diff --git a/docs/source/format/Columnar.rst b/docs/source/format/Columnar.rst index 33c937ea34820..9ef6a933528f8 100644 --- a/docs/source/format/Columnar.rst +++ b/docs/source/format/Columnar.rst @@ -1619,6 +1619,7 @@ example as above, an alternate encoding could be: :: 0 EOS +.. _format_metadata: Custom Application Metadata --------------------------- diff --git a/docs/source/format/StatisticsSchema.rst b/docs/source/format/StatisticsSchema.rst new file mode 100644 index 0000000000000..c595c10420fa7 --- /dev/null +++ b/docs/source/format/StatisticsSchema.rst @@ -0,0 +1,600 @@ +.. Licensed to the Apache Software Foundation (ASF) under one +.. or more contributor license agreements. See the NOTICE file +.. distributed with this work for additional information +.. regarding copyright ownership. The ASF licenses this file +.. to you under the Apache License, Version 2.0 (the +.. "License"); you may not use this file except in compliance +.. with the License. You may obtain a copy of the License at + +.. http://www.apache.org/licenses/LICENSE-2.0 + +.. Unless required by applicable law or agreed to in writing, +.. software distributed under the License is distributed on an +.. "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +.. KIND, either express or implied. See the License for the +.. specific language governing permissions and limitations +.. under the License. + +.. _statistics-schema: + +================= +Statistics schema +================= + +.. warning:: This specification should be considered experimental. + +Rationale +========= + +Statistics are useful for fast query processing. Many query engines +use statistics to optimize their query plan. + +Apache Arrow format doesn't have statistics but other formats that can +be read as Apache Arrow data may have statistics. For example, the +Apache Parquet C++ implementation can read an Apache Parquet file as +Apache Arrow data and the Apache Parquet file may have statistics. + +We standardize how to represent statistics as an Apache Arrow array +for easy to exchange. + +Use case +-------- + +One of :ref:`c-stream-interface` use cases is the following: + +1. Module A reads Apache Parquet file as Apache Arrow data. +2. Module A passes the read Apache Arrow data to module B through the + Arrow C stream interface. +3. Module B processes the passed Apache Arrow data. + +If module A can pass the statistics associated with the Apache Parquet +file to module B, module B can use the statistics to optimize its +query plan. + +For example, DuckDB uses this approach but DuckDB couldn't use +statistics because there wasn't the standardized way to represent +statistics for an Apache Arrow data. + +.. seealso:: + + `duckdb::ArrowTableFunction::ArrowScanBind() in DuckDB 1.1.3 + `_ + +Goals +----- + +* Establish a standard way to represent statistics as an Apache Arrow + array. + +Non-goals +--------- + +* Establish a standard way to pass an Apache Arrow array that + represents statistics. +* Establish a standard way to embed statistics to an Apache Arrow + array. + +Schema +====== + +This specification provides only the schema for statistics. This is +the canonical schema to represent statistics about an Apache Arrow +dataset as Apache Arrow data. + +Here is the outline of the schema for statistics:: + + struct< + column: int32, + statistics: map< + key: dictionary< + indices: int32, + dictionary: utf8 + >, + items: dense_union<...all needed types...> + > + > + +Here is the details of top-level ``struct``: + +.. list-table:: + :header-rows: 1 + + * - Name + - Data type + - Nullable + - Notes + * - ``column`` + - ``int32`` + - ``true`` + - The zero-based column index, or null if the statistics + describe the whole table or record batch. + + The column index is computed as the same rule used by + :ref:`ipc-recordbatch-message`. + * - ``statistics`` + - ``map`` + - ``false`` + - Statistics for the target column, table or record batch. See + the separate table below for details. + +Here is the details of the ``map`` of the ``statistics``: + +.. list-table:: + :header-rows: 1 + + * - Key or items + - Data type + - Nullable + - Notes + * - key + - ``dictionary`` + - ``false`` + - Statistics key is string. Dictionary is used for + efficiency. Different keys are assigned for exact value and + approximate value. Also see the separate description below for + statistics key. + * - items + - ``dense_union`` + - ``false`` + - Statistics value is dense union. It has at least all needed + types based on statistics kinds in the keys. For example, you + need at least ``int64`` and ``float64`` types when you have a + ``int64`` distinct count statistic and a ``float64`` average + byte width statistic. Also see the separate description below + for statistics key. + + We don't standardize field names for the dense union because we + can access to proper field by type code not name. So we can use + any valid name for fields. + + TODO: Should we standardize field names? + +.. _statistics-schema-key: + +Statistics key +-------------- + +Statistics key is string. ``dictionary`` is used for +efficiency. + +We assign different statistics keys for individual statistics instead +of using flags. For example, we assign different statistics keys for +exact value and approximate value. + +The colon symbol ``:`` is to be used as a namespace separator like +:ref:`format_metadata`. It can be used multiple times in a key. + +The ``ARROW`` pattern is a reserved namespace for pre-defined +statistics keys. User-defined statistics must not use it. +For example, you can use your product name as namespace +such as ``MY_PRODUCT:my_statistics:exact``. + +Here are pre-defined statistics keys: + +.. list-table:: + :header-rows: 1 + + * - Key + - Data type + - Notes + * - ``ARROW:average_byte_width:exact`` + - ``float64``: TODO: Should we use ``int64`` instead? + - The average size in bytes of a row in the target + column. (exact) + * - ``ARROW:average_byte_width:approximate`` + - ``float64``: TODO: Should we use ``int64`` instead? + - The average size in bytes of a row in the target + column. (approximate) + * - ``ARROW:distinct_count:exact`` + - ``int64`` + - The number of distinct values in the target column. (exact) + * - ``ARROW:distinct_count:approximate`` + - ``float64`` + - The number of distinct values in the target + column. (approximate) + * - ``ARROW:max_byte_width:exact`` + - ``int64`` + - The maximum size in bytes of a row in the target + column. (exact) + * - ``ARROW:max_byte_width:approximate`` + - ``float64``: TODO: Should we use ``int64`` instead? + - The maximum size in bytes of a row in the target + column. (approximate) + * - ``ARROW:max_value:exact`` + - Target dependent + - The maximum value in the target column. (exact) + * - ``ARROW:max_value:approximate`` + - Target dependent + - The maximum value in the target column. (approximate) + * - ``ARROW:min_value:exact`` + - Target dependent + - The minimum value in the target column. (exact) + * - ``ARROW:min_value:approximate`` + - Target dependent + - The minimum value in the target column. (approximate) + * - ``ARROW:null_count:exact`` + - ``int64`` + - The number of nulls in the target column. (exact) + * - ``ARROW:null_count:approximate`` + - ``float64`` + - The number of nulls in the target column. (approximate) + * - ``ARROW:row_count:exact`` + - ``int64`` + - The number of rows in the target table or record batch. (exact) + * - ``ARROW:row_count:approximate`` + - ``float64`` + - The number of rows in the target table or record + batch. (approximate) + +If you find a missing statistics key that is usable for multiple +systems, please propose it on the `Apache Arrow development +mailing-list `__. + +.. _statistics-schema-examples: + +Examples +======== + +Here are some examples to help you understand. + +Simple record batch +------------------- + +Schema:: + + vendor_id: int32 + passenger_count: int64 + +Data:: + + vendor_id: [5, 1, 5, 1, 5] + passenger_count: [1, 1, 2, 0, null] + +Statistics: + +.. list-table:: + :header-rows: 1 + + * - Target + - Key + - Value + * - Record batch + - The number of rows + - ``5`` + * - ``vendor_id`` + - The number of nulls + - ``0`` + * - ``vendor_id`` + - The number of distinct values + - ``2`` + * - ``vendor_id`` + - The max value + - ``5`` + * - ``vendor_id`` + - The min value + - ``1`` + * - ``passenger_count`` + - The number of nulls + - ``1`` + * - ``passenger_count`` + - The number of distinct values + - ``3`` + * - ``passenger_count`` + - The max value + - ``2`` + * - ``passenger_count`` + - The min value + - ``0`` + +Column indexes: + +.. list-table:: + :header-rows: 1 + + * - Index + - Target + * - ``0`` + - ``vendor_id`` + * - ``1`` + - ``passenger_count`` + +Statistics schema:: + + struct< + column: int32, + statistics: map< + key: dictionary< + indices: int32, + dictionary: utf8 + >, + items: dense_union<0: int64> + > + > + +Statistics array:: + + column: [ + null, # record batch + 0, # vendor_id + 0, # vendor_id + 0, # vendor_id + 0, # vendor_id + 1, # passenger_count + 1, # passenger_count + 1, # passenger_count + 1, # passenger_count + ] + statistics: + key: + indices: [ + 0, # "ARROW:row_count:exact" + 1, # "ARROW:null_count:exact" + 2, # "ARROW:distinct_count:exact" + 3, # "ARROW:max_value:exact" + 4, # "ARROW:min_value:exact" + 1, # "ARROW:null_count:exact" + 2, # "ARROW:distinct_count:exact" + 3, # "ARROW:max_value:exact" + 4, # "ARROW:min_value:exact" + ] + dictionary: [ + "ARROW:row_count:exact", + "ARROW:null_count:exact", + "ARROW:distinct_count:exact", + "ARROW:max_value:exact", + "ARROW:min_value:exact", + ], + items: + children: + 0: [ # int64 + 5, # record batch: "ARROW:row_count:exact" + 0, # vendor_id: "ARROW:null_count:exact" + 2, # vendor_id: "ARROW:distinct_count:exact" + 5, # vendor_id: "ARROW:max_value:exact" + 1, # vendor_id: "ARROW:min_value:exact" + 1, # passenger_count: "ARROW:null_count:exact" + 3, # passenger_count: "ARROW:distinct_count:exact" + 2, # passenger_count: "ARROW:max_value:exact" + 0, # passenger_count: "ARROW:min_value:exact" + ] + types: [ # all values are int64 + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, + ] + offsets: [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + ] + +Complex record batch +-------------------- + +This uses nested types. + +Schema:: + + col1: struct, c: float64> + col2: utf8 + +Data:: + + col1: [ + {a: 1, b: [20, 30, 40], c: 2.9}, + {a: 2, b: null, c: -2.9}, + {a: 3, b: [99], c: null}, + ] + col2: ["x", null, "z"] + +Statistics: + +.. list-table:: + :header-rows: 1 + + * - Target + - Key + - Value + * - Record batch + - The number of rows + - ``3`` + * - ``col1`` + - The number of nulls + - ``0`` + * - ``col1.a`` + - The number of nulls + - ``0`` + * - ``col1.a`` + - The number of distinct values + - ``3`` + * - ``col1.a`` + - The approximate max value + - ``5`` + * - ``col1.a`` + - The approximate min value + - ``0`` + * - ``col1.b`` + - The number of nulls + - ``1`` + * - ``col1.b.item`` + - The max value + - ``99`` + * - ``col1.b.item`` + - The min value + - ``20`` + * - ``col1.c`` + - The number of nulls + - ``1`` + * - ``col1.c`` + - The approximate max value + - ``3.0`` + * - ``col1.c`` + - The approximate min value + - ``-3.0`` + * - ``col2`` + - The number of nulls + - ``1`` + * - ``col2`` + - The number of distinct values + - ``2`` + +Column indexes: + +.. list-table:: + :header-rows: 1 + + * - Index + - Target + * - ``0`` + - ``col1`` + * - ``1`` + - ``col1.a`` + * - ``2`` + - ``col1.b`` + * - ``3`` + - ``col1.b.item`` + * - ``4`` + - ``col1.c`` + * - ``5`` + - ``col2`` + +See also :ref:`ipc-recordbatch-message` how to compute column indexes. + +Statistics schema:: + + struct< + column: int32, + statistics: map< + key: dictionary< + indices: int32, + dictionary: utf8 + >, + items: dense_union< + # For the number of rows, the number of nulls and so on + 0: int64, + # For the max/min values of col1.c. + 1: float64 + > + > + > + +Statistics array:: + + column: [ + null, # record batch + 0, # col1 + 1, # col1.a + 1, # col1.a + 1, # col1.a + 1, # col1.a + 2, # col1.b + 3, # col1.b.item + 3, # col1.b.item + 4, # col1.c + 4, # col1.c + 4, # col1.c + 5, # col2 + 5, # col2 + ] + statistics: + key: + indices: [ + 0, # "ARROW:row_count:exact" + 1, # "ARROW:null_count:exact" + 1, # "ARROW:null_count:exact" + 2, # "ARROW:distinct_count:exact" + 3, # "ARROW:max_value:approximate" + 4, # "ARROW:min_value:approximate" + 1, # "ARROW:null_count:exact" + 5, # "ARROW:max_value:exact" + 6, # "ARROW:min_value:exact" + 1, # "ARROW:null_count:exact" + 3, # "ARROW:max_value:approximate" + 4, # "ARROW:min_value:approximate" + 1, # "ARROW:null_count:exact" + 2, # "ARROW:distinct_count:exact" + ] + dictionary: [ + "ARROW:row_count:exact", + "ARROW:null_count:exact", + "ARROW:distinct_count:exact", + "ARROW:max_value:approximate", + "ARROW:min_value:approximate", + "ARROW:max_value:exact", + "ARROW:min_value:exact", + ], + items: + children: + 0: [ # int64 + 3, # record batch: "ARROW:row_count:exact" + 0, # col1: "ARROW:null_count:exact" + 0, # col1.a: "ARROW:null_count:exact" + 3, # col1.a: "ARROW:distinct_count:exact" + 5, # col1.a: "ARROW:max_value:approximate" + 0, # col1.a: "ARROW:min_value:approximate" + 1, # col1.b: "ARROW:null_count:exact" + 99, # col1.b.item: "ARROW:max_value:exact" + 20, # col1.b.item: "ARROW:min_value:exact" + 1, # col1.c: "ARROW:null_count:exact" + 1, # col2: "ARROW:null_count:exact" + 2, # col2: "ARROW:distinct_count:exact" + ] + 1: [ # float64 + 3.0, # col1.c: "ARROW:max_value:approximate" + -3.0, # col1.c: "ARROW:min_value:approximate" + ] + types: [ + 0, # int64: record batch: "ARROW:row_count:exact" + 0, # int64: col1: "ARROW:null_count:exact" + 0, # int64: col1.a: "ARROW:null_count:exact" + 0, # int64: col1.a: "ARROW:distinct_count:exact" + 0, # int64: col1.a: "ARROW:max_value:approximate" + 0, # int64: col1.a: "ARROW:min_value:approximate" + 0, # int64: col1.b: "ARROW:null_count:exact" + 0, # int64: col1.b.item: "ARROW:max_value:exact" + 0, # int64: col1.b.item: "ARROW:min_value:exact" + 0, # int64: col1.c: "ARROW:null_count:exact" + 1, # float64: col1.c: "ARROW:max_value:approximate" + 1, # float64: col1.c: "ARROW:min_value:approximate" + 0, # int64: col2: "ARROW:null_count:exact" + 0, # int64: col2: "ARROW:distinct_count:exact" + ] + offsets: [ + 0, # int64: record batch: "ARROW:row_count:exact" + 1, # int64: col1: "ARROW:null_count:exact" + 2, # int64: col1.a: "ARROW:null_count:exact" + 3, # int64: col1.a: "ARROW:distinct_count:exact" + 4, # int64: col1.a: "ARROW:max_value:approximate" + 5, # int64: col1.a: "ARROW:min_value:approximate" + 6, # int64: col1.b: "ARROW:null_count:exact" + 7, # int64: col1.b.item: "ARROW:max_value:exact" + 8, # int64: col1.b.item: "ARROW:min_value:exact" + 9, # int64: col1.c: "ARROW:null_count:exact" + 0, # float64: col1.c: "ARROW:max_value:approximate" + 1, # float64: col1.c: "ARROW:min_value:approximate" + 10, # int64: col2: "ARROW:null_count:exact" + 11, # int64: col2: "ARROW:distinct_count:exact" + ] + + +Simple array +------------ + +TODO + +Complex array +------------- + +TODO: It uses nested type. diff --git a/docs/source/format/index.rst b/docs/source/format/index.rst index ce31a15a1f36a..91912a5325d52 100644 --- a/docs/source/format/index.rst +++ b/docs/source/format/index.rst @@ -32,6 +32,7 @@ Specifications CDataInterface CStreamInterface CDeviceDataInterface + StatisticsSchema DissociatedIPC Flight FlightSql