-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathpred2.py
52 lines (40 loc) · 1.14 KB
/
pred2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='3'
import numpy as np
import sys
# stdout = sys.stdout
stderr = sys.stderr
# sys.stdout = open('/dev/null', 'w')
sys.stderr = open('/dev/null', 'w')
# import keras
# sys.stdout = stdout
# import tensorflow as tf
from sample_models import *
# from data_generator import AudioGenerator
# from keras import backend as K
# from utils import int_sequence_to_text
# import sys
# from keras.backend.tensorflow_backend import set_session
def get_predictions():
""" Print a model's decoded predictions
Params:
index (int): The example you would like to visualize
partition (str): One of 'train' or 'validation'
input_to_softmax (Model): The acoustic model
model_path (str): Path to saved acoustic model's weights
"""
print("OK1");
print("OK2");
return;
def main():
# if (argv)
# argv_1 = argv[1]
# print("argv_1: {}".format(argv_1))
# print("argv_1: {}".format( len(argv) )
# print("argv, len:{}".format(len(argv)))
# print("argv:{}".format(argv))
# print(get_predictions)
#
get_predictions()
if __name__ == '__main__':
main()