-
Notifications
You must be signed in to change notification settings - Fork 62
/
RELEASE_NOTES.txt
690 lines (447 loc) · 32.5 KB
/
RELEASE_NOTES.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
20220320
Karoo GP is now pip installable and thereby compliant with the latest version of Python. This effort was made possible
through the work of Antonio Spadaro in 2021, and now with Ezio Melotti and Kai Staats. The updated User Guide provides
instructions for download via GitHub and install via pip.
20210404
In review of a branch of Karoo being developed by user Richard, Richard advised me of a few nuances that are readidly
corrected, including a default setting that excluded point mutation (was set to 0% but should be 10%) and several
changes to the User Guide to match the current code base. Richard is working on a version that accepts unary operators
without the current addition of +,-,*,\ as in '+ cos'. We hope to integrate his work soon ...
20210125
This relatively minor update to the code enables compatibility with Python 3.8 and Tensorflow v2.4.1. In the base_class
the 'branch' array is now defined as an integer to comply with what appears to be a change in Numpy. And finally, the
director structure is modified in preparation for delivering Karoo GP as a proper pip package.
Thank you Antonio Spadaro and Ezio Melotti for all of your help, guidance, and patience.
Stay tuned for pip install karoo!
2019 06/08
Finally! Full Python 3.6 support!!!
And with this update, a substantial number of improvements and modifications. Most are related to the user interface
and associated menu. Namely, the (pause) menu is no longer built upon nested loops, therefore the user does not find
him or herself unable to conduct a clean exit. The code that supports the text-based queries is reduced in its
complexity, and in many cases made more brief. Some re-coloring of the interface text keeps like items in like
color schemes. Simple, and does not improve performance, but looks better, overall.
"Per my prior note (below), I do appreciate your patience and support, and do look forward to your feedback." --kai
2019 05/18
"My apology to the users of Karoo GP for the incredible gap between the most recent and this update. My research and
work have for the past year taken me in other directions. This update marks my return to an active effort in working on
Karoo, and GP applied to a growing research space. I appreciate your patience and understanding." --kai
NOTE: this is the *final* update to the Python 2.7 version of Karoo. All future development will be in Python 3.x.
And now, the updates:
Fixed the Test function to evaluate the Tree selected by the user.
Modified the menu option from 't'est to 'e'valulate from the Pause menu.
Added a user defined (m)in node count, (f)ull set of features, or (b)oth as the gene_pool regulator. For more about
the "full set of features" see 2018 04/19 and the new 'swim' variable.
2018 05/18
Fixed a bug which automically re-engaged the run after selecting a pause menu option if mid generation. Now, it again
requires ENTER before continuing.
2018 05/10
Returned full_path = os.path.realpath(__file__) (approx. line 342) to support bash scripting of automated runs. This
remains commented, but can be readily re-activated (remember to comment the next line down).
2018 04/22
1) Completed the isolation of the user interface from the base_class such that all mid-run parameter configurations and
population summaries are now conducted in menu.pause(), and any associatede executions (Tree validation) are conducted
fully in the base_class.
karoo_gp.py imports karoo_gp_base_class.py
karoo_gp_base_class.py imports karoo_gp_pause.py
The user's initial run configuration is conducted in karoo_gp.py. Those settings are passed into karoo_gp_base_class.py
where they are used to guide the run. At each 'pause' (generation, interactive, or debug display modes; or end of run)
the user is taken into menu.pause where additional queries and configurations are conducted. Those value changes are
returned to the base_class where they are executed. When a run is completed (Server or Desktop), the user is returned
to the original karoo_gp.py for salutations and run termination.
Finally, the Karoo GP Python pasta is no longer spaghetti!
2) Modified the function of 'cont' such that it either continues if you yet have additional generations to go, or
querie the user if gen_id = gen_max and the prior run is done.
3) Replaced 'generation_id' with 'gen_id' and 'generation_max' with 'gen_max'.
4) Conducted a full set of unit tests on every user interface query in menu.pause().
5) Cleaned up the code beneath the user interface (menu.pause), making the while-true loops consistent with those in
karoo_gp_pause.py.
6) Merged 'fx_karoo_continue' into 'fx_karoo_gp' such that a simple while loop maintains an active evolutionary process
until the either the Server script is complete, or the user has terminated the run. This allows for the simple addition
of generations to an existing run. A far better solution than what I had previously coded.
7) Discovered that the loading of seed population_s is far too delicate. Even the slightest change and it fails. I have
disabled the load function for now, until I have time to rebuild it.
8) Please note that all modules are now stored in modules/
2018 04/19
Added a new kind of gene_pool filter (environmental pressure) such that you can select partial or full inclusion of
the operands (features). While not yet incorporated into the user interface (desktop or server), the new 'swim' setting
enables you to build consecutive gene pools that have *only* Trees that include at least one instance of each feature.
This may be helpful for regression problems moreso than classification, as regression tends to fall to a minimum
feature set, depending upon the nature of the solution (fixed or rolling value). I desire to merge tree_depth_min
setting and this new 'swim' into one user defined system that controls the gene_pool.
Discovered 3 more functions that did not include a "Called by: ___" statement. Updated.
Fixed a long-standing issue of total failure if you enter 1 for the total number of generations. This setting, while
it may seem odd, allows Karoo GP to be used to create populations of stochastic multivariate expressions based upon the
given dataset for use in other applications. Simple fix. The population is written to the runs/ directory as with all
other modes of operation, including Play.
2018 04/12c
Updated the User Guide to match the Desktop and Serve merger, and modified a help print statement in the sys args of
the Server function.
2018 04/12b
Created the 'modules/' directory to hold karoo_base_class and in the future, more modules.
2018 04/12a
1) Merged 'Karoo GP Server' and 'Karoo GP Main' into a single 'Karoo GP'. So, just one user script now that provides the
user interface (TUI) or scripting (comnand line). There are now 3 ways to run Karoo:
a) $ run karoo_gp.py
b) $ run karoo_gp.py [path/][dataset.csv]
c) $ run karoo_gp.py -fil [path/][dataset.csv] -[arg] [val] -[arg] [val] ... etc.
Where [arg][val] are the sysargs defined in the body of karoo_gp.py and the User Guide. Both (a) and (b) will auto-
run the Desktop interface, providing a user query for each entry and holding the user within the script until quit;
(c) will skip the user query and go directly into execution, dropping the user back to the command line at the end of
the run (for scripting).
2) Merged the 'menu' ranges into the while loops, directly (to reduce line count).
3) Added the 2**(tree_depth_base +1) - 1 to the tree_depth_min calculation (could have done this a long time ago).
4) Auto-calc the number of trees entered into the Tournament (was previously hard coded to 7 assuming a pop 100).
5) Added [-evr, -evp, -evb, -evc] to the sysargs to support a change in the balance of the genetic operators mid-run.
6) Merged fx_evolve_branch_top_copy with fx_evolve_branch_body_copy as they were alway called sequencially and required
the same input values.
7) Merged fx_evolve_tree_renum into fx_eval_generation as both are used only once, as the former was but 2 lines of code.
8) Finally finished commenting all "Called by: ___" statements in each function header.
I've been productive!
2018 04/01
Two major updates, as follows:
1) I have returned to the basic structure of Karoo GP and worked to make it properly Pythonic. For those of you who
recognised the error in my ways, I appreciate your patience. What I have updated with this v1.1 release does not
improve performance nor stability (already rock solid), rather, it keeps properly trained developers from cringing
when they read my code.
In the prior versions, I used one of the loose functions of Python that allows the initiation of a variable outside of
the base_class. Meaning, I imported the base_class to karoo_gp_main.py and karoo_gp_server.py, called a dozen global
variables by "gp.___" and as such initiated them from the user scripts. Yes, it works. But it caused a certain
individual with whom I worked at the SKA to yell at me and shake her head (and I had just met her a few days prior).
I don't like being yelled at, so I fixed it.
Now, all user configurations are set as local variables and their values are passed to the base_class.
To make thing a bit easier to read and follow, I have renamed and reorganized several functions (methods) as follows:
a) Created a new category for data and archiving, moving/renaming all related functions to fx_data_.
b) Renamed all fx_gen_ to fx_init_ as this is the initial population.
c) Moved the four top-level functions used to construct the next generation of trees into their own fx_nextgen_
category: fx_karoo_reproduce, fx_nextgen_point_mutate, fx_nextgen_branch_mutate, fx_nextgen_crossover
The final breakdown is as follows:
fx_karoo_ Methods to Run Karoo GP
fx_data_ Methods to Load and Archive Data
fx_init_ Methods to Construct the 1st Generation
fx_eval_ Methods to Evaluate a Tree
fx_fitness_ Methods to Train and Test a Tree for Fitness
fx_nextgen_ Methods to Construct the next Generation
fx_evolve_ Methods to Evolve a Population
fx_display_ Methods to Visualize a Tree
That's it! --kai
2018 02/27
Updated the Python library versions and improved some explanation of Operators and Operands in the User Guide.
2017 10/26
An upgrade from Tensorflow 1.1 to 1.3 caused the Classify kernel test to break. Fixed by Iurii by replacing [] with ()
in the 'fx_fitness_eval' method.
2017 10/17
To be consistent with the anticipated Machine Learning vocabulary, replaced the term 'label' with 'pred_labels'
(predicted labels) in the TF graph methods.
2017 08/10
Iurii fixed a minor bug in which the MATCHING function (used only for demonstrations) would not find a match despite
the output being (apprently) correct. This was discovered to be due to the way in which TensorFlow was handling
floating points and precision, as follows:
[ -0.29999995 0.69999981 13.69999981 16.70000076 19.70000076
22.70000076 25.70000076 28.70000076 31.70000076 34.70000076]
[ -0.30000001 0.69999999 13.69999981 16.70000076 19.70000076
22.70000076 25.70000076 28.70000076 31.70000076 34.70000076]
As you can see, the values are close, but not equal and so a "match" was not resolved. Iurii used numpy.allclose.html
as a reference to resolve the situation.
I also modified the autosave to the runs/ directory such that if you are using an external dataset (quite likely), the
new directory (for each run) will be saved as [filename]-[date_time_stamp]/ The idea (thank you Marco) is to help keep
multiple, automated runs organized and more readily, visually inspected by name alone.
2017 07/21
In a rather embarrassing, live demo in which I asked for the audience to create the dataset for Karoo, I discovered a
bug in the MATCH kernel in which a negative value in the dataset would cause that row to be discarded from the fitness
function --FIXED.
I merged the 3 methods fx_fitness_train_classify, fx_fitness_train_regress, fx_fitness_train_match into fx_fitness_eval
in order to reduce the quantity of lines of code and simplify the workflow.
2017 07/03
I am pleased to announce that Karoo GP is now updated to include a full suite of mathematical operators. I thank the
expert code development of Iurii Milovanov. He was instrumental in bringing TensorFlow into Karoo last year, and has
now provided this important improvement.
Iurii has prpared an efficient and elegant solution for the addition of a full range of operators, adding support for
boolean operations (a and b or c), comparison ops (a > b <= c == d) and generally speaking any function available in
TensorFlow, as given here: https://www.tensorflow.org/api_guides/python/math_ops
Now there is a mapping in Karoo GP that connects an expression to the TF function:
OPERATOR EXAMPLE
add a + b
subtract a - b
multiply a * b
divide a / b
pow a ** 2
negative -a
logical_and a and b
logical_or a or b
logical_not not a
equal a == b
not_equal a != b
less a < b
less_equal a <= b
greater a > b
greater_equal a >= 1
abs abs(a)
sign sign(a)
square square(a)
sqrt sqrt(a)
pow pow(a, b)
log log(a)
log1p log1p(a)
cos cos(a)
sin sin(a)
tan tan(a)
acos acos(a)
asin asin(a)
atan atan(a)
Now when Karoo parses an expression like "asin(x + 10)" it first parses and transforms the args "x + 10" and passes
the output to “tf.asin” function. So now Karoo is able to evaluate incredibly complx mathematical expressions.
It is important to refer to karoo_gp/files/templates/operators_list.txt to learn how to enage operators_[KERNEL].csv
In its current form Karoo requires some operators, such as abs, cos, and sin to have a unique formating:
+ sin,2
- sin,2
* sin,2
/ sin,2
In a future version of Karoo, this will be managed automatically by the recursive function which extracts the
expression from a GP Tree.
2017 06/06
A number of changes applied in March and April. My apologies for the delayed updates to github.
A timer is added. This is helpful when conducting comparisons of run times, given various configurations and datasets.
If you go looking for this code, search for 'time.time' in _main.py for the Desktop interface, and in _base_class.py
for the Server interface.
Raised tree_depth_max to 100 in _main in order to essentially remove the tree depth ceiling, allowing for the multi-
generational increase in tree depth. While this re-introduces bloat, it does provide for a greater degree of
experimental freedom. A reminder that the _server has always allowed for tree_depth_max to be set to any level.
Changed the balance of operators (reproduction, mutation, crossover) from a percentage to a fixed quantity in both the
default settings and in the user defined alteration.
The User Guide is updated with some minor adjustments to wording.
I have removed tools/ from Karoo package, as these will be re-launched as their own set of packages and associated
github repository. I am working to give each a proper interface and more broad functionality outside of the
Karoo package. Stay tuned!
Please also note that the variable os.environ (line 28 in _base_class.py) can be set to [0, 1, 2] to trigger 3 levels
of on-screen, TensorFlow run-time error logging. You can experiment with this to determine what is right for you.
The much desired trig operators will be returned to Karoo GP v1.0.4. Log and boolean operators shortly thereafter. I
offer my apology for the delay, as I know this has inhibited some expanded uses of Karoo in the past few months.
2017 02/13
Returned 'cwd = os.getcwd()' to 'cwd = os.path.dirname(full_path)' in fx_karoo_data_load in order to sustain chron
compliance (sorry Marco). Then split end-of-run logging into 2 files: runtime_config.txt and test.txt. Looking to the
future in which the test log, in particular, might be stored in such a way as to be readily parsed by an external
script for automated comparison of multiple runs.
Ideas are welcomed!
2017 02/09
The User Guide has been updated to match the functions of Karoo GP v1.0.1.
2017 02/08
The parameters.txt file now captures the full run-time configuration of both karoo_gp_main.py and karoo_gp_server.py.
This file is written to a unique (datetime stamp) directory in karoo_gp/runs/ at the auto-termination of _server.py
and with the user executed 'q'uit of _main.py.
The final list of best fit evolved Trees and the test of the highest numbered (usually the highest performing) Tree is
also recorded, with the test automatically executed based upon the original kernel designation. This functionality
supports the fully hands-off execution of Karoo GP on a remote server, from a bash or Python script, for parallel or
multiple serial evolutionary runs.
Thank you Marco Cavaglia for guiding the addition of this functionality to Karoo GP!
2017 02/06
Graphics Processing Units (GPU) are now supported with the introduction of the Python library TensorFlow. The end
result is a staggering improvement in performance. With one comparison of a 10,000 data points (rows) x 9 features
(columns) dataset on a 40 core Intel Xeon motherboard versus a 2000 core Nvidia GPU card, the wall time was reduced
from 50 hours to less than 4 minutes. On CPU-only computers, the performance on a single core is as much as 10x
improved due to the vectorisation of the data and application of the C-based TensorFlow maths library.
To install TensorFlow, I recommend visiting https://www.tensorflow.org/get_started/ It is straight forward for Ubuntu,
but unfortunately can be rather challenging with OSX. Have patience. Review the forums. It's worth the effort.
I owe many thanks to the expertise of Iurii Milovanov, a contract developer whom I engaged for this effort. While the
number of lines of Karoo GP modified were initially less than a dozen (replacing the multi-core pprocess calls), I asked
Iurii to also rewrite the test functions. As such, both Training and Testing are now fully GPU enabled. Thank you!
A number of other changes have been integrated, including:
- Karoo GP is now developed against Python 2.7 as provided with Ubuntu Desktop 16.04.1.
- A number of Python methods have been deleted, added, modified and/or renamed. In particular, in the category
'fx_fitness_' If you have built your own code based on the Karoo methods, please review this section carefully.
- The user engaged 'bal'ance function (pause menu) has been rebuilt to anticipate exact quantities instead of
percentages, enabling the user to define precisely how many of each of the four genetic operators will be applied
with the construction of each subsequent population.
- Activation of the 'test' is now conducted with only the letter 't' and the option to engage a specific number of
'c'ores is removed. Therefore, the 't'imer mode is also removed, as this was a means to discover the optimal number
for multi-core processing which is now automated by TensorFlow.
- The libraries 'pprocess' and 'time' are no longer required nor imported.
- The population_* files (.csv) are now written into unique directories created inside of karoo_gp/runs/ with the
launch of each run. A .txt file is also written to each directory which captures the run-time configuration of
Karoo GP. This enables truly scriptable runs of Karoo.
- The Server interface to Karoo GP (karoo_gp_server.py) now terminates completely, kicking back to the command line.
This enables bash or chron launches of multiple sequential or parallel runs, enabling the exploration of multiple
runs with identical configuration, or that of varied configuration parameters.
Finally, Karoo GP is now a 1.0 release. I never know when to transition from beta to real, so please forgive me if I
jumped the gun. But with GPU support and the revised Server script, I have find Karoo GP to be a fully functional,
powerful machine learning tool. I hope you will agree --kai
2016 09/20
Fixed the genetic operator (b)alance function to work with large than 100 trees per population.
Introduced the pause for all runtime modes in the Desktop application, such that the user can apply configurations prior
to the run (eg: change the balance of the genetic operators or the number of engaged cores).
2016 09/19b
After another 2 hours of trouble shooting, I learned that sympy.subs throws the 'zoo' error for a divide-by-zero if
working with integers--and stalls (as I witnessed last year when developing Karoo), but if throws 'inf' or '-inf' if
working with floats and continues to process unencumbered. This means the 'zoo' trap has not been used for over a year.
It is now removed from the method fx_eval_subs().
2016 09/19
All experiments with lambdify are on hold as it is throwing 'divide by zero' errors when no 0 exists in the data.
In the evaluation of this issue, I returned to the means by which I deal with 'divide by zero', independent of the
library used to process the trees. Originally, 'result' was replaced by the value 1. But a colleague suggested that I
might be tossing genetic material of value to future generations. So, now a tree which produces a 'divide by zero'
error ('zoo' in .subs) is retained, but given a fitness score of 0.
Method fx_eval_subs() is updated to assign an 'error' tag to any tree which exhibits 'divide by zero' behaviour.
Method fx_fitness_eval() is updated to bypass processing of a tree which has been tagged with an 'error' tag.
Methods fx_test_classify(), fx_test_regress(), and fx_test_match() are each updated to send the 'tree_id' to
fx_eval_subs() as is now required.
For now, it is not recommended that you use the lambdify function in fx_eval_subs(), unless you know how to fix it.
2016 09/16
With the 09/14 update I failed to upload the new coefficients.csv file to the files/ directory. While not yet engaged,
this will be the means by which the user can define the constants desired for the Karoo GP run. If you had run Karoo GP
v0.9.2.0 in the past 24 hours without this file, it would have complained. My apology.
Also, a bit of a road map for the 2nd half of 2016, into 2017
- validate the new (faster) sympy.lambdify and fully replace the current (slower) sympy.subs
- replace the row-by-row dictionaries with vectors for what should be a significant performance increase
- complete the introduction of constants in a manner more well defined than is currently supported
- investigate replacing pprocess with the multi-core library
- introduce Theano or Tensor Flow for GPU support
I welcome any assistance with these, if anyone has experience and time.
2016 09/14 - version 0.9.2.0
In karoo_gp_base_class.py
- Removed redundant lines in the method 'fx_karoo_data_load()'
- Added support for the Sympy 'lambdify' function in 'fx_karoo_data_load' (see explanation below)
- Added a draft means of catching divide-by-zero errors in the new 'lambdify' function
- Discovered the prior 'fx_eval_subs' uncorrectly applied a value of 1 to the variable 'result' as a means to
replace the 'zoo' function for divide by zero errors. However, this could inadvertently undermine the success of
Classification and Regression runs. My apology for not catching this sooner.
"While attending the CHEAPR 2016 workshop hosted by the Center for Cosmology and Astro-Particle Physics, The Ohio State
University, Michael Zevin of Northwestern University proposed that Karoo GP *should* be able to process trees far faster
than what we were seeing. I looked into the Sympy functions I was at that time using. Indeed, '.subs' is noted as easy
to use, but terribly slow as it relies upon an internal, Python mathematical library. I therefore replaced '.subs' with
'.lambdify' which calls upon the C-based Numpy maths library. It is slated to be 500x faster than '.subs', but I am
seeing only a 2x performance increase. Clearly, there are yet other barriers to remove.
In the new 'fx_eval_subs' method you will find both sympy.subs (active) and sympy.lambdify. While preliminary tests
worked well, I witnessed an erratic outcome which I yet need to reproduce and investigate. Feel free to comment the
.subs and uncomment the .lambdify sections and take it for a spin.
I believe there are 2 more steps to increase performance: removing the dictionaries which contain each row, such that
Karoo is working directly with the Numpy array again, and then processing the array as a vector instead. But this will
require substantial recoding.
I'll keep you informed ..." --kai
2016 08/08 - version 0.9.1.9
In karoo_gp_base_class.py
- Created a new method 'fx_eval_subs()' which conducts the SymPy subs function for both train and test data.
- Consolidated duplicate SymPy sub calls in both Train and Test methods, at Erik H. suggestion --thank you!
- Consolidated duplicate lines into single lines in both Train and Test methods.
- Fixed bug in which Ramped 50/50 trees would not print in Play mode; removed Ramped 50/50 option from Play mode as
it does not make sense for a single Tree
2016 07/24 - version 0.9.1.8b
Sorry. Switched all references to "LOGIC" back to "BOOLEAN". Don't ask.
2016 07/18 - version 0.9.1.8
In karoo_gp_base_class.py
- removed some programmer's comments from experiments resolved
- modified the screen output for the multi-class classifier such that it is more clear that p (a) is actually
predicted (actual) with the addition of the tag "label"
2016 07/15 - version 0.9.1.7
In karoo_gp_base_class.py
- Ramped Half/Half, as originally designed by John Koza is now implemented!
- this offers a greater diversity of trees in the initial population
- added *** Crossover *** to this method for debug display mode
2016 07/14 - version 0.9.1.6b
In karoo_gp_base_class.py
- fixed 'debug' display output for branch mutation
- fixed a few bugs in branch mutation that reduced evolutionary efficiency
- updated all ERROR messages to be uniform in output
- added (y/n) to "Are you certain you want to quit?" message --thanks Hunter!
In karoo_gp_main.py
- reset default evolutionary balance to .1/.1/.1/.7
2016 07/13 - version 0.9.1.6
In karoo_gp_base_class.py
- enabled auto counting of labels (right column) in loaded data (data_y)
- re-ordered presentation of screen modes, in order of decreasing feedback [i, g, m, s]
- added argparse to further enhance karoo_gp_server.py as a scriptable tool --FINALLY! :)
In karoo_gp_main.py
- removed user query for number of class labels
- re-ordered presentation of screen modes, in order of decreasing feedback [i, g, m, s]
In karoo_go_server.py
- re-ordered presentation of screen modes, in order of decreasing feedback [i, g, m, s]
- argparse to further enhance karoo_gp_server.py as a scriptable tool
2016 07/11 - version 0.9.1.5
In karoo_gp_base_class.py
- renamed kernel (fitness function) type from 'a' to 'r' for regression
- renamed all associated variable and methods to match switch from 'abs_value' to 'regression'
- reorganised validation methods to match order of fitness functions
- added [other] place holder to validation methods
In karoo_gp_main.py
- renamed kernel (fitness function) type from 'a' to 'r' for regression
- adjusted upper boundary for qty of generations from 1000 to 100
In karoo_go_server.py
- renamed kernel (fitness function) type from 'a' to 'r' for regression
In files/ data_ABS.csv and functions_ABS.csv were rename data_REGRESS.csv and functions_REGRESS.csv accordingly.
2016 07/10-11 - version 0.9.1.4
In karoo_gp_base_class.py
- renamed variable 'tree_depth_max' to 'tree_depth_base'
- renamed variable 'tree_depth_adj' to 'tree_depth_max'
- renamed variable 'gp.pop_tree_depth_max' to 'gp.pop_tree_depth_base'
- enabled 2 children to be produced by each Crossover function
- extensive testing of Crossover in debug to validate process
- reduced # of crossover functions per run by 1/2
- improved on-screen output for all 4 genetic operators
- removed not-in-use 'accuracy' test
- added 'Arguments required:' to each method notes
- edited a number of method notes
In karoo_gp_main.py
- renamed variables (according to karoo_gp_base_class.py)
In karoo_go_server.py
- renamed variables (according to karoo_gp_base_class.py)
2016 07/08-09 - version 0.9.1.3
In karoo_gp_base_class.py
- added CTRL-C catch to the (pause) menu; removes potential to accidentally kill a run when attempting to
copy/paste an on-screen function to research notes (use the mouse instead).
- rebuilt each (pause) menu function for improved exception handling
- added the new gp.tree_depth_adj user defined variable to branch mutation and crossover, enabling Trees to grow
beyond their original size which adds opportunity for more complex solutions, as well as the unavoidable bloat
- reduced complexity of a few lines in both branch mutation and crossover methods
- tested, tested, tested
In karoo_gp_main.py
- added CTRL-C catch to the at-launch user menu.
- renamed the method gp.fx_karoo_crossover_reproduction() to gp.fx_karoo_crossover()
- added user input for the new global variable gp.tree_depth_adj
In karoo_go_server.py
- added new gp.tree_depth_adj variable
2016 07/07 - version 0.9.1.2
In preparation for public launch of Karoo GP, a number of updates are complete or underway.
The Quick Start Tutorial is being fully revised. A number of corrections were made, but more importantly, all new
content has been added relevant to preparation of datasets and the use of the Karoo GP Tools accordingly. The genetic
operators descriptions now feature visuals and revised descriptions, as to many other sections.
In the karoo_gp/tools/ directory, all scripts have undergone updates, 2 of which now offer automated scaling and a
user interface that in the original versions were not present, as follows:
karoo_data_sort.py (formerly karoo_features_sort.py)
This script now engages the user with a query for the number of class labels and the number of data points (rows)
for the new, randomly generated subset of the parent dataset. This script is designed to be used prior to
karoo_normalise.py.
karoo_normalise.py
This script now auto-scales to any number of columns and rows (within the limit of your computer's capability),
and features a text-based user interface. This script is designed to be used following karoo_data_sort.py.
karoo_multi-classifier.py
This script functions as before, but with a minor bug fixed in which the final class was mislabeled.
karoo_iris_plot.py
This script functions as before, but with improved in-script documentation and cleaner code.
In development now are a number of updates and improvements to the base_class such that Karoo GP will more readily
conform to the GP standards, as follows:
1) Karoo GP currently produces only 1 offspring for each parent, where it should produce 2.
2) The tree generation method 'Ramped Half/Half', in its current state, produces a 50/50 split of Full and Grow
methods, not a graduated ramp through all depths.
3) Karoo GP currently engages a bloat inhibitor, that is, an upper limit on tree depth which is maintained through
all modes of mutation and crossover. This will become a user defined setting such that it can be adjusted, enabling
growth of trees beyond the original, user defined limit.
4) Karoo GP will be made to launch as a single, command-line function with all required parameters included, SciKit
Learn style.
2015 12/23 - version 0.9.1.1
It was discovered that when loading external datasets, Karoo was yet extracting variables (terminals) from the data in
the files/ directory, according to the selected kernel.
This is fixed.
2015 11/04 - version 0.9.1.0
Initial development of Karoo GP began in February 2015, on a Python-based evolutionary algorithm for an MSc research
project at the University of Cape Town (UCT) / African Institute for Mathematical Sciences (AIMS) and the Square
Kilometer Array (SKA). The myriad debug statements evolved into the user interface while the classic Machine Learning
test cases became the built-in example runs.
In the course of six months development, the code base grew to become a flexible, easy-to-use platform for Genetic
Programming.
Karoo GP has been thoroughly tested on a 40-core server at the Square Kilometer Array offices in Cape Town, South
Africa, where for one month it chewed through 10,000 rows of data for up to 50 hours without incident. It is proved
as a fully functional, multi-core workhorse.
With all development to date conducted locally, this version 0.9 marks the first release to github.
This initial github release is private, shared with select collaborators only. Please do not distribute any part of
the code until it is made public.
Kai Staats
www.kaistaats.com/research/
www.kaistaats.com/film/