-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathFakeFaceAnimator.py
78 lines (63 loc) · 2.62 KB
/
FakeFaceAnimator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import matplotlib.pyplot as plt
import numpy as np
import torch.nn as nn
import os
import torch
from PIL import Image
from torch.autograd import Variable
from UnwrappedFace import UnwrappedFaceWeightedAverage, UnwrappedFaceWeightedAveragePose
import torchvision
from torchvision.transforms import ToTensor, Compose, Scale
def run_batch(source_images, pose_images):
return model(pose_images, *source_images)
def load_src_img(file_path):
img = Image.open(file_path)
transform = Compose([Scale((256,256)), ToTensor()])
return Variable(transform(img)).cuda()
def load_drv_img(file_path):
img = Image.open(file_path)
width, height = img.size # Get dimensions
buffer = (width - height) / 2 + 400
left = buffer
top = 400
right = width - buffer
bottom = height - 200
# Crop the center of the image
img = img.crop((left, top, right, bottom))
transform = Compose([Scale((256,256)), ToTensor()])
return Variable(transform(img)).cuda()
BASE_MODEL = './release_models/' # Change to your path
state_dict = torch.load(BASE_MODEL + 'x2face_model_forpython3.pth', map_location='cpu')
model = UnwrappedFaceWeightedAverage(output_num_channels=2, input_num_channels=3, inner_nc=128)
model.load_state_dict(state_dict['state_dict'])
model = model.cuda()
model = model.eval()
driver_path = './examples/chester/'
source_path = './examples/test/'
for i in range (13):
driver_imgs = [driver_path + d for d in sorted(os.listdir(driver_path))][i:i+1] # 1 driving frame
source_imgs = [source_path + d for d in sorted(os.listdir(source_path))][0:1] # 1 source frame
# Driving the source image with the driving sequence
source_images = []
for img in source_imgs:
source_images.append(load_src_img(img).unsqueeze(0).repeat(len(driver_imgs), 1, 1, 1))
driver_images = None
for img in driver_imgs:
if driver_images is None:
driver_images = load_drv_img(img).unsqueeze(0)
else:
driver_images = torch.cat((driver_images, load_drv_img(img).unsqueeze(0)), 0)
# Run the model for each
with torch.no_grad():
result = run_batch(source_images, driver_images)
result = result.clamp(min=0, max=1)
img = torchvision.utils.make_grid(result.cpu().data)
# Visualise the results
fig_size = plt.rcParams["figure.figsize"]
fig_size[0] = 24.
fig_size[1] = 24.
plt.rcParams["figure.figsize"] = fig_size
plt.axis('off')
result_images = img.permute(1,2,0).numpy()
driving_images = torchvision.utils.make_grid(driver_images.cpu().data).permute(1,2,0).numpy()
plt.imsave('../out/out{}.png'.format(i), result_images)