This is a MLflow project on Amazon ECS for CDK development with Python.
The cdk.json
file tells the CDK Toolkit how to execute your app.
This project is set up like a standard Python project. The initialization
process also creates a virtualenv within this project, stored under the .venv
directory. To create the virtualenv it assumes that there is a python3
(or python
for Windows) executable in your path with access to the venv
package. If for any reason the automatic creation of the virtualenv fails,
you can create the virtualenv manually.
To manually create a virtualenv on MacOS and Linux:
$ python3 -m venv .venv
After the init process completes and the virtualenv is created, you can use the following step to activate your virtualenv.
$ source .venv/bin/activate
If you are a Windows platform, you would activate the virtualenv like this:
% .venv\Scripts\activate.bat
Once the virtualenv is activated, you can install the required dependencies.
(.venv) $ pip install -r requirements.txt
Before synthesizing the CloudFormation, you should set approperly the cdk context configuration file, cdk.context.json
.
For example:
{
"ecs": {
"cluster_name": "mlflow",
"service_name": "mlflow"
},
"vpc_name": "default"
}
At this point you can now synthesize the CloudFormation template for this code.
(.venv) $ export CDK_DEFAULT_ACCOUNT=$(aws sts get-caller-identity --query Account --output text)
(.venv) $ export CDK_DEFAULT_REGION=$(aws configure get region)
(.venv) $ cdk synth --all
Use cdk deploy
command to create the stack shown above,
(.venv) $ export CDK_DEFAULT_ACCOUNT=$(aws sts get-caller-identity --query Account --output text)
(.venv) $ export CDK_DEFAULT_REGION=$(aws configure get region)
(.venv) $ cdk deploy --require-approval never --all
To add additional dependencies, for example other CDK libraries, just add
them to your setup.py
file and rerun the pip install -r requirements.txt
command.
- Open the jupyter notebook,
training_job_on_premise.ipynb
inexample/sklearn_diabetes_regression
directory on your jupyter lab. - Replace
MLFLOW_TRACKING_URI
with the mlflow server deployed on Amazon ECS cluster. - Run all cells in
training_job_on_premise.ipynb
. - Open the mlflow web in your browser and you can see the screen like this:
- Launch Amazon SageMaker Studio
- Upload
deploy_mlflow_model_to_sagemaker.ipynb
file inexample/sklearn_diabetes_regression
directory to the SageMaker Studio. - Set
MLFLOW_TRACKING_URI
- Run all cells in
deploy_mlflow_model_to_sagemaker.ipynb
.
Delete the CloudFormation stack by running the below command.
(.venv) $ cdk destroy --force --all
cdk ls
list all stacks in the appcdk synth
emits the synthesized CloudFormation templatecdk deploy
deploy this stack to your default AWS account/regioncdk diff
compare deployed stack with current statecdk docs
open CDK documentation
Enjoy!
- (AWS Blog) Managing your machine learning lifecycle with MLflow and Amazon SageMaker (2021-01-28)
- MLflow Documentation
- Dockerfile reference
- Use the Docker command line
- Connect using the EC2 Instance Connect CLI
$ sudo pip install ec2instanceconnectcli $ mssh ubuntu@i-001234a4bf70dec41EXAMPLE # ec2-instance-id with ubuntu user