-
Notifications
You must be signed in to change notification settings - Fork 38
/
sia.cu
493 lines (398 loc) · 14.7 KB
/
sia.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
/**
* Blake2-B CUDA Implementation
*
* tpruvot@github July 2016
*
*/
#include <miner.h>
#include <string.h>
#include <stdint.h>
#include <sph/blake2b.h>
#include <cuda_helper.h>
#include <cuda_vectors.h>
#define TPB 512
#define NBN 2
static uint32_t *d_resNonces[MAX_GPUS];
static uint32_t *h_resNonces[MAX_GPUS];
static __constant__ uint2 _ALIGN(16) c_data[10];
static __constant__ uint2 _ALIGN(16) c_v[16];
static __constant__ const uint32_t blake2b_sigma[12][16] = {
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } , { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 } ,
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 } , { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 } ,
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 } , { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 } ,
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 } , { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 } ,
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 } , { 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 } ,
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } , { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }
};
extern "C" void blake2b_hash(void *output, const void *input)
{
uint8_t _ALIGN(64) hash[32];
blake2b_ctx ctx;
blake2b_init(&ctx, 32, NULL, 0);
blake2b_update(&ctx, input, 80);
blake2b_final(&ctx, hash);
memcpy(output, hash, 32);
}
// ----------------------------------------------------------------
__device__ __forceinline__
static void G(const int r, const int i, uint2 &a, uint2 &b, uint2 &c, uint2 &d,const uint2 m[16])
{
a = a + b + m[ blake2b_sigma[r][2*i] ];
d = SWAPUINT2( d ^ a );
c = c + d;
b = ROR24( b ^ c );
a = a + b + m[ blake2b_sigma[r][2*i+1] ];
d = ROR16( d ^ a );
c = c + d;
b = ROR2( b ^ c, 63);
}
#define ROUND(r) \
G(r, 0, v[0], v[4], v[ 8], v[12], m); \
G(r, 1, v[1], v[5], v[ 9], v[13], m); \
G(r, 2, v[2], v[6], v[10], v[14], m); \
G(r, 3, v[3], v[7], v[11], v[15], m); \
G(r, 4, v[0], v[5], v[10], v[15], m); \
G(r, 5, v[1], v[6], v[11], v[12], m); \
G(r, 6, v[2], v[7], v[ 8], v[13], m); \
G(r, 7, v[3], v[4], v[ 9], v[14], m);
__global__ __launch_bounds__(512,1)
void blake2b_gpu_hash(const uint32_t threads, const uint32_t startNonce, uint32_t *resNonce, const uint32_t target6)
{
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if(thread<threads){
const uint32_t nonce = thread + startNonce;
uint2 v[16];
uint2 m[16];
*(uint2x4*)&m[0] = *(uint2x4*)&c_data[0];
*(uint2x4*)&m[4] = *(uint2x4*)&c_data[4];
m[4].x = nonce;
m[8] = c_data[8];
m[9] = c_data[9];
m[10] = m[11] = make_uint2(0,0);
m[12] = m[13] = m[14] = m[15] = make_uint2(0,0);
#pragma unroll 4
for(uint32_t i=0;i<16;i+=4){
*(uint2x4*)&v[i] = *(uint2x4*)&c_v[i];
}
v[ 2] = v[ 2] + m[4];
v[14] = SWAPUINT2( v[14] ^ v[2] );
v[10] = v[10] + v[14];
v[ 6] = ROR24( v[ 6] ^ v[10] );
v[ 2] = v[ 2] + v[ 6] + m[ 5];
v[14] = ROR16( v[14] ^ v[ 2] );
v[10] = v[10] + v[14];
v[ 6] = ROR2( v[ 6] ^ v[10], 63);
v[10] = v[10] + v[15];
v[ 5] = ROR24( v[ 5] ^ v[10] );
v[ 0] = v[ 0] + v[ 5];
v[15] = ROR16(v[15] ^ v[0]);
v[10] = v[10] + v[15];
v[ 5] = ROR2( v[ 5] ^ v[10], 63);
G(0, 5, v[1], v[6], v[11], v[12], m);
G(0, 6, v[2], v[7], v[ 8], v[13], m);
G(0, 7, v[3], v[4], v[ 9], v[14], m);
ROUND( 1 );
ROUND( 2 );
ROUND( 3 );
ROUND( 4 );
ROUND( 5 );
ROUND( 6 );
ROUND( 7 );
ROUND( 8 );
ROUND( 9 );
ROUND( 10 );
// ROUND_F( 11 );
G(11, 0, v[0], v[4], v[ 8], v[12], m);
G(11, 1, v[1], v[5], v[ 9], v[13], m);
G(11, 2, v[2], v[6], v[10], v[14], m);
G(11, 3, v[3], v[7], v[11], v[15], m);
// G(11, 4, v[0], v[5], v[10], v[15], m);
v[ 0] = v[ 0] + v[ 5] + m[ 1];
v[15] = SWAPUINT2( v[15] ^ v[0] );
v[10] = v[10] + v[15];
v[ 5] = ROR24( v[ 5] ^ v[10] );
v[ 0] = v[ 0] + v[ 5];
// G(11, 5, v[1], v[6], v[11], v[12], m);
// H(11, 6, v[2], v[7], v[ 8], v[13], m);
v[ 2] = v[ 2] + v[ 7] + m[blake2b_sigma[11][12]];
v[13] = SWAPUINT2( v[13] ^ v[2]);
v[ 8] = v[ 8] + v[13];
v[ 7] = ROR24( v[7] ^ v[8] );
v[ 2] = v[ 2] + v[ 7] + m[blake2b_sigma[11][13]];
v[13] = ROR16( v[13] ^ v[2] );
v[ 8] = v[ 8] + v[13];
if (xor3x(v[8].x, v[0].x, 0xf2bdc928) == 0){
if (cuda_swab32(0x6a09e667 ^ v[0].y ^ v[8].y ) <= target6) {
uint32_t tmp = atomicExch(&resNonce[0], nonce);
if (tmp != UINT32_MAX)
resNonce[1] = tmp;
}
}
}
}
__host__
uint32_t blake2b_hash_cuda(const int thr_id, const uint32_t threads, const uint32_t startNonce, const uint32_t target6, uint32_t &secNonce)
{
uint32_t resNonces[NBN] = { UINT32_MAX, UINT32_MAX };
uint32_t result = UINT32_MAX;
if (cudaSuccess == cudaMemcpy(resNonces, d_resNonces[thr_id], NBN*sizeof(uint32_t), cudaMemcpyDeviceToHost)) {
result = resNonces[0];
secNonce = resNonces[1];
if (secNonce == result) secNonce = UINT32_MAX;
}
return result;
}
__host__
void blake2b_setBlock(uint32_t *data)
{
uint64_t v[16] = {
0x6a09e667f2bdc928, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1, 0x510e527fade682d1, 0x9b05688c2b3e6c1f, 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179,
0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1, 0x510e527fade68281, 0x9b05688c2b3e6c1f, 0xe07c265404be4294, 0x5be0cd19137e2179
};
uint64_t m[16];
memcpy(m,data,80);
memset(&m[10],0x00,6*sizeof(uint64_t));
v[ 0]+= v[ 4] + m[ 0];
v[12] = ROTR64(v[12] ^ v[ 0],32);
v[ 8]+= v[12];
v[ 4] = ROTR64(v[ 4] ^ v[ 8],24);
v[ 0]+= v[ 4] + m[ 1];
v[12] = ROTR64(v[12] ^ v[ 0],16);
v[ 8]+= v[12];
v[ 4] = ROTR64(v[ 4] ^ v[ 8],63);
v[ 1] = v[ 1] + v[ 5] + m[ 2];
v[13] = ROTR64( v[13] ^ v[1],32);
v[ 9] = v[ 9] + v[13];
v[ 5] = ROTR64( v[5] ^ v[9],24);
v[ 1] = v[ 1] + v[ 5] + m[ 3];
v[13] = ROTR64( v[13] ^ v[1],16);
v[ 9] = v[ 9] + v[13];
v[ 5] = ROTR64( v[5] ^ v[9], 63);
v[ 2] = v[ 2] + v[ 6];
v[ 3] = v[ 3] + v[ 7] + m[6];
v[15] = ROTR64( v[15] ^ v[3] ,32);
v[11] = v[11] + v[15];
v[ 7] = ROTR64( v[7] ^ v[11] ,24);
v[ 3] = v[ 3] + v[ 7] + m[7];
v[15] = ROTR64( v[15] ^ v[3] ,16);
v[11] = v[11] + v[15];
v[ 7] = ROTR64( v[7] ^ v[11], 63);
v[ 0] = v[ 0] + v[ 5] + m[8];
v[15] = ROTR64( v[15] ^ v[0] ,32);
v[ 0] = v[ 0] + m[9];
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_data, data, 80, 0, cudaMemcpyHostToDevice));
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_v, v, 16*sizeof(uint64_t), 0, cudaMemcpyHostToDevice));
}
static bool init[MAX_GPUS] = { 0 };
int scanhash_sia(int thr_id, struct work *work, uint32_t max_nonce, unsigned long *hashes_done){
int dev_id = device_map[thr_id];
uint32_t _ALIGN(64) hash[8];
uint32_t _ALIGN(64) vhashcpu[8];
uint32_t _ALIGN(64) endiandata[20];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[8];
int intensity = (device_sm[dev_id] > 500)?29:28;
uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity);
if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce);
if (!init[thr_id])
{
cudaSetDevice(dev_id);
if (opt_cudaschedule == -1 && gpu_threads == 1) {
cudaDeviceReset();
// reduce cpu usage (linux)
cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync);
//cudaDeviceSetCacheConfig(cudaFuncCachePreferL1);
CUDA_LOG_ERROR();
}
gpulog(LOG_INFO,dev_id, "Intensity set to %g, %u cuda threads", throughput2intensity(throughput), throughput);
CUDA_CALL_OR_RET_X(cudaMalloc(&d_resNonces[thr_id], NBN * sizeof(uint32_t)), -1);
CUDA_CALL_OR_RET_X(cudaMallocHost(&h_resNonces[thr_id], NBN * sizeof(uint32_t)), -1);
init[thr_id] = true;
}
const dim3 grid((throughput + TPB-1)/TPB);
const dim3 block(TPB);
memcpy(endiandata, pdata, 80);
endiandata[11] = 0; // nbits
blake2b_setBlock(endiandata);
cudaMemset(d_resNonces[thr_id], 0xff, NBN*sizeof(uint32_t));
do {
blake2b_gpu_hash <<<grid, block, 8>>> (throughput, pdata[8], d_resNonces[thr_id], ptarget[6]);
cudaMemcpy(h_resNonces[thr_id], d_resNonces[thr_id], NBN*sizeof(uint32_t), cudaMemcpyDeviceToHost);
if (h_resNonces[thr_id][0] != UINT32_MAX){
int res = 0;
endiandata[8] = h_resNonces[thr_id][0];
blake2b_hash(hash, endiandata);
// sia hash target is reversed (start of hash)
swab256(vhashcpu, hash);
if (vhashcpu[7] <= Htarg && fulltest(vhashcpu, ptarget)) {
work_set_target_ratio(work, vhashcpu);
*hashes_done = pdata[8] - first_nonce + throughput +1;
work->nonces[0] = h_resNonces[thr_id][0];
pdata[8] = h_resNonces[thr_id][0];
res=1;
if (h_resNonces[thr_id][1] != UINT32_MAX) {
endiandata[8] = h_resNonces[thr_id][1];
blake2b_hash(hash, endiandata);
// if(!opt_quiet)
// gpulog(LOG_BLUE, dev_id, "Found 2nd nonce: %08x", h_resNonces[thr_id][1]);
swab256(vhashcpu, hash);
work->nonces[1] = h_resNonces[thr_id][1];
pdata[21] = h_resNonces[thr_id][1];
if (bn_hash_target_ratio(vhashcpu, ptarget) > work->shareratio[0]) {
work_set_target_ratio(work, vhashcpu);
xchg(work->nonces[0], work->nonces[1]);
xchg(pdata[8], pdata[21]);
}
res=2;
}
return res;
}
}
pdata[8] += throughput;
}while(!work_restart[thr_id].restart && ((uint64_t)max_nonce > (uint64_t)throughput + pdata[8]));
*hashes_done = pdata[8] - first_nonce +1;
return 0;
}
// cleanup
extern "C" void free_sia(int thr_id)
{
if (!init[thr_id])
return;
cudaDeviceSynchronize();
cudaFree(d_resNonces[thr_id]);
init[thr_id] = false;
cudaDeviceSynchronize();
}
// ---- SIA LONGPOLL --------------------------------------------------------------------------------
struct data_buffer {
void *buf;
size_t len;
};
extern void calc_network_diff(struct work *work);
size_t sia_data_cb(const void *ptr, size_t size, size_t nmemb, void *user_data){
struct data_buffer *db = (struct data_buffer *)user_data;
size_t len = size * nmemb;
size_t oldlen, newlen;
void *newmem;
static const uchar zero = 0;
oldlen = db->len;
newlen = oldlen + len;
newmem = realloc(db->buf, newlen + 1);
if (!newmem)
return 0;
db->buf = newmem;
db->len = newlen;
memcpy((char*)db->buf + oldlen, ptr, len);
memcpy((char*)db->buf + newlen, &zero, 1); /* null terminate */
return len;
}
char* sia_getheader(CURL *curl, struct pool_infos *pool)
{
char curl_err_str[CURL_ERROR_SIZE] = { 0 };
struct data_buffer all_data = { 0 };
struct curl_slist *headers = NULL;
char data[256] = { 0 };
char url[512];
// nanopool
snprintf(url, 512, "%s/miner/header?address=%s&worker=%s", //&longpoll
pool->url, pool->user, pool->pass);
if (opt_protocol)
curl_easy_setopt(curl, CURLOPT_VERBOSE, 1);
curl_easy_setopt(curl, CURLOPT_URL, url);
curl_easy_setopt(curl, CURLOPT_POST, 0);
curl_easy_setopt(curl, CURLOPT_ENCODING, "");
curl_easy_setopt(curl, CURLOPT_FAILONERROR, 0);
curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1);
curl_easy_setopt(curl, CURLOPT_TCP_NODELAY, 1);
curl_easy_setopt(curl, CURLOPT_TIMEOUT, opt_timeout);
curl_easy_setopt(curl, CURLOPT_NOSIGNAL, 1);
curl_easy_setopt(curl, CURLOPT_ERRORBUFFER, curl_err_str);
curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, sia_data_cb);
curl_easy_setopt(curl, CURLOPT_WRITEDATA, &all_data);
headers = curl_slist_append(headers, "Accept: application/octet-stream");
headers = curl_slist_append(headers, "Expect:"); // disable Expect hdr
headers = curl_slist_append(headers, "User-Agent: Sia-Agent"); // required for now
// headers = curl_slist_append(headers, "User-Agent: " USER_AGENT);
// headers = curl_slist_append(headers, "X-Mining-Extensions: longpoll");
curl_easy_setopt(curl, CURLOPT_HTTPHEADER, headers);
int rc = curl_easy_perform(curl);
if (rc && strlen(curl_err_str)) {
applog(LOG_WARNING, "%s", curl_err_str);
}
if (all_data.len >= 112)
cbin2hex(data, (const char*) all_data.buf, 112);
if (opt_protocol || all_data.len != 112)
applog(LOG_DEBUG, "received %d bytes: %s", (int) all_data.len, data);
curl_slist_free_all(headers);
return rc == 0 && all_data.len ? strdup(data) : NULL;
}
bool sia_work_decode(const char *hexdata, struct work *work)
{
uint8_t target[32];
if (!work) return false;
hex2bin((uchar*)target, &hexdata[0], 32);
swab256(work->target, target);
work->targetdiff = target_to_diff(work->target);
hex2bin((uchar*)work->data, &hexdata[64], 80);
// high 16 bits of the 64 bits nonce
work->data[9] = rand() << 16;
// use work ntime as job id
cbin2hex(work->job_id, (const char*)&work->data[10], 4);
calc_network_diff(work);
if (stratum_diff != work->targetdiff) {
stratum_diff = work->targetdiff;
applog(LOG_WARNING, "Pool diff set to %g", stratum_diff);
}
return true;
}
extern int share_result(int result, int pooln, double sharediff, const char *reason);
bool sia_submit(CURL *curl, struct pool_infos *pool, struct work *work){
char curl_err_str[CURL_ERROR_SIZE] = { 0 };
struct data_buffer all_data = { 0 };
struct curl_slist *headers = NULL;
char buf[256] = { 0 };
char url[512];
if (opt_protocol)
applog_hex(work->data, 80);
//applog_hex(&work->data[8], 16);
//applog_hex(&work->data[10], 4);
// nanopool
snprintf(url, 512, "%s/miner/header?address=%s&worker=%s",
pool->url, pool->user, pool->pass);
if (opt_protocol)
curl_easy_setopt(curl, CURLOPT_VERBOSE, 1);
curl_easy_setopt(curl, CURLOPT_URL, url);
curl_easy_setopt(curl, CURLOPT_ENCODING, "");
curl_easy_setopt(curl, CURLOPT_FAILONERROR, 0);
curl_easy_setopt(curl, CURLOPT_NOSIGNAL, 1);
curl_easy_setopt(curl, CURLOPT_TCP_NODELAY, 1);
curl_easy_setopt(curl, CURLOPT_ERRORBUFFER, curl_err_str);
curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1);
curl_easy_setopt(curl, CURLOPT_TIMEOUT, 10);
curl_easy_setopt(curl, CURLOPT_WRITEDATA, &all_data);
curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, sia_data_cb);
memcpy(buf, work->data, 80);
curl_easy_setopt(curl, CURLOPT_POST, 1);
curl_easy_setopt(curl, CURLOPT_POSTFIELDSIZE, 80);
curl_easy_setopt(curl, CURLOPT_POSTFIELDS, (void*) buf);
// headers = curl_slist_append(headers, "Content-Type: application/octet-stream");
// headers = curl_slist_append(headers, "Content-Length: 80");
headers = curl_slist_append(headers, "Accept:"); // disable Accept hdr
headers = curl_slist_append(headers, "Expect:"); // disable Expect hdr
headers = curl_slist_append(headers, "User-Agent: Sia-Agent");
// headers = curl_slist_append(headers, "User-Agent: " USER_AGENT);
curl_easy_setopt(curl, CURLOPT_HTTPHEADER, headers);
int res = curl_easy_perform(curl) == 0;
long errcode;
CURLcode c = curl_easy_getinfo(curl, CURLINFO_RESPONSE_CODE, &errcode);
if (errcode != 204) {
if (strlen(curl_err_str))
applog(LOG_ERR, "submit err %ld %s", errcode, curl_err_str);
res = 0;
}
share_result(res, work->pooln, work->sharediff[0], res ? NULL : (char*) all_data.buf);
curl_slist_free_all(headers);
return true;
}