CEE)
};
// d * 2
static limb_t const numDx2[NUM_LIMBS_256BIT] PROGMEM = {
LIMB_PAIR(0x26B2F159, 0xEBD69B94), LIMB_PAIR(0x8283B156, 0x00E0149A),
LIMB_PAIR(0xEEF3D130, 0x198E80F2), LIMB_PAIR(0x56DFFCE7, 0x2406D9DC)
};
// Extended homogenous co-ordinates for the base point.
static limb_t const numBx[NUM_LIMBS_256BIT] PROGMEM = {
LIMB_PAIR(0x8F25D51A, 0xC9562D60), LIMB_PAIR(0x9525A7B2, 0x692CC760),
LIMB_PAIR(0xFDD6DC5C, 0xC0A4E231), LIMB_PAIR(0xCD6E53FE, 0x216936D3)
};
static limb_t const numBy[NUM_LIMBS_256BIT] PROGMEM = {
LIMB_PAIR(0x66666658, 0x66666666), LIMB_PAIR(0x66666666, 0x66666666),
LIMB_PAIR(0x66666666, 0x66666666), LIMB_PAIR(0x66666666, 0x66666666)
};
static limb_t const numBz[NUM_LIMBS_256BIT] PROGMEM = {
LIMB_PAIR(0x00000001, 0x00000000), LIMB_PAIR(0x00000000, 0x00000000),
LIMB_PAIR(0x00000000, 0x00000000), LIMB_PAIR(0x00000000, 0x00000000)
};
static limb_t const numBt[NUM_LIMBS_256BIT] PROGMEM = {
LIMB_PAIR(0xA5B7DDA3, 0x6DDE8AB3), LIMB_PAIR(0x775152F5, 0x20F09F80),
LIMB_PAIR(0x64ABE37D, 0x66EA4E8E), LIMB_PAIR(0xD78B7665, 0x67875F0F)
};
// 2^252 + 27742317777372353535851937790883648493
static limb_t const numQ[NUM_LIMBS_256BIT] PROGMEM = {
LIMB_PAIR(0x5CF5D3ED, 0x5812631A), LIMB_PAIR(0xA2F79CD6, 0x14DEF9DE),
LIMB_PAIR(0x00000000, 0x00000000), LIMB_PAIR(0x00000000, 0x10000000)
};
/** @endcond */
/**
* \brief Signs a message using a specific Ed25519 private key.
*
* \param signature The signature value.
* \param privateKey The private key to use to sign the message.
* \param publicKey The public key corresponding to \a privateKey.
* \param message Points to the message to be signed.
* \param len The length of the \a message to be signed.
*
* \sa verify(), derivePublicKey()
*/
void Ed25519::sign(uint8_t signature[64], const uint8_t privateKey[32],
const uint8_t publicKey[32], const void *message, size_t len)
{
SHA512 hash;
uint8_t *buf = (uint8_t *)(hash.state.w); // Reuse hash buffer to save memory.
limb_t a[NUM_LIMBS_256BIT];
limb_t r[NUM_LIMBS_256BIT];
limb_t k[NUM_LIMBS_256BIT];
limb_t t[NUM_LIMBS_512BIT + 1];
Point rB;
// Derive the secret scalar a and the message prefix from the private key.
deriveKeys(&hash, a, privateKey);
// Hash the prefix and the message to derive r.
hash.reset();
hash.update(buf + 32, 32);
hash.update(message, len);
hash.finalize(buf, 0);
reduceQFromBuffer(r, buf, t);
// Encode rB into the first half of the signature buffer as R.
mul(rB, r);
encodePoint(signature, rB);
// Hash R, A, and the message to get k.
hash.reset();
hash.update(signature, 32); // R
hash.update(publicKey, 32); // A
hash.update(message, len);
hash.finalize(buf, 0);
reduceQFromBuffer(k, buf, t);
// Compute s = (r + k * a) mod q.
Curve25519::mulNoReduce(t, k, a);
t[NUM_LIMBS_512BIT] = 0;
reduceQ(t, t);
BigNumberUtil::add(t, t, r, NUM_LIMBS_256BIT);
BigNumberUtil::reduceQuick_P(t, t, numQ, NUM_LIMBS_256BIT);
BigNumberUtil::packLE(signature + 32, 32, t, NUM_LIMBS_256BIT);
// Clean up.
clean(a);
clean(r);
clean(k);
clean(t);
clean(rB);
}
/**
* \brief Verifies a signature using a specific Ed25519 public key.
*
* \param signature The signature value to be verified.
* \param publicKey The public key to use to verify the signature.
* \param message The message whose signature is to be verified.
* \param len The length of the \a message to be verified.
*
* \return Returns true if the \a signature is valid for \a message;
* or false if the \a signature is not valid.
*
* \sa sign()
*/
bool Ed25519::verify(const uint8_t signature[64], const uint8_t publicKey[32],
const void *message, size_t len)
{
SHA512 hash;
Point A;
Point R;
Point sB;
Point kA;
uint8_t *k = (uint8_t *)(hash.state.w); // Reuse hash buffer to save memory.
bool result = false;
// Decode the public key and the R component of the signature.
if (decodePoint(A, publicKey) && decodePoint(R, signature)) {
// Reconstruct the k value from the signing step.
hash.reset();
hash.update(signature, 32);
hash.update(publicKey, 32);
hash.update(message, len);
hash.finalize(k, 0);
// Calculate s * B. The s value is stored temporarily in kA.t.
BigNumberUtil::unpackLE(kA.t, NUM_LIMBS_256BIT, signature + 32, 32);
mul(sB, kA.t, false);
// Calculate R + k * A. We don't need sB.t in equal() below,
// so we reuse that as a temporary buffer when reducing k.
reduceQFromBuffer(sB.t, k, kA.x);
mul(kA, sB.t, A, false);
add(R, kA);
// Compare s * B and R + k * A for equality.
result = equal(sB, R);
}
// Clean up and exit.
clean(A);
clean(R);
clean(sB);
clean(kA);
return result;
}
/**
* \brief Generates a private key for Ed25519 signing operations.
*
* \param privateKey The resulting private key.
*
* The private key is generated with \link RNGClass::rand() RNG.rand()\endlink.
* It is the caller's responsibility to ensure that the global random number
* pool has sufficient entropy to generate the 32 bytes of the key safely
* before calling this function.
*
* \sa derivePublicKey()
*/
void Ed25519::generatePrivateKey(uint8_t privateKey[32])
{
RNG.rand(privateKey, 32);
}
/**
* \brief Derives the public key from a private key.
*
* \param publicKey The public key.
* \param privateKey The private key.
*
* \sa generatePrivateKey()
*/
void Ed25519::derivePublicKey(uint8_t publicKey[32], const uint8_t privateKey[32])
{
SHA512 hash;
limb_t a[NUM_LIMBS_256BIT];
Point ptA;
// Derive the secret scalar a from the private key.
deriveKeys(&hash, a, privateKey);
// Compute the point A = aB and encode it.
mul(ptA, a);
encodePoint(publicKey, ptA);
// Clean up and exit.
clean(a);
clean(ptA);
}
/**
* \brief Reduces a number modulo q that was specified in a 512 bit buffer.
*
* \param result The result array, which must be NUM_LIMBS_256BIT limbs in size.
* \param buf The buffer containing the value to reduce in little-endian order.
* \param temp A temporary buffer of at least NUM_LIMBS_512BIT + 1 in size.
*
* \sa reduceQ()
*/
void Ed25519::reduceQFromBuffer(limb_t *result, const uint8_t buf[64], limb_t *temp)
{
BigNumberUtil::unpackLE(temp, NUM_LIMBS_512BIT, buf, 64);
temp[NUM_LIMBS_512BIT] = 0;
reduceQ(result, temp);
}
/**
* \brief Reduces a number modulo q.
*
* \param result The result array, which must be NUM_LIMBS_256BIT limbs in size.
* \param r The value to reduce, which must be NUM_LIMBS_512BIT + 1
* limbs in size.
*
* The \a r array will be modified by this function as a side effect of
* the division. It is allowed for \a result to be the same as \a r.
*
* \sa reduceQFromBuffer()
*/
void Ed25519::reduceQ(limb_t *result, limb_t *r)
{
// Algorithm from: http://en.wikipedia.org/wiki/Barrett_reduction
//
// We assume that r is less than or equal to (q - 1)^2.
//
// We want to compute result = r mod q. Find the smallest k such
// that 2^k > q. In our case, k = 253. Then set m = floor(4^k / q)
// and let r = r - q * floor(m * r / 4^k). This will be the result
// or it will be at most one subtraction of q away from the result.
//
// Note: 4^k = 4^253 = 2^506 = 2^512/2^6. We can more easily compute
// the result we want if we set m = floor(4^k * 2^6 / q) instead and
// then r = r - q * floor(m * r / 2^512). Because the slight extra
// precision in m, r is at most two subtractions of q away from the
// final result.
static limb_t const numM[NUM_LIMBS_256BIT + 1] PROGMEM = {
LIMB_PAIR(0x0A2C131B, 0xED9CE5A3), LIMB_PAIR(0x086329A7, 0x2106215D),
LIMB_PAIR(0xFFFFFFEB, 0xFFFFFFFF), LIMB_PAIR(0xFFFFFFFF, 0xFFFFFFFF),
0x0F
};
limb_t temp[NUM_LIMBS_512BIT + NUM_LIMBS_256BIT + 1];
// Multiply r by m.
BigNumberUtil::mul_P(temp, r, NUM_LIMBS_512BIT, numM, NUM_LIMBS_256BIT + 1);
// Multiply (m * r) / 2^512 by q and subtract it from r.
// We can ignore the high words of the subtraction result
// because they will all turn into zero after the subtraction.
BigNumberUtil::mul_P(temp, temp + NUM_LIMBS_512BIT, NUM_LIMBS_256BIT + 1,
numQ, NUM_LIMBS_256BIT);
BigNumberUtil::sub(r, r, temp, NUM_LIMBS_256BIT);
// Perform two subtractions of q from the result to reduce it.
BigNumberUtil::reduceQuick_P(result, r, numQ, NUM_LIMBS_256BIT);
BigNumberUtil::reduceQuick_P(result, result, numQ, NUM_LIMBS_256BIT);
// Clean up and exit.
clean(temp);
}
/**
* \brief Multiplies a value by a curve point.
*
* \param result The result of the multiplication.
* \param s The value, which must be NUM_LIMBS_256BIT limbs in size.
* \param p The curve point, which will be modified by this function.
* \param constTime Set to true if the evaluation must be constant-time
* because \a s is a secret value.
*/
void Ed25519::mul(Point &result, const limb_t *s, Point &p, bool constTime)
{
Point q;
limb_t A[NUM_LIMBS_256BIT];
limb_t B[NUM_LIMBS_256BIT];
limb_t C[NUM_LIMBS_256BIT];
limb_t D[NUM_LIMBS_256BIT];
limb_t mask, select;
uint8_t sposn, t;
// Initialize the result to (0, 1, 1, 0).
memset(&result, 0, sizeof(Point));
result.y[0] = 1;
result.z[0] = 1;
// Iterate over the 255 bits of "s" to calculate "s * p".
mask = 1;
sposn = 0;
for (t = 255; t > 0; --t) {
// Add p to the result to produce q. The specification refers
// to temporary variables A to H. We can dispense with E to H
// by using B, D, q.z, and q.t to hold those values temporarily.
select = s[sposn] & mask;
if (constTime || select) {
Curve25519::sub(A, result.y, result.x);
Curve25519::sub(C, p.y, p.x);
Curve25519::mul(A, A, C);
Curve25519::add(B, result.y, result.x);
Curve25519::add(C, p.y, p.x);
Curve25519::mul(B, B, C);
Curve25519::mul(C, result.t, p.t);
Curve25519::mul_P(C, C, numDx2);
Curve25519::mul(D, result.z, p.z);
Curve25519::add(D, D, D);
Curve25519::sub(q.t, B, A); // E = B - A
Curve25519::sub(q.z, D, C); // F = D - C
Curve25519::add(D, D, C); // G = D + C
Curve25519::add(B, B, A); // H = B + A
if (constTime) {
// Put the intermediate value into q.
Curve25519::mul(q.x, q.t, q.z); // q.x = E * F
Curve25519::mul(q.y, D, B); // q.y = G * H
Curve25519::mul(q.z, q.z, D); // q.z = F * G
Curve25519::mul(q.t, q.t, B); // q.t = E * H
// Copy q into the result if the current bit of s is 1.
Curve25519::cmove(select, result.x, q.x);
Curve25519::cmove(select, result.y, q.y);
Curve25519::cmove(select, result.z, q.z);
Curve25519::cmove(select, result.t, q.t);
} else {
// Put the intermediate value directly into the result.
Curve25519::mul(result.x, q.t, q.z); // q.x = E * F
Curve25519::mul(result.y, D, B); // q.y = G * H
Curve25519::mul(result.z, q.z, D); // q.z = F * G
Curve25519::mul(result.t, q.t, B); // q.t = E * H
}
}
// Double p for the next iteration.
Curve25519::sub(A, p.y, p.x);
Curve25519::square(A, A);
Curve25519::add(B, p.y, p.x);
Curve25519::square(B, B);
Curve25519::square(C, p.t);
Curve25519::mul_P(C, C, numDx2);
Curve25519::square(D, p.z);
Curve25519::add(D, D, D);
Curve25519::sub(p.t, B, A); // E = B - A
Curve25519::sub(p.z, D, C); // F = D - C
Curve25519::add(D, D, C); // G = D + C
Curve25519::add(B, B, A); // H = B + A
Curve25519::mul(p.x, p.t, p.z); // p.x = E * F
Curve25519::mul(p.y, D, B); // p.y = G * H
Curve25519::mul(p.z, p.z, D); // p.z = F * G
Curve25519::mul(p.t, p.t, B); // p.t = E * H
// Move onto the next bit of s from lowest to highest.
if (mask != (((limb_t)1) << (LIMB_BITS - 1))) {
mask <<= 1;
} else {
++sposn;
mask = 1;
}
}
// Clean up.
clean(q);
clean(A);
clean(B);
clean(C);
clean(D);
}
/**
* \brief Multiplies a value by the base point of the curve.
*
* \param result The result of the multiplication.
* \param s The value, which must be NUM_LIMBS_256BIT limbs in size.
* \param constTime Set to true if the evaluation must be constant-time
* because \a s is a secret values.
*/
void Ed25519::mul(Point &result, const limb_t *s, bool constTime)
{
Point P;
memcpy_P(P.x, numBx, sizeof(P.x));
memcpy_P(P.y, numBy, sizeof(P.y));
memcpy_P(P.z, numBz, sizeof(P.z));
memcpy_P(P.t, numBt, sizeof(P.t));
mul(result, s, P, constTime);
clean(P);
}
/**
* \brief Adds two curve points.
*
* \param p The first point and the result.
* \param q The second point.
*/
void Ed25519::add(Point &p, const Point &q)
{
limb_t A[NUM_LIMBS_256BIT];
limb_t B[NUM_LIMBS_256BIT];
limb_t C[NUM_LIMBS_256BIT];
limb_t D[NUM_LIMBS_256BIT];
Curve25519::sub(A, p.y, p.x);
Curve25519::sub(C, q.y, q.x);
Curve25519::mul(A, A, C);
Curve25519::add(B, p.y, p.x);
Curve25519::add(C, q.y, q.x);
Curve25519::mul(B, B, C);
Curve25519::mul(C, p.t, q.t);
Curve25519::mul_P(C, C, numDx2);
Curve25519::mul(D, p.z, q.z);
Curve25519::add(D, D, D);
Curve25519::sub(p.t, B, A); // E = B - A
Curve25519::sub(p.z, D, C); // F = D - C
Curve25519::add(D, D, C); // G = D + C
Curve25519::add(B, B, A); // H = B + A
Curve25519::mul(p.x, p.t, p.z); // p.x = E * F
Curve25519::mul(p.y, D, B); // p.y = G * H
Curve25519::mul(p.z, p.z, D); // p.z = F * G
Curve25519::mul(p.t, p.t, B); // p.t = E * H
clean(A);
clean(B);
clean(C);
clean(D);
}
/**
* \brief Determine if two curve points are equal.
*
* \param p The first curve point.
* \param q The second curve point.
*
* \return Returns true if \a p and \a q are equal; false otherwise.
*/
bool Ed25519::equal(const Point &p, const Point &q)
{
limb_t a[NUM_LIMBS_256BIT];
limb_t b[NUM_LIMBS_256BIT];
bool result = true;
Curve25519::mul(a, p.x, q.z);
Curve25519::mul(b, q.x, p.z);
result &= secure_compare(a, b, sizeof(a));
Curve25519::mul(a, p.y, q.z);
Curve25519::mul(b, q.y, p.z);
result &= secure_compare(a, b, sizeof(a));
clean(a);
clean(b);
return result;
}
/**
* \brief Encodes a curve point into a 32-byte buffer.
*
* \param buf The buffer to encode into.
* \param point The curve point to encode. This value will be modified
* the function and effectively destroyed.
*
* \sa decodePoint()
*/
void Ed25519::encodePoint(uint8_t *buf, Point &point)
{
// Convert the homogeneous coordinates into plain (x, y) coordinates:
// zinv = z^(-1) mod p
// x = x * zinv mod p
// y = y * zinv mod p
// We don't need the t coordinate, so use that to store zinv temporarily.
Curve25519::recip(point.t, point.z);
Curve25519::mul(point.x, point.x, point.t);
Curve25519::mul(point.y, point.y, point.t);
// Copy the lowest bit of x to the highest bit of y.
point.y[NUM_LIMBS_256BIT - 1] |= (point.x[0] << (LIMB_BITS - 1));
// Convert y into little-endian in the return buffer.
BigNumberUtil::packLE(buf, 32, point.y, NUM_LIMBS_256BIT);
}
/**
* \brief Decodes a curve point from a 32-byte buffer.
*
* \param point The curve point that was decoded from the buffer.
* \param buf The buffer to decode.
*
* \return Returns true if the point was decoded or false if the contents
* of the buffer do not correspond to a legitimate curve point.
*
* \note This function is not constant time so it should only be used
* on publicly-known values.
*/
bool Ed25519::decodePoint(Point &point, const uint8_t *buf)
{
limb_t temp[NUM_LIMBS_256BIT];
// Convert the input buffer from little-endian into the limbs of y.
BigNumberUtil::unpackLE(point.y, NUM_LIMBS_256BIT, buf, 32);
// The high bit of y is the sign bit for x.
limb_t sign = point.y[NUM_LIMBS_256BIT - 1] >> (LIMB_BITS - 1);
point.y[NUM_LIMBS_256BIT - 1] &= ~(((limb_t)1) << (LIMB_BITS - 1));
// Set z to 1.
memcpy_P(point.z, numBz, sizeof(point.z));
// Compute t = (y * y - 1) * modinv(d * y * y + 1).
Curve25519::square(point.t, point.y);
Curve25519::sub(point.x, point.t, point.z);
Curve25519::mul_P(point.t, point.t, numD);
Curve25519::add(point.t, point.t, point.z);
Curve25519::recip(temp, point.t);
Curve25519::mul(point.t, point.x, temp);
clean(temp);
// Check for t = 0.
limb_t check = point.t[0];
for (uint8_t posn = 1; posn < NUM_LIMBS_256BIT; ++posn)
check |= point.t[posn];
if (!check) {
// If the sign bit is set, then decoding has failed.
// Otherwise x is zero and we're done.
if (sign)
return false;
memset(point.x, 0, sizeof(point.x));
return true;
}
// Recover x by taking the sqrt of t and flipping the sign if necessary.
if (!Curve25519::sqrt(point.x, point.t))
return false;
if (sign != (point.x[0] & ((limb_t)1))) {
// The signs are different so we want the other square root.
memset(point.t, 0, sizeof(point.t));
Curve25519::sub(point.x, point.t, point.x);
}
// Finally, t = x * y.
Curve25519::mul(point.t, point.x, point.y);
return true;
}
/**
* \brief Derive key material from a 32-byte private key.
*
* \param hash SHA512 hash object from the caller for use in this function.
* The 64-byte output buffer within this hash object will contain the
* hash prefix on exit.
* \param a The secret scalar derived from \a privateKey. This must be
* NUM_LIMBS_256BIT limbs in size.
* \param privateKey The 32-byte private key to derive all other values from.
*/
void Ed25519::deriveKeys(SHA512 *hash, limb_t *a, const uint8_t privateKey[32])
{
// Hash the private key to get the "a" scalar and the message prefix.
uint8_t *buf = (uint8_t *)(hash->state.w); // Reuse hash buffer to save memory.
hash->reset();
hash->update(privateKey, 32);
hash->finalize(buf, 0);
buf[0] &= 0xF8;
buf[31] &= 0x7F;
buf[31] |= 0x40;
// Unpack the first half of the hash value into "a".
BigNumberUtil::unpackLE(a, NUM_LIMBS_256BIT, buf, 32);
}