From 73a18e7f8256cd70a204cd5cd0e4fd88cda499de Mon Sep 17 00:00:00 2001 From: ALICE Action Bot Date: Thu, 14 Sep 2023 08:20:45 +0000 Subject: [PATCH] Please consider the following formatting changes --- .../3rdparty/include/Framework/robin_hood.h | 4160 +++++++++-------- 1 file changed, 2179 insertions(+), 1981 deletions(-) diff --git a/Framework/Foundation/3rdparty/include/Framework/robin_hood.h b/Framework/Foundation/3rdparty/include/Framework/robin_hood.h index b4e0fbc56aec7..fe9112b712953 100644 --- a/Framework/Foundation/3rdparty/include/Framework/robin_hood.h +++ b/Framework/Foundation/3rdparty/include/Framework/robin_hood.h @@ -49,47 +49,51 @@ #include #include #if __cplusplus >= 201703L -# include +#include #endif // #define ROBIN_HOOD_LOG_ENABLED #ifdef ROBIN_HOOD_LOG_ENABLED -# include -# define ROBIN_HOOD_LOG(...) \ - std::cout << __FUNCTION__ << "@" << __LINE__ << ": " << __VA_ARGS__ << std::endl; +#include +#define ROBIN_HOOD_LOG(...) \ + std::cout << __FUNCTION__ << "@" << __LINE__ << ": " << __VA_ARGS__ << std::endl; #else -# define ROBIN_HOOD_LOG(x) +#define ROBIN_HOOD_LOG(x) #endif // #define ROBIN_HOOD_TRACE_ENABLED #ifdef ROBIN_HOOD_TRACE_ENABLED -# include -# define ROBIN_HOOD_TRACE(...) \ - std::cout << __FUNCTION__ << "@" << __LINE__ << ": " << __VA_ARGS__ << std::endl; +#include +#define ROBIN_HOOD_TRACE(...) \ + std::cout << __FUNCTION__ << "@" << __LINE__ << ": " << __VA_ARGS__ << std::endl; #else -# define ROBIN_HOOD_TRACE(x) +#define ROBIN_HOOD_TRACE(x) #endif // #define ROBIN_HOOD_COUNT_ENABLED #ifdef ROBIN_HOOD_COUNT_ENABLED -# include -# define ROBIN_HOOD_COUNT(x) ++counts().x; -namespace robin_hood { +#include +#define ROBIN_HOOD_COUNT(x) ++counts().x; +namespace robin_hood +{ struct Counts { - uint64_t shiftUp{}; - uint64_t shiftDown{}; + uint64_t shiftUp{}; + uint64_t shiftDown{}; }; -inline std::ostream& operator<<(std::ostream& os, Counts const& c) { - return os << c.shiftUp << " shiftUp" << std::endl << c.shiftDown << " shiftDown" << std::endl; +inline std::ostream& operator<<(std::ostream& os, Counts const& c) +{ + return os << c.shiftUp << " shiftUp" << std::endl + << c.shiftDown << " shiftDown" << std::endl; } -static Counts& counts() { - static Counts counts{}; - return counts; +static Counts& counts() +{ + static Counts counts{}; + return counts; } } // namespace robin_hood #else -# define ROBIN_HOOD_COUNT(x) +#define ROBIN_HOOD_COUNT(x) #endif // all non-argument macros should use this facility. See @@ -101,115 +105,115 @@ static Counts& counts() { // bitness #if SIZE_MAX == UINT32_MAX -# define ROBIN_HOOD_PRIVATE_DEFINITION_BITNESS() 32 +#define ROBIN_HOOD_PRIVATE_DEFINITION_BITNESS() 32 #elif SIZE_MAX == UINT64_MAX -# define ROBIN_HOOD_PRIVATE_DEFINITION_BITNESS() 64 +#define ROBIN_HOOD_PRIVATE_DEFINITION_BITNESS() 64 #else -# error Unsupported bitness +#error Unsupported bitness #endif // endianess #ifdef _MSC_VER -# define ROBIN_HOOD_PRIVATE_DEFINITION_LITTLE_ENDIAN() 1 -# define ROBIN_HOOD_PRIVATE_DEFINITION_BIG_ENDIAN() 0 +#define ROBIN_HOOD_PRIVATE_DEFINITION_LITTLE_ENDIAN() 1 +#define ROBIN_HOOD_PRIVATE_DEFINITION_BIG_ENDIAN() 0 #else -# define ROBIN_HOOD_PRIVATE_DEFINITION_LITTLE_ENDIAN() \ - (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) -# define ROBIN_HOOD_PRIVATE_DEFINITION_BIG_ENDIAN() (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) +#define ROBIN_HOOD_PRIVATE_DEFINITION_LITTLE_ENDIAN() \ + (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) +#define ROBIN_HOOD_PRIVATE_DEFINITION_BIG_ENDIAN() (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) #endif // inline #ifdef _MSC_VER -# define ROBIN_HOOD_PRIVATE_DEFINITION_NOINLINE() __declspec(noinline) +#define ROBIN_HOOD_PRIVATE_DEFINITION_NOINLINE() __declspec(noinline) #else -# define ROBIN_HOOD_PRIVATE_DEFINITION_NOINLINE() __attribute__((noinline)) +#define ROBIN_HOOD_PRIVATE_DEFINITION_NOINLINE() __attribute__((noinline)) #endif // exceptions #if !defined(__cpp_exceptions) && !defined(__EXCEPTIONS) && !defined(_CPPUNWIND) -# define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_EXCEPTIONS() 0 +#define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_EXCEPTIONS() 0 #else -# define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_EXCEPTIONS() 1 +#define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_EXCEPTIONS() 1 #endif // count leading/trailing bits #if !defined(ROBIN_HOOD_DISABLE_INTRINSICS) -# ifdef _MSC_VER -# if ROBIN_HOOD(BITNESS) == 32 -# define ROBIN_HOOD_PRIVATE_DEFINITION_BITSCANFORWARD() _BitScanForward -# else -# define ROBIN_HOOD_PRIVATE_DEFINITION_BITSCANFORWARD() _BitScanForward64 -# endif -# include -# pragma intrinsic(ROBIN_HOOD(BITSCANFORWARD)) -# define ROBIN_HOOD_COUNT_TRAILING_ZEROES(x) \ - [](size_t mask) noexcept -> int { \ - unsigned long index; \ - return ROBIN_HOOD(BITSCANFORWARD)(&index, mask) ? static_cast(index) \ - : ROBIN_HOOD(BITNESS); \ - }(x) -# else -# if ROBIN_HOOD(BITNESS) == 32 -# define ROBIN_HOOD_PRIVATE_DEFINITION_CTZ() __builtin_ctzl -# define ROBIN_HOOD_PRIVATE_DEFINITION_CLZ() __builtin_clzl -# else -# define ROBIN_HOOD_PRIVATE_DEFINITION_CTZ() __builtin_ctzll -# define ROBIN_HOOD_PRIVATE_DEFINITION_CLZ() __builtin_clzll -# endif -# define ROBIN_HOOD_COUNT_LEADING_ZEROES(x) ((x) ? ROBIN_HOOD(CLZ)(x) : ROBIN_HOOD(BITNESS)) -# define ROBIN_HOOD_COUNT_TRAILING_ZEROES(x) ((x) ? ROBIN_HOOD(CTZ)(x) : ROBIN_HOOD(BITNESS)) -# endif +#ifdef _MSC_VER +#if ROBIN_HOOD(BITNESS) == 32 +#define ROBIN_HOOD_PRIVATE_DEFINITION_BITSCANFORWARD() _BitScanForward +#else +#define ROBIN_HOOD_PRIVATE_DEFINITION_BITSCANFORWARD() _BitScanForward64 +#endif +#include +#pragma intrinsic(ROBIN_HOOD(BITSCANFORWARD)) +#define ROBIN_HOOD_COUNT_TRAILING_ZEROES(x) \ + [](size_t mask) noexcept -> int { \ + unsigned long index; \ + return ROBIN_HOOD(BITSCANFORWARD)(&index, mask) ? static_cast(index) \ + : ROBIN_HOOD(BITNESS); \ + }(x) +#else +#if ROBIN_HOOD(BITNESS) == 32 +#define ROBIN_HOOD_PRIVATE_DEFINITION_CTZ() __builtin_ctzl +#define ROBIN_HOOD_PRIVATE_DEFINITION_CLZ() __builtin_clzl +#else +#define ROBIN_HOOD_PRIVATE_DEFINITION_CTZ() __builtin_ctzll +#define ROBIN_HOOD_PRIVATE_DEFINITION_CLZ() __builtin_clzll +#endif +#define ROBIN_HOOD_COUNT_LEADING_ZEROES(x) ((x) ? ROBIN_HOOD(CLZ)(x) : ROBIN_HOOD(BITNESS)) +#define ROBIN_HOOD_COUNT_TRAILING_ZEROES(x) ((x) ? ROBIN_HOOD(CTZ)(x) : ROBIN_HOOD(BITNESS)) +#endif #endif // fallthrough #ifndef __has_cpp_attribute // For backwards compatibility -# define __has_cpp_attribute(x) 0 +#define __has_cpp_attribute(x) 0 #endif #if __has_cpp_attribute(clang::fallthrough) -# define ROBIN_HOOD_PRIVATE_DEFINITION_FALLTHROUGH() [[clang::fallthrough]] +#define ROBIN_HOOD_PRIVATE_DEFINITION_FALLTHROUGH() [[clang::fallthrough]] #elif __has_cpp_attribute(gnu::fallthrough) -# define ROBIN_HOOD_PRIVATE_DEFINITION_FALLTHROUGH() [[gnu::fallthrough]] +#define ROBIN_HOOD_PRIVATE_DEFINITION_FALLTHROUGH() [[gnu::fallthrough]] #else -# define ROBIN_HOOD_PRIVATE_DEFINITION_FALLTHROUGH() +#define ROBIN_HOOD_PRIVATE_DEFINITION_FALLTHROUGH() #endif // likely/unlikely #ifdef _MSC_VER -# define ROBIN_HOOD_LIKELY(condition) condition -# define ROBIN_HOOD_UNLIKELY(condition) condition +#define ROBIN_HOOD_LIKELY(condition) condition +#define ROBIN_HOOD_UNLIKELY(condition) condition #else -# define ROBIN_HOOD_LIKELY(condition) __builtin_expect(condition, 1) -# define ROBIN_HOOD_UNLIKELY(condition) __builtin_expect(condition, 0) +#define ROBIN_HOOD_LIKELY(condition) __builtin_expect(condition, 1) +#define ROBIN_HOOD_UNLIKELY(condition) __builtin_expect(condition, 0) #endif // detect if native wchar_t type is availiable in MSVC #ifdef _MSC_VER -# ifdef _NATIVE_WCHAR_T_DEFINED -# define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_NATIVE_WCHART() 1 -# else -# define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_NATIVE_WCHART() 0 -# endif +#ifdef _NATIVE_WCHAR_T_DEFINED +#define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_NATIVE_WCHART() 1 +#else +#define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_NATIVE_WCHART() 0 +#endif #else -# define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_NATIVE_WCHART() 1 +#define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_NATIVE_WCHART() 1 #endif // detect if MSVC supports the pair(std::piecewise_construct_t,...) consructor being constexpr #ifdef _MSC_VER -# if _MSC_VER <= 1900 -# define ROBIN_HOOD_PRIVATE_DEFINITION_BROKEN_CONSTEXPR() 1 -# else -# define ROBIN_HOOD_PRIVATE_DEFINITION_BROKEN_CONSTEXPR() 0 -# endif +#if _MSC_VER <= 1900 +#define ROBIN_HOOD_PRIVATE_DEFINITION_BROKEN_CONSTEXPR() 1 #else -# define ROBIN_HOOD_PRIVATE_DEFINITION_BROKEN_CONSTEXPR() 0 +#define ROBIN_HOOD_PRIVATE_DEFINITION_BROKEN_CONSTEXPR() 0 +#endif +#else +#define ROBIN_HOOD_PRIVATE_DEFINITION_BROKEN_CONSTEXPR() 0 #endif // workaround missing "is_trivially_copyable" in g++ < 5.0 // See https://stackoverflow.com/a/31798726/48181 #if defined(__GNUC__) && __GNUC__ < 5 && !defined(__clang__) -# define ROBIN_HOOD_IS_TRIVIALLY_COPYABLE(...) __has_trivial_copy(__VA_ARGS__) +#define ROBIN_HOOD_IS_TRIVIALLY_COPYABLE(...) __has_trivial_copy(__VA_ARGS__) #else -# define ROBIN_HOOD_IS_TRIVIALLY_COPYABLE(...) std::is_trivially_copyable<__VA_ARGS__>::value +#define ROBIN_HOOD_IS_TRIVIALLY_COPYABLE(...) std::is_trivially_copyable<__VA_ARGS__>::value #endif // helpers for C++ versions, see https://gcc.gnu.org/onlinedocs/cpp/Standard-Predefined-Macros.html @@ -220,71 +224,77 @@ static Counts& counts() { #define ROBIN_HOOD_PRIVATE_DEFINITION_CXX17() 201703L #if ROBIN_HOOD(CXX) >= ROBIN_HOOD(CXX17) -# define ROBIN_HOOD_PRIVATE_DEFINITION_NODISCARD() [[nodiscard]] +#define ROBIN_HOOD_PRIVATE_DEFINITION_NODISCARD() [[nodiscard]] #else -# define ROBIN_HOOD_PRIVATE_DEFINITION_NODISCARD() +#define ROBIN_HOOD_PRIVATE_DEFINITION_NODISCARD() #endif -namespace robin_hood { +namespace robin_hood +{ #if ROBIN_HOOD(CXX) >= ROBIN_HOOD(CXX14) -# define ROBIN_HOOD_STD std +#define ROBIN_HOOD_STD std #else // c++11 compatibility layer -namespace ROBIN_HOOD_STD { +namespace ROBIN_HOOD_STD +{ template struct alignment_of - : std::integral_constant::type)> {}; + : std::integral_constant::type)> { +}; template -class integer_sequence { -public: - using value_type = T; - static_assert(std::is_integral::value, "not integral type"); - static constexpr std::size_t size() noexcept { - return sizeof...(Ints); - } +class integer_sequence +{ + public: + using value_type = T; + static_assert(std::is_integral::value, "not integral type"); + static constexpr std::size_t size() noexcept + { + return sizeof...(Ints); + } }; template using index_sequence = integer_sequence; -namespace detail_ { +namespace detail_ +{ template struct IntSeqImpl { - using TValue = T; - static_assert(std::is_integral::value, "not integral type"); - static_assert(Begin >= 0 && Begin < End, "unexpected argument (Begin<0 || Begin<=End)"); - - template - struct IntSeqCombiner; - - template - struct IntSeqCombiner, integer_sequence> { - using TResult = integer_sequence; - }; - - using TResult = - typename IntSeqCombiner::TResult, - typename IntSeqImpl::TResult>::TResult; + using TValue = T; + static_assert(std::is_integral::value, "not integral type"); + static_assert(Begin >= 0 && Begin < End, "unexpected argument (Begin<0 || Begin<=End)"); + + template + struct IntSeqCombiner; + + template + struct IntSeqCombiner, integer_sequence> { + using TResult = integer_sequence; + }; + + using TResult = + typename IntSeqCombiner::TResult, + typename IntSeqImpl::TResult>::TResult; }; template struct IntSeqImpl { - using TValue = T; - static_assert(std::is_integral::value, "not integral type"); - static_assert(Begin >= 0, "unexpected argument (Begin<0)"); - using TResult = integer_sequence; + using TValue = T; + static_assert(std::is_integral::value, "not integral type"); + static_assert(Begin >= 0, "unexpected argument (Begin<0)"); + using TResult = integer_sequence; }; template struct IntSeqImpl { - using TValue = T; - static_assert(std::is_integral::value, "not integral type"); - static_assert(Begin >= 0, "unexpected argument (Begin<0)"); - using TResult = integer_sequence; + using TValue = T; + static_assert(std::is_integral::value, "not integral type"); + static_assert(Begin >= 0, "unexpected argument (Begin<0)"); + using TResult = integer_sequence; }; } // namespace detail_ @@ -301,7 +311,8 @@ using index_sequence_for = make_index_sequence; #endif -namespace detail { +namespace detail +{ // make sure we static_cast to the correct type for hash_int #if ROBIN_HOOD(BITNESS) == 64 @@ -311,21 +322,24 @@ using SizeT = uint32_t; #endif template -T rotr(T x, unsigned k) { - return (x >> k) | (x << (8U * sizeof(T) - k)); +T rotr(T x, unsigned k) +{ + return (x >> k) | (x << (8U * sizeof(T) - k)); } // This cast gets rid of warnings like "cast from 'uint8_t*' {aka 'unsigned char*'} to // 'uint64_t*' {aka 'long unsigned int*'} increases required alignment of target type". Use with // care! template -inline T reinterpret_cast_no_cast_align_warning(void* ptr) noexcept { - return reinterpret_cast(ptr); +inline T reinterpret_cast_no_cast_align_warning(void* ptr) noexcept +{ + return reinterpret_cast(ptr); } template -inline T reinterpret_cast_no_cast_align_warning(void const* ptr) noexcept { - return reinterpret_cast(ptr); +inline T reinterpret_cast_no_cast_align_warning(void const* ptr) noexcept +{ + return reinterpret_cast(ptr); } // make sure this is not inlined as it is slow and dramatically enlarges code, thus making other @@ -333,208 +347,225 @@ inline T reinterpret_cast_no_cast_align_warning(void const* ptr) noexcept { template [[noreturn]] ROBIN_HOOD(NOINLINE) #if ROBIN_HOOD(HAS_EXCEPTIONS) - void doThrow(Args&&... args) { - // NOLINTNEXTLINE(cppcoreguidelines-pro-bounds-array-to-pointer-decay) - throw E(std::forward(args)...); + void doThrow(Args&&... args) +{ + // NOLINTNEXTLINE(cppcoreguidelines-pro-bounds-array-to-pointer-decay) + throw E(std::forward(args)...); } #else - void doThrow(Args&&... ROBIN_HOOD_UNUSED(args) /*unused*/) { - abort(); + void doThrow(Args&&... ROBIN_HOOD_UNUSED(args) /*unused*/) +{ + abort(); } #endif template -T* assertNotNull(T* t, Args&&... args) { - if (ROBIN_HOOD_UNLIKELY(nullptr == t)) { - doThrow(std::forward(args)...); - } - return t; +T* assertNotNull(T* t, Args&&... args) +{ + if (ROBIN_HOOD_UNLIKELY(nullptr == t)) { + doThrow(std::forward(args)...); + } + return t; } template -inline T unaligned_load(void const* ptr) noexcept { - // using memcpy so we don't get into unaligned load problems. - // compiler should optimize this very well anyways. - T t; - std::memcpy(&t, ptr, sizeof(T)); - return t; +inline T unaligned_load(void const* ptr) noexcept +{ + // using memcpy so we don't get into unaligned load problems. + // compiler should optimize this very well anyways. + T t; + std::memcpy(&t, ptr, sizeof(T)); + return t; } // Allocates bulks of memory for objects of type T. This deallocates the memory in the destructor, // and keeps a linked list of the allocated memory around. Overhead per allocation is the size of a // pointer. template -class BulkPoolAllocator { -public: - BulkPoolAllocator() noexcept = default; - - // does not copy anything, just creates a new allocator. - BulkPoolAllocator(const BulkPoolAllocator& ROBIN_HOOD_UNUSED(o) /*unused*/) noexcept - : mHead(nullptr) - , mListForFree(nullptr) {} - - BulkPoolAllocator(BulkPoolAllocator&& o) noexcept - : mHead(o.mHead) - , mListForFree(o.mListForFree) { - o.mListForFree = nullptr; - o.mHead = nullptr; - } - - BulkPoolAllocator& operator=(BulkPoolAllocator&& o) noexcept { - reset(); - mHead = o.mHead; - mListForFree = o.mListForFree; - o.mListForFree = nullptr; - o.mHead = nullptr; - return *this; - } - - BulkPoolAllocator& +class BulkPoolAllocator +{ + public: + BulkPoolAllocator() noexcept = default; + + // does not copy anything, just creates a new allocator. + BulkPoolAllocator(const BulkPoolAllocator& ROBIN_HOOD_UNUSED(o) /*unused*/) noexcept + : mHead(nullptr), mListForFree(nullptr) {} + + BulkPoolAllocator(BulkPoolAllocator&& o) noexcept + : mHead(o.mHead), mListForFree(o.mListForFree) + { + o.mListForFree = nullptr; + o.mHead = nullptr; + } + + BulkPoolAllocator& operator=(BulkPoolAllocator&& o) noexcept + { + reset(); + mHead = o.mHead; + mListForFree = o.mListForFree; + o.mListForFree = nullptr; + o.mHead = nullptr; + return *this; + } + + BulkPoolAllocator& // NOLINTNEXTLINE(bugprone-unhandled-self-assignment,cert-oop54-cpp) - operator=(const BulkPoolAllocator& ROBIN_HOOD_UNUSED(o) /*unused*/) noexcept { - // does not do anything - return *this; - } - - ~BulkPoolAllocator() noexcept { - reset(); - } - - // Deallocates all allocated memory. - void reset() noexcept { - while (mListForFree) { - T* tmp = *mListForFree; - ROBIN_HOOD_LOG("std::free") - std::free(mListForFree); - mListForFree = reinterpret_cast_no_cast_align_warning(tmp); - } - mHead = nullptr; - } - - // allocates, but does NOT initialize. Use in-place new constructor, e.g. - // T* obj = pool.allocate(); - // ::new (static_cast(obj)) T(); - T* allocate() { - T* tmp = mHead; - if (!tmp) { - tmp = performAllocation(); - } - - mHead = *reinterpret_cast_no_cast_align_warning(tmp); - return tmp; - } - - // does not actually deallocate but puts it in store. - // make sure you have already called the destructor! e.g. with - // obj->~T(); - // pool.deallocate(obj); - void deallocate(T* obj) noexcept { - *reinterpret_cast_no_cast_align_warning(obj) = mHead; - mHead = obj; - } - - // Adds an already allocated block of memory to the allocator. This allocator is from now on - // responsible for freeing the data (with free()). If the provided data is not large enough to - // make use of, it is immediately freed. Otherwise it is reused and freed in the destructor. - void addOrFree(void* ptr, const size_t numBytes) noexcept { - // calculate number of available elements in ptr - if (numBytes < ALIGNMENT + ALIGNED_SIZE) { - // not enough data for at least one element. Free and return. - ROBIN_HOOD_LOG("std::free") - std::free(ptr); - } else { - ROBIN_HOOD_LOG("add to buffer") - add(ptr, numBytes); - } - } - - void swap(BulkPoolAllocator& other) noexcept { - using std::swap; - swap(mHead, other.mHead); - swap(mListForFree, other.mListForFree); - } - -private: - // iterates the list of allocated memory to calculate how many to alloc next. - // Recalculating this each time saves us a size_t member. - // This ignores the fact that memory blocks might have been added manually with addOrFree. In - // practice, this should not matter much. - ROBIN_HOOD(NODISCARD) size_t calcNumElementsToAlloc() const noexcept { - auto tmp = mListForFree; - size_t numAllocs = MinNumAllocs; - - while (numAllocs * 2 <= MaxNumAllocs && tmp) { - auto x = reinterpret_cast(tmp); - tmp = *x; - numAllocs *= 2; - } - - return numAllocs; - } - - // WARNING: Underflow if numBytes < ALIGNMENT! This is guarded in addOrFree(). - void add(void* ptr, const size_t numBytes) noexcept { - const size_t numElements = (numBytes - ALIGNMENT) / ALIGNED_SIZE; - - auto data = reinterpret_cast(ptr); - - // link free list - auto x = reinterpret_cast(data); - *x = mListForFree; - mListForFree = data; - - // create linked list for newly allocated data - auto* const headT = - reinterpret_cast_no_cast_align_warning(reinterpret_cast(ptr) + ALIGNMENT); - - auto* const head = reinterpret_cast(headT); - - // Visual Studio compiler automatically unrolls this loop, which is pretty cool - for (size_t i = 0; i < numElements; ++i) { - *reinterpret_cast_no_cast_align_warning(head + i * ALIGNED_SIZE) = - head + (i + 1) * ALIGNED_SIZE; - } - - // last one points to 0 - *reinterpret_cast_no_cast_align_warning(head + (numElements - 1) * ALIGNED_SIZE) = - mHead; - mHead = headT; - } - - // Called when no memory is available (mHead == 0). - // Don't inline this slow path. - ROBIN_HOOD(NOINLINE) T* performAllocation() { - size_t const numElementsToAlloc = calcNumElementsToAlloc(); - - // alloc new memory: [prev |T, T, ... T] - size_t const bytes = ALIGNMENT + ALIGNED_SIZE * numElementsToAlloc; - ROBIN_HOOD_LOG("std::malloc " << bytes << " = " << ALIGNMENT << " + " << ALIGNED_SIZE - << " * " << numElementsToAlloc) - add(assertNotNull(std::malloc(bytes)), bytes); - return mHead; - } - - // enforce byte alignment of the T's + operator=(const BulkPoolAllocator& ROBIN_HOOD_UNUSED(o) /*unused*/) noexcept + { + // does not do anything + return *this; + } + + ~BulkPoolAllocator() noexcept + { + reset(); + } + + // Deallocates all allocated memory. + void reset() noexcept + { + while (mListForFree) { + T* tmp = *mListForFree; + ROBIN_HOOD_LOG("std::free") + std::free(mListForFree); + mListForFree = reinterpret_cast_no_cast_align_warning(tmp); + } + mHead = nullptr; + } + + // allocates, but does NOT initialize. Use in-place new constructor, e.g. + // T* obj = pool.allocate(); + // ::new (static_cast(obj)) T(); + T* allocate() + { + T* tmp = mHead; + if (!tmp) { + tmp = performAllocation(); + } + + mHead = *reinterpret_cast_no_cast_align_warning(tmp); + return tmp; + } + + // does not actually deallocate but puts it in store. + // make sure you have already called the destructor! e.g. with + // obj->~T(); + // pool.deallocate(obj); + void deallocate(T* obj) noexcept + { + *reinterpret_cast_no_cast_align_warning(obj) = mHead; + mHead = obj; + } + + // Adds an already allocated block of memory to the allocator. This allocator is from now on + // responsible for freeing the data (with free()). If the provided data is not large enough to + // make use of, it is immediately freed. Otherwise it is reused and freed in the destructor. + void addOrFree(void* ptr, const size_t numBytes) noexcept + { + // calculate number of available elements in ptr + if (numBytes < ALIGNMENT + ALIGNED_SIZE) { + // not enough data for at least one element. Free and return. + ROBIN_HOOD_LOG("std::free") + std::free(ptr); + } else { + ROBIN_HOOD_LOG("add to buffer") + add(ptr, numBytes); + } + } + + void swap(BulkPoolAllocator& other) noexcept + { + using std::swap; + swap(mHead, other.mHead); + swap(mListForFree, other.mListForFree); + } + + private: + // iterates the list of allocated memory to calculate how many to alloc next. + // Recalculating this each time saves us a size_t member. + // This ignores the fact that memory blocks might have been added manually with addOrFree. In + // practice, this should not matter much. + ROBIN_HOOD(NODISCARD) + size_t calcNumElementsToAlloc() const noexcept + { + auto tmp = mListForFree; + size_t numAllocs = MinNumAllocs; + + while (numAllocs * 2 <= MaxNumAllocs && tmp) { + auto x = reinterpret_cast(tmp); + tmp = *x; + numAllocs *= 2; + } + + return numAllocs; + } + + // WARNING: Underflow if numBytes < ALIGNMENT! This is guarded in addOrFree(). + void add(void* ptr, const size_t numBytes) noexcept + { + const size_t numElements = (numBytes - ALIGNMENT) / ALIGNED_SIZE; + + auto data = reinterpret_cast(ptr); + + // link free list + auto x = reinterpret_cast(data); + *x = mListForFree; + mListForFree = data; + + // create linked list for newly allocated data + auto* const headT = + reinterpret_cast_no_cast_align_warning(reinterpret_cast(ptr) + ALIGNMENT); + + auto* const head = reinterpret_cast(headT); + + // Visual Studio compiler automatically unrolls this loop, which is pretty cool + for (size_t i = 0; i < numElements; ++i) { + *reinterpret_cast_no_cast_align_warning(head + i * ALIGNED_SIZE) = + head + (i + 1) * ALIGNED_SIZE; + } + + // last one points to 0 + *reinterpret_cast_no_cast_align_warning(head + (numElements - 1) * ALIGNED_SIZE) = + mHead; + mHead = headT; + } + + // Called when no memory is available (mHead == 0). + // Don't inline this slow path. + ROBIN_HOOD(NOINLINE) + T* performAllocation() + { + size_t const numElementsToAlloc = calcNumElementsToAlloc(); + + // alloc new memory: [prev |T, T, ... T] + size_t const bytes = ALIGNMENT + ALIGNED_SIZE * numElementsToAlloc; + ROBIN_HOOD_LOG("std::malloc " << bytes << " = " << ALIGNMENT << " + " << ALIGNED_SIZE + << " * " << numElementsToAlloc) + add(assertNotNull(std::malloc(bytes)), bytes); + return mHead; + } + + // enforce byte alignment of the T's #if ROBIN_HOOD(CXX) >= ROBIN_HOOD(CXX14) - static constexpr size_t ALIGNMENT = - (std::max)(std::alignment_of::value, std::alignment_of::value); + static constexpr size_t ALIGNMENT = + (std::max)(std::alignment_of::value, std::alignment_of::value); #else - static const size_t ALIGNMENT = - (ROBIN_HOOD_STD::alignment_of::value > ROBIN_HOOD_STD::alignment_of::value) - ? ROBIN_HOOD_STD::alignment_of::value - : +ROBIN_HOOD_STD::alignment_of::value; // the + is for walkarround + static const size_t ALIGNMENT = + (ROBIN_HOOD_STD::alignment_of::value > ROBIN_HOOD_STD::alignment_of::value) + ? ROBIN_HOOD_STD::alignment_of::value + : +ROBIN_HOOD_STD::alignment_of::value; // the + is for walkarround #endif - static constexpr size_t ALIGNED_SIZE = ((sizeof(T) - 1) / ALIGNMENT + 1) * ALIGNMENT; + static constexpr size_t ALIGNED_SIZE = ((sizeof(T) - 1) / ALIGNMENT + 1) * ALIGNMENT; - static_assert(MinNumAllocs >= 1, "MinNumAllocs"); - static_assert(MaxNumAllocs >= MinNumAllocs, "MaxNumAllocs"); - static_assert(ALIGNED_SIZE >= sizeof(T*), "ALIGNED_SIZE"); - static_assert(0 == (ALIGNED_SIZE % sizeof(T*)), "ALIGNED_SIZE mod"); - static_assert(ALIGNMENT >= sizeof(T*), "ALIGNMENT"); + static_assert(MinNumAllocs >= 1, "MinNumAllocs"); + static_assert(MaxNumAllocs >= MinNumAllocs, "MaxNumAllocs"); + static_assert(ALIGNED_SIZE >= sizeof(T*), "ALIGNED_SIZE"); + static_assert(0 == (ALIGNED_SIZE % sizeof(T*)), "ALIGNED_SIZE mod"); + static_assert(ALIGNMENT >= sizeof(T*), "ALIGNMENT"); - T* mHead{nullptr}; - T** mListForFree{nullptr}; + T* mHead{nullptr}; + T** mListForFree{nullptr}; }; template @@ -544,288 +575,310 @@ struct NodeAllocator; template struct NodeAllocator { - // we are not using the data, so just free it. - void addOrFree(void* ptr, size_t ROBIN_HOOD_UNUSED(numBytes) /*unused*/) noexcept { - ROBIN_HOOD_LOG("std::free") - std::free(ptr); - } + // we are not using the data, so just free it. + void addOrFree(void* ptr, size_t ROBIN_HOOD_UNUSED(numBytes) /*unused*/) noexcept + { + ROBIN_HOOD_LOG("std::free") + std::free(ptr); + } }; template -struct NodeAllocator : public BulkPoolAllocator {}; +struct NodeAllocator : public BulkPoolAllocator { +}; // c++14 doesn't have is_nothrow_swappable, and clang++ 6.0.1 doesn't like it either, so I'm making // my own here. -namespace swappable { +namespace swappable +{ #if ROBIN_HOOD(CXX) < ROBIN_HOOD(CXX17) using std::swap; template struct nothrow { - static const bool value = noexcept(swap(std::declval(), std::declval())); + static const bool value = noexcept(swap(std::declval(), std::declval())); }; #else template struct nothrow { - static const bool value = std::is_nothrow_swappable::value; + static const bool value = std::is_nothrow_swappable::value; }; #endif } // namespace swappable } // namespace detail -struct is_transparent_tag {}; +struct is_transparent_tag { +}; // A custom pair implementation is used in the map because std::pair is not is_trivially_copyable, // which means it would not be allowed to be used in std::memcpy. This struct is copyable, which is // also tested. template struct pair { - using first_type = T1; - using second_type = T2; - - template ::value && - std::is_default_constructible::value>::type> - constexpr pair() noexcept(noexcept(U1()) && noexcept(U2())) - : first() - , second() {} - - // pair constructors are explicit so we don't accidentally call this ctor when we don't have to. - explicit constexpr pair(std::pair const& o) noexcept( - noexcept(T1(std::declval())) && noexcept(T2(std::declval()))) - : first(o.first) - , second(o.second) {} - - // pair constructors are explicit so we don't accidentally call this ctor when we don't have to. - explicit constexpr pair(std::pair&& o) noexcept(noexcept( - T1(std::move(std::declval()))) && noexcept(T2(std::move(std::declval())))) - : first(std::move(o.first)) - , second(std::move(o.second)) {} - - constexpr pair(T1&& a, T2&& b) noexcept(noexcept( - T1(std::move(std::declval()))) && noexcept(T2(std::move(std::declval())))) - : first(std::move(a)) - , second(std::move(b)) {} - - template - constexpr pair(U1&& a, U2&& b) noexcept(noexcept(T1(std::forward( - std::declval()))) && noexcept(T2(std::forward(std::declval())))) - : first(std::forward(a)) - , second(std::forward(b)) {} - - template - // MSVC 2015 produces error "C2476: ‘constexpr’ constructor does not initialize all members" - // if this constructor is constexpr + using first_type = T1; + using second_type = T2; + + template ::value && + std::is_default_constructible::value>::type> + constexpr pair() noexcept(noexcept(U1()) && noexcept(U2())) + : first(), second() + { + } + + // pair constructors are explicit so we don't accidentally call this ctor when we don't have to. + explicit constexpr pair(std::pair const& o) noexcept( + noexcept(T1(std::declval())) && noexcept(T2(std::declval()))) + : first(o.first), second(o.second) {} + + // pair constructors are explicit so we don't accidentally call this ctor when we don't have to. + explicit constexpr pair(std::pair&& o) noexcept(noexcept( + T1(std::move(std::declval()))) && noexcept(T2(std::move(std::declval())))) + : first(std::move(o.first)), second(std::move(o.second)) {} + + constexpr pair(T1&& a, T2&& b) noexcept(noexcept( + T1(std::move(std::declval()))) && noexcept(T2(std::move(std::declval())))) + : first(std::move(a)), second(std::move(b)) {} + + template + constexpr pair(U1&& a, U2&& b) noexcept(noexcept(T1(std::forward( + std::declval()))) && noexcept(T2(std::forward(std::declval())))) + : first(std::forward(a)), second(std::forward(b)) + { + } + + template + // MSVC 2015 produces error "C2476: ‘constexpr’ constructor does not initialize all members" + // if this constructor is constexpr #if !ROBIN_HOOD(BROKEN_CONSTEXPR) - constexpr + constexpr #endif - pair(std::piecewise_construct_t /*unused*/, std::tuple a, - std::tuple - b) noexcept(noexcept(pair(std::declval&>(), - std::declval&>(), - ROBIN_HOOD_STD::index_sequence_for(), - ROBIN_HOOD_STD::index_sequence_for()))) - : pair(a, b, ROBIN_HOOD_STD::index_sequence_for(), - ROBIN_HOOD_STD::index_sequence_for()) { - } - - // constructor called from the std::piecewise_construct_t ctor - template - pair(std::tuple& a, std::tuple& b, ROBIN_HOOD_STD::index_sequence /*unused*/, ROBIN_HOOD_STD::index_sequence /*unused*/) noexcept( - noexcept(T1(std::forward(std::get( - std::declval&>()))...)) && noexcept(T2(std:: - forward(std::get( - std::declval&>()))...))) - : first(std::forward(std::get(a))...) - , second(std::forward(std::get(b))...) { - // make visual studio compiler happy about warning about unused a & b. - // Visual studio's pair implementation disables warning 4100. - (void)a; - (void)b; - } - - void swap(pair& o) noexcept((detail::swappable::nothrow::value) && - (detail::swappable::nothrow::value)) { - using std::swap; - swap(first, o.first); - swap(second, o.second); - } - - T1 first; // NOLINT(misc-non-private-member-variables-in-classes) - T2 second; // NOLINT(misc-non-private-member-variables-in-classes) + pair(std::piecewise_construct_t /*unused*/, std::tuple a, + std::tuple + b) noexcept(noexcept(pair(std::declval&>(), + std::declval&>(), + ROBIN_HOOD_STD::index_sequence_for(), + ROBIN_HOOD_STD::index_sequence_for()))) + : pair(a, b, ROBIN_HOOD_STD::index_sequence_for(), + ROBIN_HOOD_STD::index_sequence_for()) + { + } + + // constructor called from the std::piecewise_construct_t ctor + template + pair(std::tuple& a, std::tuple& b, ROBIN_HOOD_STD::index_sequence /*unused*/, ROBIN_HOOD_STD::index_sequence /*unused*/) noexcept( + noexcept(T1(std::forward(std::get( + std::declval&>()))...)) && noexcept(T2(std:: + forward(std::get( + std::declval&>()))...))) + : first(std::forward(std::get(a))...), second(std::forward(std::get(b))...) + { + // make visual studio compiler happy about warning about unused a & b. + // Visual studio's pair implementation disables warning 4100. + (void)a; + (void)b; + } + + void swap(pair& o) noexcept((detail::swappable::nothrow::value) && + (detail::swappable::nothrow::value)) + { + using std::swap; + swap(first, o.first); + swap(second, o.second); + } + + T1 first; // NOLINT(misc-non-private-member-variables-in-classes) + T2 second; // NOLINT(misc-non-private-member-variables-in-classes) }; template inline void swap(pair& a, pair& b) noexcept( - noexcept(std::declval&>().swap(std::declval&>()))) { - a.swap(b); + noexcept(std::declval&>().swap(std::declval&>()))) +{ + a.swap(b); } template -inline constexpr bool operator==(pair const& x, pair const& y) { - return (x.first == y.first) && (x.second == y.second); +inline constexpr bool operator==(pair const& x, pair const& y) +{ + return (x.first == y.first) && (x.second == y.second); } template -inline constexpr bool operator!=(pair const& x, pair const& y) { - return !(x == y); +inline constexpr bool operator!=(pair const& x, pair const& y) +{ + return !(x == y); } template inline constexpr bool operator<(pair const& x, pair const& y) noexcept(noexcept( - std::declval() < std::declval()) && noexcept(std::declval() < - std::declval())) { - return x.first < y.first || (!(y.first < x.first) && x.second < y.second); + std::declval() < std::declval()) && noexcept(std::declval() < + std::declval())) +{ + return x.first < y.first || (!(y.first < x.first) && x.second < y.second); } template -inline constexpr bool operator>(pair const& x, pair const& y) { - return y < x; +inline constexpr bool operator>(pair const& x, pair const& y) +{ + return y < x; } template -inline constexpr bool operator<=(pair const& x, pair const& y) { - return !(x > y); +inline constexpr bool operator<=(pair const& x, pair const& y) +{ + return !(x > y); } template -inline constexpr bool operator>=(pair const& x, pair const& y) { - return !(x < y); +inline constexpr bool operator>=(pair const& x, pair const& y) +{ + return !(x < y); } -inline size_t hash_bytes(void const* ptr, size_t len) noexcept { - static constexpr uint64_t m = UINT64_C(0xc6a4a7935bd1e995); - static constexpr uint64_t seed = UINT64_C(0xe17a1465); - static constexpr unsigned int r = 47; +inline size_t hash_bytes(void const* ptr, size_t len) noexcept +{ + static constexpr uint64_t m = UINT64_C(0xc6a4a7935bd1e995); + static constexpr uint64_t seed = UINT64_C(0xe17a1465); + static constexpr unsigned int r = 47; - auto const* const data64 = static_cast(ptr); - uint64_t h = seed ^ (len * m); + auto const* const data64 = static_cast(ptr); + uint64_t h = seed ^ (len * m); - size_t const n_blocks = len / 8; - for (size_t i = 0; i < n_blocks; ++i) { - auto k = detail::unaligned_load(data64 + i); + size_t const n_blocks = len / 8; + for (size_t i = 0; i < n_blocks; ++i) { + auto k = detail::unaligned_load(data64 + i); - k *= m; - k ^= k >> r; - k *= m; + k *= m; + k ^= k >> r; + k *= m; - h ^= k; - h *= m; - } + h ^= k; + h *= m; + } - auto const* const data8 = reinterpret_cast(data64 + n_blocks); - switch (len & 7U) { + auto const* const data8 = reinterpret_cast(data64 + n_blocks); + switch (len & 7U) { case 7: - h ^= static_cast(data8[6]) << 48U; - ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH + h ^= static_cast(data8[6]) << 48U; + ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH case 6: - h ^= static_cast(data8[5]) << 40U; - ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH + h ^= static_cast(data8[5]) << 40U; + ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH case 5: - h ^= static_cast(data8[4]) << 32U; - ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH + h ^= static_cast(data8[4]) << 32U; + ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH case 4: - h ^= static_cast(data8[3]) << 24U; - ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH + h ^= static_cast(data8[3]) << 24U; + ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH case 3: - h ^= static_cast(data8[2]) << 16U; - ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH + h ^= static_cast(data8[2]) << 16U; + ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH case 2: - h ^= static_cast(data8[1]) << 8U; - ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH + h ^= static_cast(data8[1]) << 8U; + ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH case 1: - h ^= static_cast(data8[0]); - h *= m; - ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH + h ^= static_cast(data8[0]); + h *= m; + ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH default: - break; - } + break; + } - h ^= h >> r; + h ^= h >> r; - // not doing the final step here, because this will be done by keyToIdx anyways - // h *= m; - // h ^= h >> r; - return static_cast(h); + // not doing the final step here, because this will be done by keyToIdx anyways + // h *= m; + // h ^= h >> r; + return static_cast(h); } -inline size_t hash_int(uint64_t x) noexcept { - // tried lots of different hashes, let's stick with murmurhash3. It's simple, fast, well tested, - // and doesn't need any special 128bit operations. - x ^= x >> 33U; - x *= UINT64_C(0xff51afd7ed558ccd); - x ^= x >> 33U; - - // not doing the final step here, because this will be done by keyToIdx anyways - // x *= UINT64_C(0xc4ceb9fe1a85ec53); - // x ^= x >> 33U; - return static_cast(x); +inline size_t hash_int(uint64_t x) noexcept +{ + // tried lots of different hashes, let's stick with murmurhash3. It's simple, fast, well tested, + // and doesn't need any special 128bit operations. + x ^= x >> 33U; + x *= UINT64_C(0xff51afd7ed558ccd); + x ^= x >> 33U; + + // not doing the final step here, because this will be done by keyToIdx anyways + // x *= UINT64_C(0xc4ceb9fe1a85ec53); + // x ^= x >> 33U; + return static_cast(x); } // A thin wrapper around std::hash, performing an additional simple mixing step of the result. template struct hash : public std::hash { - size_t operator()(T const& obj) const - noexcept(noexcept(std::declval>().operator()(std::declval()))) { - // call base hash - auto result = std::hash::operator()(obj); - // return mixed of that, to be save against identity has - return hash_int(static_cast(result)); - } + size_t operator()(T const& obj) const + noexcept(noexcept(std::declval>().operator()(std::declval()))) + { + // call base hash + auto result = std::hash::operator()(obj); + // return mixed of that, to be save against identity has + return hash_int(static_cast(result)); + } }; template struct hash> { - size_t operator()(std::basic_string const& str) const noexcept { - return hash_bytes(str.data(), sizeof(CharT) * str.size()); - } + size_t operator()(std::basic_string const& str) const noexcept + { + return hash_bytes(str.data(), sizeof(CharT) * str.size()); + } }; #if ROBIN_HOOD(CXX) >= ROBIN_HOOD(CXX17) template struct hash> { - size_t operator()(std::basic_string_view const& sv) const noexcept { - return hash_bytes(sv.data(), sizeof(CharT) * sv.size()); - } + size_t operator()(std::basic_string_view const& sv) const noexcept + { + return hash_bytes(sv.data(), sizeof(CharT) * sv.size()); + } }; #endif template struct hash { - size_t operator()(T* ptr) const noexcept { - return hash_int(reinterpret_cast(ptr)); - } + size_t operator()(T* ptr) const noexcept + { + return hash_int(reinterpret_cast(ptr)); + } }; template struct hash> { - size_t operator()(std::unique_ptr const& ptr) const noexcept { - return hash_int(reinterpret_cast(ptr.get())); - } + size_t operator()(std::unique_ptr const& ptr) const noexcept + { + return hash_int(reinterpret_cast(ptr.get())); + } }; template struct hash> { - size_t operator()(std::shared_ptr const& ptr) const noexcept { - return hash_int(reinterpret_cast(ptr.get())); - } + size_t operator()(std::shared_ptr const& ptr) const noexcept + { + return hash_int(reinterpret_cast(ptr.get())); + } }; template struct hash::value>::type> { - size_t operator()(Enum e) const noexcept { - using Underlying = typename std::underlying_type::type; - return hash{}(static_cast(e)); - } + size_t operator()(Enum e) const noexcept + { + using Underlying = typename std::underlying_type::type; + return hash{}(static_cast(e)); + } }; -#define ROBIN_HOOD_HASH_INT(T) \ - template <> \ - struct hash { \ - size_t operator()(T const& obj) const noexcept { \ - return hash_int(static_cast(obj)); \ - } \ - } +#define ROBIN_HOOD_HASH_INT(T) \ + template <> \ + struct hash { \ + size_t operator()(T const& obj) const noexcept \ + { \ + return hash_int(static_cast(obj)); \ + } \ + } #if defined(__GNUC__) && !defined(__clang__) -# pragma GCC diagnostic push -# pragma GCC diagnostic ignored "-Wuseless-cast" +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wuseless-cast" #endif // see https://en.cppreference.com/w/cpp/utility/hash ROBIN_HOOD_HASH_INT(bool); @@ -846,36 +899,39 @@ ROBIN_HOOD_HASH_INT(long long); ROBIN_HOOD_HASH_INT(unsigned long); ROBIN_HOOD_HASH_INT(unsigned long long); #if defined(__GNUC__) && !defined(__clang__) -# pragma GCC diagnostic pop +#pragma GCC diagnostic pop #endif -namespace detail { +namespace detail +{ template struct void_type { - using type = void; + using type = void; }; template -struct has_is_transparent : public std::false_type {}; +struct has_is_transparent : public std::false_type { +}; template struct has_is_transparent::type> - : public std::true_type {}; + : public std::true_type { +}; // using wrapper classes for hash and key_equal prevents the diamond problem when the same type // is used. see https://stackoverflow.com/a/28771920/48181 template struct WrapHash : public T { - WrapHash() = default; - explicit WrapHash(T const& o) noexcept(noexcept(T(std::declval()))) - : T(o) {} + WrapHash() = default; + explicit WrapHash(T const& o) noexcept(noexcept(T(std::declval()))) + : T(o) {} }; template struct WrapKeyEqual : public T { - WrapKeyEqual() = default; - explicit WrapKeyEqual(T const& o) noexcept(noexcept(T(std::declval()))) - : T(o) {} + WrapKeyEqual() = default; + explicit WrapKeyEqual(T const& o) noexcept(noexcept(T(std::declval()))) + : T(o) {} }; // A highly optimized hashmap implementation, using the Robin Hood algorithm. @@ -907,1599 +963,1741 @@ struct WrapKeyEqual : public T { template class Table - : public WrapHash, - public WrapKeyEqual, - detail::NodeAllocator< - typename std::conditional< - std::is_void::value, Key, - robin_hood::pair::type, T>>::type, - 4, 16384, IsFlat> { -public: - static constexpr bool is_flat = IsFlat; - static constexpr bool is_map = !std::is_void::value; - static constexpr bool is_set = !is_map; - static constexpr bool is_transparent = - has_is_transparent::value && has_is_transparent::value; - - using key_type = Key; - using mapped_type = T; - using value_type = typename std::conditional< - is_set, Key, - robin_hood::pair::type, T>>::type; - using size_type = size_t; - using hasher = Hash; - using key_equal = KeyEqual; - using Self = Table; - -private: - static_assert(MaxLoadFactor100 > 10 && MaxLoadFactor100 < 100, - "MaxLoadFactor100 needs to be >10 && < 100"); - - using WHash = WrapHash; - using WKeyEqual = WrapKeyEqual; - - // configuration defaults - - // make sure we have 8 elements, needed to quickly rehash mInfo - static constexpr size_t InitialNumElements = sizeof(uint64_t); - static constexpr uint32_t InitialInfoNumBits = 5; - static constexpr uint8_t InitialInfoInc = 1U << InitialInfoNumBits; - static constexpr size_t InfoMask = InitialInfoInc - 1U; - static constexpr uint8_t InitialInfoHashShift = 0; - using DataPool = detail::NodeAllocator; - - // type needs to be wider than uint8_t. - using InfoType = uint32_t; - - // DataNode //////////////////////////////////////////////////////// - - // Primary template for the data node. We have special implementations for small and big - // objects. For large objects it is assumed that swap() is fairly slow, so we allocate these - // on the heap so swap merely swaps a pointer. - template - class DataNode {}; - - // Small: just allocate on the stack. - template - class DataNode final { - public: - template - explicit DataNode(M& ROBIN_HOOD_UNUSED(map) /*unused*/, Args&&... args) noexcept( - noexcept(value_type(std::forward(args)...))) - : mData(std::forward(args)...) {} - - DataNode(M& ROBIN_HOOD_UNUSED(map) /*unused*/, DataNode&& n) noexcept( - std::is_nothrow_move_constructible::value) - : mData(std::move(n.mData)) {} - - // doesn't do anything - void destroy(M& ROBIN_HOOD_UNUSED(map) /*unused*/) noexcept {} - void destroyDoNotDeallocate() noexcept {} - - value_type const* operator->() const noexcept { - return &mData; - } - value_type* operator->() noexcept { - return &mData; - } - - const value_type& operator*() const noexcept { - return mData; - } - - value_type& operator*() noexcept { - return mData; - } - - template - ROBIN_HOOD(NODISCARD) - typename std::enable_if::type getFirst() noexcept { - return mData.first; - } - template - ROBIN_HOOD(NODISCARD) - typename std::enable_if::type getFirst() noexcept { - return mData; - } - - template - ROBIN_HOOD(NODISCARD) - typename std::enable_if::type - getFirst() const noexcept { - return mData.first; - } - template - ROBIN_HOOD(NODISCARD) - typename std::enable_if::type getFirst() const noexcept { - return mData; - } - - template - ROBIN_HOOD(NODISCARD) - typename std::enable_if::type getSecond() noexcept { - return mData.second; - } - - template - ROBIN_HOOD(NODISCARD) - typename std::enable_if::type getSecond() const noexcept { - return mData.second; - } - - void swap(DataNode& o) noexcept( - noexcept(std::declval().swap(std::declval()))) { - mData.swap(o.mData); - } - - private: - value_type mData; - }; - - // big object: allocate on heap. - template - class DataNode { - public: - template - explicit DataNode(M& map, Args&&... args) - : mData(map.allocate()) { - ::new (static_cast(mData)) value_type(std::forward(args)...); - } - - DataNode(M& ROBIN_HOOD_UNUSED(map) /*unused*/, DataNode&& n) noexcept - : mData(std::move(n.mData)) {} - - void destroy(M& map) noexcept { - // don't deallocate, just put it into list of datapool. - mData->~value_type(); - map.deallocate(mData); - } - - void destroyDoNotDeallocate() noexcept { - mData->~value_type(); - } - - value_type const* operator->() const noexcept { - return mData; - } - - value_type* operator->() noexcept { - return mData; - } - - const value_type& operator*() const { - return *mData; - } - - value_type& operator*() { - return *mData; - } - - template - ROBIN_HOOD(NODISCARD) - typename std::enable_if::type getFirst() noexcept { - return mData->first; - } - template - ROBIN_HOOD(NODISCARD) - typename std::enable_if::type getFirst() noexcept { - return *mData; - } - - template - ROBIN_HOOD(NODISCARD) - typename std::enable_if::type - getFirst() const noexcept { - return mData->first; - } - template - ROBIN_HOOD(NODISCARD) - typename std::enable_if::type getFirst() const noexcept { - return *mData; - } - - template - ROBIN_HOOD(NODISCARD) - typename std::enable_if::type getSecond() noexcept { - return mData->second; - } - - template - ROBIN_HOOD(NODISCARD) - typename std::enable_if::type getSecond() const noexcept { - return mData->second; - } - - void swap(DataNode& o) noexcept { - using std::swap; - swap(mData, o.mData); - } - - private: - value_type* mData; - }; - - using Node = DataNode; - - // helpers for insertKeyPrepareEmptySpot: extract first entry (only const required) - ROBIN_HOOD(NODISCARD) key_type const& getFirstConst(Node const& n) const noexcept { - return n.getFirst(); - } - - // in case we have void mapped_type, we are not using a pair, thus we just route k through. - // No need to disable this because it's just not used if not applicable. - ROBIN_HOOD(NODISCARD) key_type const& getFirstConst(key_type const& k) const noexcept { - return k; - } - - // in case we have non-void mapped_type, we have a standard robin_hood::pair - template - ROBIN_HOOD(NODISCARD) - typename std::enable_if::value, key_type const&>::type - getFirstConst(value_type const& vt) const noexcept { - return vt.first; + : public WrapHash, + public WrapKeyEqual, + detail::NodeAllocator< + typename std::conditional< + std::is_void::value, Key, + robin_hood::pair::type, T>>::type, + 4, 16384, IsFlat> +{ + public: + static constexpr bool is_flat = IsFlat; + static constexpr bool is_map = !std::is_void::value; + static constexpr bool is_set = !is_map; + static constexpr bool is_transparent = + has_is_transparent::value && has_is_transparent::value; + + using key_type = Key; + using mapped_type = T; + using value_type = typename std::conditional< + is_set, Key, + robin_hood::pair::type, T>>::type; + using size_type = size_t; + using hasher = Hash; + using key_equal = KeyEqual; + using Self = Table; + + private: + static_assert(MaxLoadFactor100 > 10 && MaxLoadFactor100 < 100, + "MaxLoadFactor100 needs to be >10 && < 100"); + + using WHash = WrapHash; + using WKeyEqual = WrapKeyEqual; + + // configuration defaults + + // make sure we have 8 elements, needed to quickly rehash mInfo + static constexpr size_t InitialNumElements = sizeof(uint64_t); + static constexpr uint32_t InitialInfoNumBits = 5; + static constexpr uint8_t InitialInfoInc = 1U << InitialInfoNumBits; + static constexpr size_t InfoMask = InitialInfoInc - 1U; + static constexpr uint8_t InitialInfoHashShift = 0; + using DataPool = detail::NodeAllocator; + + // type needs to be wider than uint8_t. + using InfoType = uint32_t; + + // DataNode //////////////////////////////////////////////////////// + + // Primary template for the data node. We have special implementations for small and big + // objects. For large objects it is assumed that swap() is fairly slow, so we allocate these + // on the heap so swap merely swaps a pointer. + template + class DataNode + { + }; + + // Small: just allocate on the stack. + template + class DataNode final + { + public: + template + explicit DataNode(M& ROBIN_HOOD_UNUSED(map) /*unused*/, Args&&... args) noexcept( + noexcept(value_type(std::forward(args)...))) + : mData(std::forward(args)...) + { } - // Cloner ////////////////////////////////////////////////////////// - - template - struct Cloner; - - // fast path: Just copy data, without allocating anything. - template - struct Cloner { - void operator()(M const& source, M& target) const { - auto const* const src = reinterpret_cast(source.mKeyVals); - auto* tgt = reinterpret_cast(target.mKeyVals); - auto const numElementsWithBuffer = target.calcNumElementsWithBuffer(target.mMask + 1); - std::copy(src, src + target.calcNumBytesTotal(numElementsWithBuffer), tgt); - } - }; - - template - struct Cloner { - void operator()(M const& s, M& t) const { - auto const numElementsWithBuffer = t.calcNumElementsWithBuffer(t.mMask + 1); - std::copy(s.mInfo, s.mInfo + t.calcNumBytesInfo(numElementsWithBuffer), t.mInfo); - - for (size_t i = 0; i < numElementsWithBuffer; ++i) { - if (t.mInfo[i]) { - ::new (static_cast(t.mKeyVals + i)) Node(t, *s.mKeyVals[i]); - } - } - } - }; - - // Destroyer /////////////////////////////////////////////////////// - - template - struct Destroyer {}; - - template - struct Destroyer { - void nodes(M& m) const noexcept { - m.mNumElements = 0; - } - - void nodesDoNotDeallocate(M& m) const noexcept { - m.mNumElements = 0; - } - }; - - template - struct Destroyer { - void nodes(M& m) const noexcept { - m.mNumElements = 0; - // clear also resets mInfo to 0, that's sometimes not necessary. - auto const numElementsWithBuffer = m.calcNumElementsWithBuffer(m.mMask + 1); - - for (size_t idx = 0; idx < numElementsWithBuffer; ++idx) { - if (0 != m.mInfo[idx]) { - Node& n = m.mKeyVals[idx]; - n.destroy(m); - n.~Node(); - } - } - } - - void nodesDoNotDeallocate(M& m) const noexcept { - m.mNumElements = 0; - // clear also resets mInfo to 0, that's sometimes not necessary. - auto const numElementsWithBuffer = m.calcNumElementsWithBuffer(m.mMask + 1); - for (size_t idx = 0; idx < numElementsWithBuffer; ++idx) { - if (0 != m.mInfo[idx]) { - Node& n = m.mKeyVals[idx]; - n.destroyDoNotDeallocate(); - n.~Node(); - } - } - } - }; - - // Iter //////////////////////////////////////////////////////////// - - struct fast_forward_tag {}; - - // generic iterator for both const_iterator and iterator. - template - // NOLINTNEXTLINE(hicpp-special-member-functions,cppcoreguidelines-special-member-functions) - class Iter { - private: - using NodePtr = typename std::conditional::type; - - public: - using difference_type = std::ptrdiff_t; - using value_type = typename Self::value_type; - using reference = typename std::conditional::type; - using pointer = typename std::conditional::type; - using iterator_category = std::forward_iterator_tag; - - // default constructed iterator can be compared to itself, but WON'T return true when - // compared to end(). - Iter() = default; - - // Rule of zero: nothing specified. The conversion constructor is only enabled for - // iterator to const_iterator, so it doesn't accidentally work as a copy ctor. - - // Conversion constructor from iterator to const_iterator. - template ::type> - // NOLINTNEXTLINE(hicpp-explicit-conversions) - Iter(Iter const& other) noexcept - : mKeyVals(other.mKeyVals) - , mInfo(other.mInfo) {} - - Iter(NodePtr valPtr, uint8_t const* infoPtr) noexcept - : mKeyVals(valPtr) - , mInfo(infoPtr) {} - - Iter(NodePtr valPtr, uint8_t const* infoPtr, - fast_forward_tag ROBIN_HOOD_UNUSED(tag) /*unused*/) noexcept - : mKeyVals(valPtr) - , mInfo(infoPtr) { - fastForward(); - } - - template ::type> - Iter& operator=(Iter const& other) noexcept { - mKeyVals = other.mKeyVals; - mInfo = other.mInfo; - return *this; - } - - // prefix increment. Undefined behavior if we are at end()! - Iter& operator++() noexcept { - mInfo++; - mKeyVals++; - fastForward(); - return *this; - } + DataNode(M& ROBIN_HOOD_UNUSED(map) /*unused*/, DataNode&& n) noexcept( + std::is_nothrow_move_constructible::value) + : mData(std::move(n.mData)) {} - Iter operator++(int) noexcept { - Iter tmp = *this; - ++(*this); - return tmp; - } - - reference operator*() const { - return **mKeyVals; - } - - pointer operator->() const { - return &**mKeyVals; - } - - template - bool operator==(Iter const& o) const noexcept { - return mKeyVals == o.mKeyVals; - } - - template - bool operator!=(Iter const& o) const noexcept { - return mKeyVals != o.mKeyVals; - } - - private: - // fast forward to the next non-free info byte - // I've tried a few variants that don't depend on intrinsics, but unfortunately they are - // quite a bit slower than this one. So I've reverted that change again. See map_benchmark. - void fastForward() noexcept { - size_t n = 0; - while (0U == (n = detail::unaligned_load(mInfo))) { - mInfo += sizeof(size_t); - mKeyVals += sizeof(size_t); - } -#if defined(ROBIN_HOOD_DISABLE_INTRINSICS) - // we know for certain that within the next 8 bytes we'll find a non-zero one. - if (ROBIN_HOOD_UNLIKELY(0U == detail::unaligned_load(mInfo))) { - mInfo += 4; - mKeyVals += 4; - } - if (ROBIN_HOOD_UNLIKELY(0U == detail::unaligned_load(mInfo))) { - mInfo += 2; - mKeyVals += 2; - } - if (ROBIN_HOOD_UNLIKELY(0U == *mInfo)) { - mInfo += 1; - mKeyVals += 1; - } -#else -# if ROBIN_HOOD(LITTLE_ENDIAN) - auto inc = ROBIN_HOOD_COUNT_TRAILING_ZEROES(n) / 8; -# else - auto inc = ROBIN_HOOD_COUNT_LEADING_ZEROES(n) / 8; -# endif - mInfo += inc; - mKeyVals += inc; -#endif - } + // doesn't do anything + void destroy(M& ROBIN_HOOD_UNUSED(map) /*unused*/) noexcept {} + void destroyDoNotDeallocate() noexcept {} - friend class Table; - NodePtr mKeyVals{nullptr}; - uint8_t const* mInfo{nullptr}; - }; - - //////////////////////////////////////////////////////////////////// - - // highly performance relevant code. - // Lower bits are used for indexing into the array (2^n size) - // The upper 1-5 bits need to be a reasonable good hash, to save comparisons. - template - void keyToIdx(HashKey&& key, size_t* idx, InfoType* info) const { - // In addition to whatever hash is used, add another mul & shift so we get better hashing. - // This serves as a bad hash prevention, if the given data is - // badly mixed. - auto h = static_cast(WHash::operator()(key)); - - h *= mHashMultiplier; - h ^= h >> 33U; - - // the lower InitialInfoNumBits are reserved for info. - *info = mInfoInc + static_cast((h & InfoMask) >> mInfoHashShift); - *idx = (static_cast(h) >> InitialInfoNumBits) & mMask; + value_type const* operator->() const noexcept + { + return &mData; } - - // forwards the index by one, wrapping around at the end - void next(InfoType* info, size_t* idx) const noexcept { - *idx = *idx + 1; - *info += mInfoInc; + value_type* operator->() noexcept + { + return &mData; } - void nextWhileLess(InfoType* info, size_t* idx) const noexcept { - // unrolling this by hand did not bring any speedups. - while (*info < mInfo[*idx]) { - next(info, idx); - } - } - - // Shift everything up by one element. Tries to move stuff around. - void - shiftUp(size_t startIdx, - size_t const insertion_idx) noexcept(std::is_nothrow_move_assignable::value) { - auto idx = startIdx; - ::new (static_cast(mKeyVals + idx)) Node(std::move(mKeyVals[idx - 1])); - while (--idx != insertion_idx) { - mKeyVals[idx] = std::move(mKeyVals[idx - 1]); - } - - idx = startIdx; - while (idx != insertion_idx) { - ROBIN_HOOD_COUNT(shiftUp) - mInfo[idx] = static_cast(mInfo[idx - 1] + mInfoInc); - if (ROBIN_HOOD_UNLIKELY(mInfo[idx] + mInfoInc > 0xFF)) { - mMaxNumElementsAllowed = 0; - } - --idx; - } + const value_type& operator*() const noexcept + { + return mData; } - void shiftDown(size_t idx) noexcept(std::is_nothrow_move_assignable::value) { - // until we find one that is either empty or has zero offset. - // TODO(martinus) we don't need to move everything, just the last one for the same - // bucket. - mKeyVals[idx].destroy(*this); - - // until we find one that is either empty or has zero offset. - while (mInfo[idx + 1] >= 2 * mInfoInc) { - ROBIN_HOOD_COUNT(shiftDown) - mInfo[idx] = static_cast(mInfo[idx + 1] - mInfoInc); - mKeyVals[idx] = std::move(mKeyVals[idx + 1]); - ++idx; - } - - mInfo[idx] = 0; - // don't destroy, we've moved it - // mKeyVals[idx].destroy(*this); - mKeyVals[idx].~Node(); + value_type& operator*() noexcept + { + return mData; } - // copy of find(), except that it returns iterator instead of const_iterator. - template + template ROBIN_HOOD(NODISCARD) - size_t findIdx(Other const& key) const { - size_t idx{}; - InfoType info{}; - keyToIdx(key, &idx, &info); - - do { - // unrolling this twice gives a bit of a speedup. More unrolling did not help. - if (info == mInfo[idx] && - ROBIN_HOOD_LIKELY(WKeyEqual::operator()(key, mKeyVals[idx].getFirst()))) { - return idx; - } - next(&info, &idx); - if (info == mInfo[idx] && - ROBIN_HOOD_LIKELY(WKeyEqual::operator()(key, mKeyVals[idx].getFirst()))) { - return idx; - } - next(&info, &idx); - } while (info <= mInfo[idx]); - - // nothing found! - return mMask == 0 ? 0 - : static_cast(std::distance( - mKeyVals, reinterpret_cast_no_cast_align_warning(mInfo))); - } - - void cloneData(const Table& o) { - Cloner()(o, *this); - } - - // inserts a keyval that is guaranteed to be new, e.g. when the hashmap is resized. - // @return True on success, false if something went wrong - void insert_move(Node&& keyval) { - // we don't retry, fail if overflowing - // don't need to check max num elements - if (0 == mMaxNumElementsAllowed && !try_increase_info()) { - throwOverflowError(); - } - - size_t idx{}; - InfoType info{}; - keyToIdx(keyval.getFirst(), &idx, &info); - - // skip forward. Use <= because we are certain that the element is not there. - while (info <= mInfo[idx]) { - idx = idx + 1; - info += mInfoInc; - } - - // key not found, so we are now exactly where we want to insert it. - auto const insertion_idx = idx; - auto const insertion_info = static_cast(info); - if (ROBIN_HOOD_UNLIKELY(insertion_info + mInfoInc > 0xFF)) { - mMaxNumElementsAllowed = 0; - } - - // find an empty spot - while (0 != mInfo[idx]) { - next(&info, &idx); - } - - auto& l = mKeyVals[insertion_idx]; - if (idx == insertion_idx) { - ::new (static_cast(&l)) Node(std::move(keyval)); - } else { - shiftUp(idx, insertion_idx); - l = std::move(keyval); - } - - // put at empty spot - mInfo[insertion_idx] = insertion_info; - - ++mNumElements; - } - -public: - using iterator = Iter; - using const_iterator = Iter; - - Table() noexcept(noexcept(Hash()) && noexcept(KeyEqual())) - : WHash() - , WKeyEqual() { - ROBIN_HOOD_TRACE(this) - } - - // Creates an empty hash map. Nothing is allocated yet, this happens at the first insert. - // This tremendously speeds up ctor & dtor of a map that never receives an element. The - // penalty is payed at the first insert, and not before. Lookup of this empty map works - // because everybody points to DummyInfoByte::b. parameter bucket_count is dictated by the - // standard, but we can ignore it. - explicit Table( - size_t ROBIN_HOOD_UNUSED(bucket_count) /*unused*/, const Hash& h = Hash{}, - const KeyEqual& equal = KeyEqual{}) noexcept(noexcept(Hash(h)) && noexcept(KeyEqual(equal))) - : WHash(h) - , WKeyEqual(equal) { - ROBIN_HOOD_TRACE(this) - } - - template - Table(Iter first, Iter last, size_t ROBIN_HOOD_UNUSED(bucket_count) /*unused*/ = 0, - const Hash& h = Hash{}, const KeyEqual& equal = KeyEqual{}) - : WHash(h) - , WKeyEqual(equal) { - ROBIN_HOOD_TRACE(this) - insert(first, last); - } - - Table(std::initializer_list initlist, - size_t ROBIN_HOOD_UNUSED(bucket_count) /*unused*/ = 0, const Hash& h = Hash{}, - const KeyEqual& equal = KeyEqual{}) - : WHash(h) - , WKeyEqual(equal) { - ROBIN_HOOD_TRACE(this) - insert(initlist.begin(), initlist.end()); - } - - Table(Table&& o) noexcept - : WHash(std::move(static_cast(o))) - , WKeyEqual(std::move(static_cast(o))) - , DataPool(std::move(static_cast(o))) { - ROBIN_HOOD_TRACE(this) - if (o.mMask) { - mHashMultiplier = std::move(o.mHashMultiplier); - mKeyVals = std::move(o.mKeyVals); - mInfo = std::move(o.mInfo); - mNumElements = std::move(o.mNumElements); - mMask = std::move(o.mMask); - mMaxNumElementsAllowed = std::move(o.mMaxNumElementsAllowed); - mInfoInc = std::move(o.mInfoInc); - mInfoHashShift = std::move(o.mInfoHashShift); - // set other's mask to 0 so its destructor won't do anything - o.init(); - } - } - - Table& operator=(Table&& o) noexcept { - ROBIN_HOOD_TRACE(this) - if (&o != this) { - if (o.mMask) { - // only move stuff if the other map actually has some data - destroy(); - mHashMultiplier = std::move(o.mHashMultiplier); - mKeyVals = std::move(o.mKeyVals); - mInfo = std::move(o.mInfo); - mNumElements = std::move(o.mNumElements); - mMask = std::move(o.mMask); - mMaxNumElementsAllowed = std::move(o.mMaxNumElementsAllowed); - mInfoInc = std::move(o.mInfoInc); - mInfoHashShift = std::move(o.mInfoHashShift); - WHash::operator=(std::move(static_cast(o))); - WKeyEqual::operator=(std::move(static_cast(o))); - DataPool::operator=(std::move(static_cast(o))); - - o.init(); - - } else { - // nothing in the other map => just clear us. - clear(); - } - } - return *this; - } - - Table(const Table& o) - : WHash(static_cast(o)) - , WKeyEqual(static_cast(o)) - , DataPool(static_cast(o)) { - ROBIN_HOOD_TRACE(this) - if (!o.empty()) { - // not empty: create an exact copy. it is also possible to just iterate through all - // elements and insert them, but copying is probably faster. - - auto const numElementsWithBuffer = calcNumElementsWithBuffer(o.mMask + 1); - auto const numBytesTotal = calcNumBytesTotal(numElementsWithBuffer); - - ROBIN_HOOD_LOG("std::malloc " << numBytesTotal << " = calcNumBytesTotal(" - << numElementsWithBuffer << ")") - mHashMultiplier = o.mHashMultiplier; - mKeyVals = static_cast( - detail::assertNotNull(std::malloc(numBytesTotal))); - // no need for calloc because clonData does memcpy - mInfo = reinterpret_cast(mKeyVals + numElementsWithBuffer); - mNumElements = o.mNumElements; - mMask = o.mMask; - mMaxNumElementsAllowed = o.mMaxNumElementsAllowed; - mInfoInc = o.mInfoInc; - mInfoHashShift = o.mInfoHashShift; - cloneData(o); - } - } - - // Creates a copy of the given map. Copy constructor of each entry is used. - // Not sure why clang-tidy thinks this doesn't handle self assignment, it does - // NOLINTNEXTLINE(bugprone-unhandled-self-assignment,cert-oop54-cpp) - Table& operator=(Table const& o) { - ROBIN_HOOD_TRACE(this) - if (&o == this) { - // prevent assigning of itself - return *this; - } - - // we keep using the old allocator and not assign the new one, because we want to keep - // the memory available. when it is the same size. - if (o.empty()) { - if (0 == mMask) { - // nothing to do, we are empty too - return *this; - } - - // not empty: destroy what we have there - // clear also resets mInfo to 0, that's sometimes not necessary. - destroy(); - init(); - WHash::operator=(static_cast(o)); - WKeyEqual::operator=(static_cast(o)); - DataPool::operator=(static_cast(o)); - - return *this; - } - - // clean up old stuff - Destroyer::value>{}.nodes(*this); - - if (mMask != o.mMask) { - // no luck: we don't have the same array size allocated, so we need to realloc. - if (0 != mMask) { - // only deallocate if we actually have data! - ROBIN_HOOD_LOG("std::free") - std::free(mKeyVals); - } - - auto const numElementsWithBuffer = calcNumElementsWithBuffer(o.mMask + 1); - auto const numBytesTotal = calcNumBytesTotal(numElementsWithBuffer); - ROBIN_HOOD_LOG("std::malloc " << numBytesTotal << " = calcNumBytesTotal(" - << numElementsWithBuffer << ")") - mKeyVals = static_cast( - detail::assertNotNull(std::malloc(numBytesTotal))); - - // no need for calloc here because cloneData performs a memcpy. - mInfo = reinterpret_cast(mKeyVals + numElementsWithBuffer); - // sentinel is set in cloneData - } - WHash::operator=(static_cast(o)); - WKeyEqual::operator=(static_cast(o)); - DataPool::operator=(static_cast(o)); - mHashMultiplier = o.mHashMultiplier; - mNumElements = o.mNumElements; - mMask = o.mMask; - mMaxNumElementsAllowed = o.mMaxNumElementsAllowed; - mInfoInc = o.mInfoInc; - mInfoHashShift = o.mInfoHashShift; - cloneData(o); - - return *this; - } - - // Swaps everything between the two maps. - void swap(Table& o) { - ROBIN_HOOD_TRACE(this) - using std::swap; - swap(o, *this); - } - - // Clears all data, without resizing. - void clear() { - ROBIN_HOOD_TRACE(this) - if (empty()) { - // don't do anything! also important because we don't want to write to - // DummyInfoByte::b, even though we would just write 0 to it. - return; - } - - Destroyer::value>{}.nodes(*this); - - auto const numElementsWithBuffer = calcNumElementsWithBuffer(mMask + 1); - // clear everything, then set the sentinel again - uint8_t const z = 0; - std::fill(mInfo, mInfo + calcNumBytesInfo(numElementsWithBuffer), z); - mInfo[numElementsWithBuffer] = 1; - - mInfoInc = InitialInfoInc; - mInfoHashShift = InitialInfoHashShift; - } - - // Destroys the map and all it's contents. - ~Table() { - ROBIN_HOOD_TRACE(this) - destroy(); - } - - // Checks if both tables contain the same entries. Order is irrelevant. - bool operator==(const Table& other) const { - ROBIN_HOOD_TRACE(this) - if (other.size() != size()) { - return false; - } - for (auto const& otherEntry : other) { - if (!has(otherEntry)) { - return false; - } - } - - return true; - } - - bool operator!=(const Table& other) const { - ROBIN_HOOD_TRACE(this) - return !operator==(other); - } - - template - typename std::enable_if::value, Q&>::type operator[](const key_type& key) { - ROBIN_HOOD_TRACE(this) - auto idxAndState = insertKeyPrepareEmptySpot(key); - switch (idxAndState.second) { - case InsertionState::key_found: - break; - - case InsertionState::new_node: - ::new (static_cast(&mKeyVals[idxAndState.first])) - Node(*this, std::piecewise_construct, std::forward_as_tuple(key), - std::forward_as_tuple()); - break; - - case InsertionState::overwrite_node: - mKeyVals[idxAndState.first] = Node(*this, std::piecewise_construct, - std::forward_as_tuple(key), std::forward_as_tuple()); - break; - - case InsertionState::overflow_error: - throwOverflowError(); - } - - return mKeyVals[idxAndState.first].getSecond(); - } - - template - typename std::enable_if::value, Q&>::type operator[](key_type&& key) { - ROBIN_HOOD_TRACE(this) - auto idxAndState = insertKeyPrepareEmptySpot(key); - switch (idxAndState.second) { - case InsertionState::key_found: - break; - - case InsertionState::new_node: - ::new (static_cast(&mKeyVals[idxAndState.first])) - Node(*this, std::piecewise_construct, std::forward_as_tuple(std::move(key)), - std::forward_as_tuple()); - break; - - case InsertionState::overwrite_node: - mKeyVals[idxAndState.first] = - Node(*this, std::piecewise_construct, std::forward_as_tuple(std::move(key)), - std::forward_as_tuple()); - break; - - case InsertionState::overflow_error: - throwOverflowError(); - } - - return mKeyVals[idxAndState.first].getSecond(); + typename std::enable_if::type getFirst() noexcept + { + return mData.first; } - - template - void insert(Iter first, Iter last) { - for (; first != last; ++first) { - // value_type ctor needed because this might be called with std::pair's - insert(value_type(*first)); - } + template + ROBIN_HOOD(NODISCARD) + typename std::enable_if::type getFirst() noexcept + { + return mData; } - void insert(std::initializer_list ilist) { - for (auto&& vt : ilist) { - insert(std::move(vt)); - } + template + ROBIN_HOOD(NODISCARD) + typename std::enable_if::type + getFirst() const noexcept + { + return mData.first; } - - template - std::pair emplace(Args&&... args) { - ROBIN_HOOD_TRACE(this) - Node n{*this, std::forward(args)...}; - auto idxAndState = insertKeyPrepareEmptySpot(getFirstConst(n)); - switch (idxAndState.second) { - case InsertionState::key_found: - n.destroy(*this); - break; - - case InsertionState::new_node: - ::new (static_cast(&mKeyVals[idxAndState.first])) Node(*this, std::move(n)); - break; - - case InsertionState::overwrite_node: - mKeyVals[idxAndState.first] = std::move(n); - break; - - case InsertionState::overflow_error: - n.destroy(*this); - throwOverflowError(); - break; - } - - return std::make_pair(iterator(mKeyVals + idxAndState.first, mInfo + idxAndState.first), - InsertionState::key_found != idxAndState.second); + template + ROBIN_HOOD(NODISCARD) + typename std::enable_if::type getFirst() const noexcept + { + return mData; } - template - iterator emplace_hint(const_iterator position, Args&&... args) { - (void)position; - return emplace(std::forward(args)...).first; + template + ROBIN_HOOD(NODISCARD) + typename std::enable_if::type getSecond() noexcept + { + return mData.second; } - template - std::pair try_emplace(const key_type& key, Args&&... args) { - return try_emplace_impl(key, std::forward(args)...); + template + ROBIN_HOOD(NODISCARD) + typename std::enable_if::type getSecond() const noexcept + { + return mData.second; } - template - std::pair try_emplace(key_type&& key, Args&&... args) { - return try_emplace_impl(std::move(key), std::forward(args)...); + void swap(DataNode& o) noexcept( + noexcept(std::declval().swap(std::declval()))) + { + mData.swap(o.mData); } - template - iterator try_emplace(const_iterator hint, const key_type& key, Args&&... args) { - (void)hint; - return try_emplace_impl(key, std::forward(args)...).first; - } + private: + value_type mData; + }; + // big object: allocate on heap. + template + class DataNode + { + public: template - iterator try_emplace(const_iterator hint, key_type&& key, Args&&... args) { - (void)hint; - return try_emplace_impl(std::move(key), std::forward(args)...).first; + explicit DataNode(M& map, Args&&... args) + : mData(map.allocate()) + { + ::new (static_cast(mData)) value_type(std::forward(args)...); } - template - std::pair insert_or_assign(const key_type& key, Mapped&& obj) { - return insertOrAssignImpl(key, std::forward(obj)); - } + DataNode(M& ROBIN_HOOD_UNUSED(map) /*unused*/, DataNode&& n) noexcept + : mData(std::move(n.mData)) {} - template - std::pair insert_or_assign(key_type&& key, Mapped&& obj) { - return insertOrAssignImpl(std::move(key), std::forward(obj)); + void destroy(M& map) noexcept + { + // don't deallocate, just put it into list of datapool. + mData->~value_type(); + map.deallocate(mData); } - template - iterator insert_or_assign(const_iterator hint, const key_type& key, Mapped&& obj) { - (void)hint; - return insertOrAssignImpl(key, std::forward(obj)).first; + void destroyDoNotDeallocate() noexcept + { + mData->~value_type(); } - template - iterator insert_or_assign(const_iterator hint, key_type&& key, Mapped&& obj) { - (void)hint; - return insertOrAssignImpl(std::move(key), std::forward(obj)).first; + value_type const* operator->() const noexcept + { + return mData; } - std::pair insert(const value_type& keyval) { - ROBIN_HOOD_TRACE(this) - return emplace(keyval); + value_type* operator->() noexcept + { + return mData; } - iterator insert(const_iterator hint, const value_type& keyval) { - (void)hint; - return emplace(keyval).first; + const value_type& operator*() const + { + return *mData; } - std::pair insert(value_type&& keyval) { - return emplace(std::move(keyval)); + value_type& operator*() + { + return *mData; } - iterator insert(const_iterator hint, value_type&& keyval) { - (void)hint; - return emplace(std::move(keyval)).first; + template + ROBIN_HOOD(NODISCARD) + typename std::enable_if::type getFirst() noexcept + { + return mData->first; } - - // Returns 1 if key is found, 0 otherwise. - size_t count(const key_type& key) const { // NOLINT(modernize-use-nodiscard) - ROBIN_HOOD_TRACE(this) - auto kv = mKeyVals + findIdx(key); - if (kv != reinterpret_cast_no_cast_align_warning(mInfo)) { - return 1; - } - return 0; + template + ROBIN_HOOD(NODISCARD) + typename std::enable_if::type getFirst() noexcept + { + return *mData; } - template - // NOLINTNEXTLINE(modernize-use-nodiscard) - typename std::enable_if::type count(const OtherKey& key) const { - ROBIN_HOOD_TRACE(this) - auto kv = mKeyVals + findIdx(key); - if (kv != reinterpret_cast_no_cast_align_warning(mInfo)) { - return 1; - } - return 0; + template + ROBIN_HOOD(NODISCARD) + typename std::enable_if::type + getFirst() const noexcept + { + return mData->first; } - - bool contains(const key_type& key) const { // NOLINT(modernize-use-nodiscard) - return 1U == count(key); + template + ROBIN_HOOD(NODISCARD) + typename std::enable_if::type getFirst() const noexcept + { + return *mData; } - template - // NOLINTNEXTLINE(modernize-use-nodiscard) - typename std::enable_if::type contains(const OtherKey& key) const { - return 1U == count(key); + template + ROBIN_HOOD(NODISCARD) + typename std::enable_if::type getSecond() noexcept + { + return mData->second; } - // Returns a reference to the value found for key. - // Throws std::out_of_range if element cannot be found - template - // NOLINTNEXTLINE(modernize-use-nodiscard) - typename std::enable_if::value, Q&>::type at(key_type const& key) { - ROBIN_HOOD_TRACE(this) - auto kv = mKeyVals + findIdx(key); - if (kv == reinterpret_cast_no_cast_align_warning(mInfo)) { - doThrow("key not found"); - } - return kv->getSecond(); - } - - // Returns a reference to the value found for key. - // Throws std::out_of_range if element cannot be found - template - // NOLINTNEXTLINE(modernize-use-nodiscard) - typename std::enable_if::value, Q const&>::type at(key_type const& key) const { - ROBIN_HOOD_TRACE(this) - auto kv = mKeyVals + findIdx(key); - if (kv == reinterpret_cast_no_cast_align_warning(mInfo)) { - doThrow("key not found"); - } - return kv->getSecond(); + template + ROBIN_HOOD(NODISCARD) + typename std::enable_if::type getSecond() const noexcept + { + return mData->second; + } + + void swap(DataNode& o) noexcept + { + using std::swap; + swap(mData, o.mData); } - const_iterator find(const key_type& key) const { // NOLINT(modernize-use-nodiscard) - ROBIN_HOOD_TRACE(this) - const size_t idx = findIdx(key); - return const_iterator{mKeyVals + idx, mInfo + idx}; - } + private: + value_type* mData; + }; + + using Node = DataNode; + + // helpers for insertKeyPrepareEmptySpot: extract first entry (only const required) + ROBIN_HOOD(NODISCARD) + key_type const& getFirstConst(Node const& n) const noexcept + { + return n.getFirst(); + } + + // in case we have void mapped_type, we are not using a pair, thus we just route k through. + // No need to disable this because it's just not used if not applicable. + ROBIN_HOOD(NODISCARD) + key_type const& getFirstConst(key_type const& k) const noexcept + { + return k; + } + + // in case we have non-void mapped_type, we have a standard robin_hood::pair + template + ROBIN_HOOD(NODISCARD) + typename std::enable_if::value, key_type const&>::type + getFirstConst(value_type const& vt) const noexcept + { + return vt.first; + } + + // Cloner ////////////////////////////////////////////////////////// + + template + struct Cloner; + + // fast path: Just copy data, without allocating anything. + template + struct Cloner { + void operator()(M const& source, M& target) const + { + auto const* const src = reinterpret_cast(source.mKeyVals); + auto* tgt = reinterpret_cast(target.mKeyVals); + auto const numElementsWithBuffer = target.calcNumElementsWithBuffer(target.mMask + 1); + std::copy(src, src + target.calcNumBytesTotal(numElementsWithBuffer), tgt); + } + }; + + template + struct Cloner { + void operator()(M const& s, M& t) const + { + auto const numElementsWithBuffer = t.calcNumElementsWithBuffer(t.mMask + 1); + std::copy(s.mInfo, s.mInfo + t.calcNumBytesInfo(numElementsWithBuffer), t.mInfo); + + for (size_t i = 0; i < numElementsWithBuffer; ++i) { + if (t.mInfo[i]) { + ::new (static_cast(t.mKeyVals + i)) Node(t, *s.mKeyVals[i]); + } + } + } + }; + + // Destroyer /////////////////////////////////////////////////////// + + template + struct Destroyer { + }; + + template + struct Destroyer { + void nodes(M& m) const noexcept + { + m.mNumElements = 0; + } + + void nodesDoNotDeallocate(M& m) const noexcept + { + m.mNumElements = 0; + } + }; + + template + struct Destroyer { + void nodes(M& m) const noexcept + { + m.mNumElements = 0; + // clear also resets mInfo to 0, that's sometimes not necessary. + auto const numElementsWithBuffer = m.calcNumElementsWithBuffer(m.mMask + 1); + + for (size_t idx = 0; idx < numElementsWithBuffer; ++idx) { + if (0 != m.mInfo[idx]) { + Node& n = m.mKeyVals[idx]; + n.destroy(m); + n.~Node(); + } + } + } + + void nodesDoNotDeallocate(M& m) const noexcept + { + m.mNumElements = 0; + // clear also resets mInfo to 0, that's sometimes not necessary. + auto const numElementsWithBuffer = m.calcNumElementsWithBuffer(m.mMask + 1); + for (size_t idx = 0; idx < numElementsWithBuffer; ++idx) { + if (0 != m.mInfo[idx]) { + Node& n = m.mKeyVals[idx]; + n.destroyDoNotDeallocate(); + n.~Node(); + } + } + } + }; + + // Iter //////////////////////////////////////////////////////////// + + struct fast_forward_tag { + }; + + // generic iterator for both const_iterator and iterator. + template + // NOLINTNEXTLINE(hicpp-special-member-functions,cppcoreguidelines-special-member-functions) + class Iter + { + private: + using NodePtr = typename std::conditional::type; + + public: + using difference_type = std::ptrdiff_t; + using value_type = typename Self::value_type; + using reference = typename std::conditional::type; + using pointer = typename std::conditional::type; + using iterator_category = std::forward_iterator_tag; + + // default constructed iterator can be compared to itself, but WON'T return true when + // compared to end(). + Iter() = default; + + // Rule of zero: nothing specified. The conversion constructor is only enabled for + // iterator to const_iterator, so it doesn't accidentally work as a copy ctor. - template - const_iterator find(const OtherKey& key, is_transparent_tag /*unused*/) const { - ROBIN_HOOD_TRACE(this) - const size_t idx = findIdx(key); - return const_iterator{mKeyVals + idx, mInfo + idx}; + // Conversion constructor from iterator to const_iterator. + template ::type> + // NOLINTNEXTLINE(hicpp-explicit-conversions) + Iter(Iter const& other) noexcept + : mKeyVals(other.mKeyVals), mInfo(other.mInfo) + { } - template - typename std::enable_if::type // NOLINT(modernize-use-nodiscard) - find(const OtherKey& key) const { // NOLINT(modernize-use-nodiscard) - ROBIN_HOOD_TRACE(this) - const size_t idx = findIdx(key); - return const_iterator{mKeyVals + idx, mInfo + idx}; - } + Iter(NodePtr valPtr, uint8_t const* infoPtr) noexcept + : mKeyVals(valPtr), mInfo(infoPtr) {} - iterator find(const key_type& key) { - ROBIN_HOOD_TRACE(this) - const size_t idx = findIdx(key); - return iterator{mKeyVals + idx, mInfo + idx}; + Iter(NodePtr valPtr, uint8_t const* infoPtr, + fast_forward_tag ROBIN_HOOD_UNUSED(tag) /*unused*/) noexcept + : mKeyVals(valPtr), mInfo(infoPtr) + { + fastForward(); } - template - iterator find(const OtherKey& key, is_transparent_tag /*unused*/) { - ROBIN_HOOD_TRACE(this) - const size_t idx = findIdx(key); - return iterator{mKeyVals + idx, mInfo + idx}; + template ::type> + Iter& operator=(Iter const& other) noexcept + { + mKeyVals = other.mKeyVals; + mInfo = other.mInfo; + return *this; } - template - typename std::enable_if::type find(const OtherKey& key) { - ROBIN_HOOD_TRACE(this) - const size_t idx = findIdx(key); - return iterator{mKeyVals + idx, mInfo + idx}; + // prefix increment. Undefined behavior if we are at end()! + Iter& operator++() noexcept + { + mInfo++; + mKeyVals++; + fastForward(); + return *this; + } + + Iter operator++(int) noexcept + { + Iter tmp = *this; + ++(*this); + return tmp; + } + + reference operator*() const + { + return **mKeyVals; } - iterator begin() { - ROBIN_HOOD_TRACE(this) - if (empty()) { - return end(); - } - return iterator(mKeyVals, mInfo, fast_forward_tag{}); - } - const_iterator begin() const { // NOLINT(modernize-use-nodiscard) - ROBIN_HOOD_TRACE(this) - return cbegin(); - } - const_iterator cbegin() const { // NOLINT(modernize-use-nodiscard) - ROBIN_HOOD_TRACE(this) - if (empty()) { - return cend(); - } - return const_iterator(mKeyVals, mInfo, fast_forward_tag{}); + pointer operator->() const + { + return &**mKeyVals; } - iterator end() { - ROBIN_HOOD_TRACE(this) - // no need to supply valid info pointer: end() must not be dereferenced, and only node - // pointer is compared. - return iterator{reinterpret_cast_no_cast_align_warning(mInfo), nullptr}; - } - const_iterator end() const { // NOLINT(modernize-use-nodiscard) - ROBIN_HOOD_TRACE(this) - return cend(); - } - const_iterator cend() const { // NOLINT(modernize-use-nodiscard) - ROBIN_HOOD_TRACE(this) - return const_iterator{reinterpret_cast_no_cast_align_warning(mInfo), nullptr}; + template + bool operator==(Iter const& o) const noexcept + { + return mKeyVals == o.mKeyVals; + } + + template + bool operator!=(Iter const& o) const noexcept + { + return mKeyVals != o.mKeyVals; } - iterator erase(const_iterator pos) { - ROBIN_HOOD_TRACE(this) - // its safe to perform const cast here - // NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast) - return erase(iterator{const_cast(pos.mKeyVals), const_cast(pos.mInfo)}); + private: + // fast forward to the next non-free info byte + // I've tried a few variants that don't depend on intrinsics, but unfortunately they are + // quite a bit slower than this one. So I've reverted that change again. See map_benchmark. + void fastForward() noexcept + { + size_t n = 0; + while (0U == (n = detail::unaligned_load(mInfo))) { + mInfo += sizeof(size_t); + mKeyVals += sizeof(size_t); + } +#if defined(ROBIN_HOOD_DISABLE_INTRINSICS) + // we know for certain that within the next 8 bytes we'll find a non-zero one. + if (ROBIN_HOOD_UNLIKELY(0U == detail::unaligned_load(mInfo))) { + mInfo += 4; + mKeyVals += 4; + } + if (ROBIN_HOOD_UNLIKELY(0U == detail::unaligned_load(mInfo))) { + mInfo += 2; + mKeyVals += 2; + } + if (ROBIN_HOOD_UNLIKELY(0U == *mInfo)) { + mInfo += 1; + mKeyVals += 1; + } +#else +#if ROBIN_HOOD(LITTLE_ENDIAN) + auto inc = ROBIN_HOOD_COUNT_TRAILING_ZEROES(n) / 8; +#else + auto inc = ROBIN_HOOD_COUNT_LEADING_ZEROES(n) / 8; +#endif + mInfo += inc; + mKeyVals += inc; +#endif } - // Erases element at pos, returns iterator to the next element. - iterator erase(iterator pos) { - ROBIN_HOOD_TRACE(this) - // we assume that pos always points to a valid entry, and not end(). - auto const idx = static_cast(pos.mKeyVals - mKeyVals); - - shiftDown(idx); - --mNumElements; + friend class Table; + NodePtr mKeyVals{nullptr}; + uint8_t const* mInfo{nullptr}; + }; + + //////////////////////////////////////////////////////////////////// + + // highly performance relevant code. + // Lower bits are used for indexing into the array (2^n size) + // The upper 1-5 bits need to be a reasonable good hash, to save comparisons. + template + void keyToIdx(HashKey&& key, size_t* idx, InfoType* info) const + { + // In addition to whatever hash is used, add another mul & shift so we get better hashing. + // This serves as a bad hash prevention, if the given data is + // badly mixed. + auto h = static_cast(WHash::operator()(key)); + + h *= mHashMultiplier; + h ^= h >> 33U; + + // the lower InitialInfoNumBits are reserved for info. + *info = mInfoInc + static_cast((h & InfoMask) >> mInfoHashShift); + *idx = (static_cast(h) >> InitialInfoNumBits) & mMask; + } + + // forwards the index by one, wrapping around at the end + void next(InfoType* info, size_t* idx) const noexcept + { + *idx = *idx + 1; + *info += mInfoInc; + } + + void nextWhileLess(InfoType* info, size_t* idx) const noexcept + { + // unrolling this by hand did not bring any speedups. + while (*info < mInfo[*idx]) { + next(info, idx); + } + } + + // Shift everything up by one element. Tries to move stuff around. + void + shiftUp(size_t startIdx, + size_t const insertion_idx) noexcept(std::is_nothrow_move_assignable::value) + { + auto idx = startIdx; + ::new (static_cast(mKeyVals + idx)) Node(std::move(mKeyVals[idx - 1])); + while (--idx != insertion_idx) { + mKeyVals[idx] = std::move(mKeyVals[idx - 1]); + } + + idx = startIdx; + while (idx != insertion_idx) { + ROBIN_HOOD_COUNT(shiftUp) + mInfo[idx] = static_cast(mInfo[idx - 1] + mInfoInc); + if (ROBIN_HOOD_UNLIKELY(mInfo[idx] + mInfoInc > 0xFF)) { + mMaxNumElementsAllowed = 0; + } + --idx; + } + } + + void shiftDown(size_t idx) noexcept(std::is_nothrow_move_assignable::value) + { + // until we find one that is either empty or has zero offset. + // TODO(martinus) we don't need to move everything, just the last one for the same + // bucket. + mKeyVals[idx].destroy(*this); + + // until we find one that is either empty or has zero offset. + while (mInfo[idx + 1] >= 2 * mInfoInc) { + ROBIN_HOOD_COUNT(shiftDown) + mInfo[idx] = static_cast(mInfo[idx + 1] - mInfoInc); + mKeyVals[idx] = std::move(mKeyVals[idx + 1]); + ++idx; + } + + mInfo[idx] = 0; + // don't destroy, we've moved it + // mKeyVals[idx].destroy(*this); + mKeyVals[idx].~Node(); + } + + // copy of find(), except that it returns iterator instead of const_iterator. + template + ROBIN_HOOD(NODISCARD) + size_t findIdx(Other const& key) const + { + size_t idx{}; + InfoType info{}; + keyToIdx(key, &idx, &info); + + do { + // unrolling this twice gives a bit of a speedup. More unrolling did not help. + if (info == mInfo[idx] && + ROBIN_HOOD_LIKELY(WKeyEqual::operator()(key, mKeyVals[idx].getFirst()))) { + return idx; + } + next(&info, &idx); + if (info == mInfo[idx] && + ROBIN_HOOD_LIKELY(WKeyEqual::operator()(key, mKeyVals[idx].getFirst()))) { + return idx; + } + next(&info, &idx); + } while (info <= mInfo[idx]); + + // nothing found! + return mMask == 0 ? 0 + : static_cast(std::distance( + mKeyVals, reinterpret_cast_no_cast_align_warning(mInfo))); + } + + void cloneData(const Table& o) + { + Cloner()(o, *this); + } + + // inserts a keyval that is guaranteed to be new, e.g. when the hashmap is resized. + // @return True on success, false if something went wrong + void insert_move(Node&& keyval) + { + // we don't retry, fail if overflowing + // don't need to check max num elements + if (0 == mMaxNumElementsAllowed && !try_increase_info()) { + throwOverflowError(); + } + + size_t idx{}; + InfoType info{}; + keyToIdx(keyval.getFirst(), &idx, &info); + + // skip forward. Use <= because we are certain that the element is not there. + while (info <= mInfo[idx]) { + idx = idx + 1; + info += mInfoInc; + } + + // key not found, so we are now exactly where we want to insert it. + auto const insertion_idx = idx; + auto const insertion_info = static_cast(info); + if (ROBIN_HOOD_UNLIKELY(insertion_info + mInfoInc > 0xFF)) { + mMaxNumElementsAllowed = 0; + } + + // find an empty spot + while (0 != mInfo[idx]) { + next(&info, &idx); + } + + auto& l = mKeyVals[insertion_idx]; + if (idx == insertion_idx) { + ::new (static_cast(&l)) Node(std::move(keyval)); + } else { + shiftUp(idx, insertion_idx); + l = std::move(keyval); + } + + // put at empty spot + mInfo[insertion_idx] = insertion_info; + + ++mNumElements; + } + + public: + using iterator = Iter; + using const_iterator = Iter; + + Table() noexcept(noexcept(Hash()) && noexcept(KeyEqual())) + : WHash(), WKeyEqual() + { + ROBIN_HOOD_TRACE(this) + } + + // Creates an empty hash map. Nothing is allocated yet, this happens at the first insert. + // This tremendously speeds up ctor & dtor of a map that never receives an element. The + // penalty is payed at the first insert, and not before. Lookup of this empty map works + // because everybody points to DummyInfoByte::b. parameter bucket_count is dictated by the + // standard, but we can ignore it. + explicit Table( + size_t ROBIN_HOOD_UNUSED(bucket_count) /*unused*/, const Hash& h = Hash{}, + const KeyEqual& equal = KeyEqual{}) noexcept(noexcept(Hash(h)) && noexcept(KeyEqual(equal))) + : WHash(h), WKeyEqual(equal) + { + ROBIN_HOOD_TRACE(this) + } + + template + Table(Iter first, Iter last, size_t ROBIN_HOOD_UNUSED(bucket_count) /*unused*/ = 0, + const Hash& h = Hash{}, const KeyEqual& equal = KeyEqual{}) + : WHash(h), WKeyEqual(equal) + { + ROBIN_HOOD_TRACE(this) + insert(first, last); + } + + Table(std::initializer_list initlist, + size_t ROBIN_HOOD_UNUSED(bucket_count) /*unused*/ = 0, const Hash& h = Hash{}, + const KeyEqual& equal = KeyEqual{}) + : WHash(h), WKeyEqual(equal) + { + ROBIN_HOOD_TRACE(this) + insert(initlist.begin(), initlist.end()); + } + + Table(Table&& o) noexcept + : WHash(std::move(static_cast(o))), WKeyEqual(std::move(static_cast(o))), DataPool(std::move(static_cast(o))) + { + ROBIN_HOOD_TRACE(this) + if (o.mMask) { + mHashMultiplier = std::move(o.mHashMultiplier); + mKeyVals = std::move(o.mKeyVals); + mInfo = std::move(o.mInfo); + mNumElements = std::move(o.mNumElements); + mMask = std::move(o.mMask); + mMaxNumElementsAllowed = std::move(o.mMaxNumElementsAllowed); + mInfoInc = std::move(o.mInfoInc); + mInfoHashShift = std::move(o.mInfoHashShift); + // set other's mask to 0 so its destructor won't do anything + o.init(); + } + } + + Table& operator=(Table&& o) noexcept + { + ROBIN_HOOD_TRACE(this) + if (&o != this) { + if (o.mMask) { + // only move stuff if the other map actually has some data + destroy(); + mHashMultiplier = std::move(o.mHashMultiplier); + mKeyVals = std::move(o.mKeyVals); + mInfo = std::move(o.mInfo); + mNumElements = std::move(o.mNumElements); + mMask = std::move(o.mMask); + mMaxNumElementsAllowed = std::move(o.mMaxNumElementsAllowed); + mInfoInc = std::move(o.mInfoInc); + mInfoHashShift = std::move(o.mInfoHashShift); + WHash::operator=(std::move(static_cast(o))); + WKeyEqual::operator=(std::move(static_cast(o))); + DataPool::operator=(std::move(static_cast(o))); + + o.init(); + + } else { + // nothing in the other map => just clear us. + clear(); + } + } + return *this; + } + + Table(const Table& o) + : WHash(static_cast(o)), WKeyEqual(static_cast(o)), DataPool(static_cast(o)) + { + ROBIN_HOOD_TRACE(this) + if (!o.empty()) { + // not empty: create an exact copy. it is also possible to just iterate through all + // elements and insert them, but copying is probably faster. + + auto const numElementsWithBuffer = calcNumElementsWithBuffer(o.mMask + 1); + auto const numBytesTotal = calcNumBytesTotal(numElementsWithBuffer); + + ROBIN_HOOD_LOG("std::malloc " << numBytesTotal << " = calcNumBytesTotal(" + << numElementsWithBuffer << ")") + mHashMultiplier = o.mHashMultiplier; + mKeyVals = static_cast( + detail::assertNotNull(std::malloc(numBytesTotal))); + // no need for calloc because clonData does memcpy + mInfo = reinterpret_cast(mKeyVals + numElementsWithBuffer); + mNumElements = o.mNumElements; + mMask = o.mMask; + mMaxNumElementsAllowed = o.mMaxNumElementsAllowed; + mInfoInc = o.mInfoInc; + mInfoHashShift = o.mInfoHashShift; + cloneData(o); + } + } + + // Creates a copy of the given map. Copy constructor of each entry is used. + // Not sure why clang-tidy thinks this doesn't handle self assignment, it does + // NOLINTNEXTLINE(bugprone-unhandled-self-assignment,cert-oop54-cpp) + Table& operator=(Table const& o) + { + ROBIN_HOOD_TRACE(this) + if (&o == this) { + // prevent assigning of itself + return *this; + } + + // we keep using the old allocator and not assign the new one, because we want to keep + // the memory available. when it is the same size. + if (o.empty()) { + if (0 == mMask) { + // nothing to do, we are empty too + return *this; + } - if (*pos.mInfo) { - // we've backward shifted, return this again - return pos; - } + // not empty: destroy what we have there + // clear also resets mInfo to 0, that's sometimes not necessary. + destroy(); + init(); + WHash::operator=(static_cast(o)); + WKeyEqual::operator=(static_cast(o)); + DataPool::operator=(static_cast(o)); - // no backward shift, return next element - return ++pos; + return *this; } - size_t erase(const key_type& key) { - ROBIN_HOOD_TRACE(this) - size_t idx{}; - InfoType info{}; - keyToIdx(key, &idx, &info); + // clean up old stuff + Destroyer::value>{}.nodes(*this); - // check while info matches with the source idx - do { - if (info == mInfo[idx] && WKeyEqual::operator()(key, mKeyVals[idx].getFirst())) { - shiftDown(idx); - --mNumElements; - return 1; - } - next(&info, &idx); - } while (info <= mInfo[idx]); + if (mMask != o.mMask) { + // no luck: we don't have the same array size allocated, so we need to realloc. + if (0 != mMask) { + // only deallocate if we actually have data! + ROBIN_HOOD_LOG("std::free") + std::free(mKeyVals); + } + + auto const numElementsWithBuffer = calcNumElementsWithBuffer(o.mMask + 1); + auto const numBytesTotal = calcNumBytesTotal(numElementsWithBuffer); + ROBIN_HOOD_LOG("std::malloc " << numBytesTotal << " = calcNumBytesTotal(" + << numElementsWithBuffer << ")") + mKeyVals = static_cast( + detail::assertNotNull(std::malloc(numBytesTotal))); + + // no need for calloc here because cloneData performs a memcpy. + mInfo = reinterpret_cast(mKeyVals + numElementsWithBuffer); + // sentinel is set in cloneData + } + WHash::operator=(static_cast(o)); + WKeyEqual::operator=(static_cast(o)); + DataPool::operator=(static_cast(o)); + mHashMultiplier = o.mHashMultiplier; + mNumElements = o.mNumElements; + mMask = o.mMask; + mMaxNumElementsAllowed = o.mMaxNumElementsAllowed; + mInfoInc = o.mInfoInc; + mInfoHashShift = o.mInfoHashShift; + cloneData(o); + + return *this; + } + + // Swaps everything between the two maps. + void swap(Table& o) + { + ROBIN_HOOD_TRACE(this) + using std::swap; + swap(o, *this); + } + + // Clears all data, without resizing. + void clear() + { + ROBIN_HOOD_TRACE(this) + if (empty()) { + // don't do anything! also important because we don't want to write to + // DummyInfoByte::b, even though we would just write 0 to it. + return; + } + + Destroyer::value>{}.nodes(*this); + + auto const numElementsWithBuffer = calcNumElementsWithBuffer(mMask + 1); + // clear everything, then set the sentinel again + uint8_t const z = 0; + std::fill(mInfo, mInfo + calcNumBytesInfo(numElementsWithBuffer), z); + mInfo[numElementsWithBuffer] = 1; + + mInfoInc = InitialInfoInc; + mInfoHashShift = InitialInfoHashShift; + } + + // Destroys the map and all it's contents. + ~Table() + { + ROBIN_HOOD_TRACE(this) + destroy(); + } + + // Checks if both tables contain the same entries. Order is irrelevant. + bool operator==(const Table& other) const + { + ROBIN_HOOD_TRACE(this) + if (other.size() != size()) { + return false; + } + for (auto const& otherEntry : other) { + if (!has(otherEntry)) { + return false; + } + } + + return true; + } + + bool operator!=(const Table& other) const + { + ROBIN_HOOD_TRACE(this) + return !operator==(other); + } + + template + typename std::enable_if::value, Q&>::type operator[](const key_type& key) + { + ROBIN_HOOD_TRACE(this) + auto idxAndState = insertKeyPrepareEmptySpot(key); + switch (idxAndState.second) { + case InsertionState::key_found: + break; - // nothing found to delete - return 0; - } + case InsertionState::new_node: + ::new (static_cast(&mKeyVals[idxAndState.first])) + Node(*this, std::piecewise_construct, std::forward_as_tuple(key), + std::forward_as_tuple()); + break; - // reserves space for the specified number of elements. Makes sure the old data fits. - // exactly the same as reserve(c). - void rehash(size_t c) { - // forces a reserve - reserve(c, true); - } + case InsertionState::overwrite_node: + mKeyVals[idxAndState.first] = Node(*this, std::piecewise_construct, + std::forward_as_tuple(key), std::forward_as_tuple()); + break; - // reserves space for the specified number of elements. Makes sure the old data fits. - // Exactly the same as rehash(c). Use rehash(0) to shrink to fit. - void reserve(size_t c) { - // reserve, but don't force rehash - reserve(c, false); + case InsertionState::overflow_error: + throwOverflowError(); } - // If possible reallocates the map to a smaller one. This frees the underlying table. - // Does not do anything if load_factor is too large for decreasing the table's size. - void compact() { - ROBIN_HOOD_TRACE(this) - auto newSize = InitialNumElements; - while (calcMaxNumElementsAllowed(newSize) < mNumElements && newSize != 0) { - newSize *= 2; - } - if (ROBIN_HOOD_UNLIKELY(newSize == 0)) { - throwOverflowError(); - } - - ROBIN_HOOD_LOG("newSize > mMask + 1: " << newSize << " > " << mMask << " + 1") + return mKeyVals[idxAndState.first].getSecond(); + } - // only actually do anything when the new size is bigger than the old one. This prevents to - // continuously allocate for each reserve() call. - if (newSize < mMask + 1) { - rehashPowerOfTwo(newSize, true); - } - } + template + typename std::enable_if::value, Q&>::type operator[](key_type&& key) + { + ROBIN_HOOD_TRACE(this) + auto idxAndState = insertKeyPrepareEmptySpot(key); + switch (idxAndState.second) { + case InsertionState::key_found: + break; - size_type size() const noexcept { // NOLINT(modernize-use-nodiscard) - ROBIN_HOOD_TRACE(this) - return mNumElements; - } + case InsertionState::new_node: + ::new (static_cast(&mKeyVals[idxAndState.first])) + Node(*this, std::piecewise_construct, std::forward_as_tuple(std::move(key)), + std::forward_as_tuple()); + break; - size_type max_size() const noexcept { // NOLINT(modernize-use-nodiscard) - ROBIN_HOOD_TRACE(this) - return static_cast(-1); - } + case InsertionState::overwrite_node: + mKeyVals[idxAndState.first] = + Node(*this, std::piecewise_construct, std::forward_as_tuple(std::move(key)), + std::forward_as_tuple()); + break; - ROBIN_HOOD(NODISCARD) bool empty() const noexcept { - ROBIN_HOOD_TRACE(this) - return 0 == mNumElements; + case InsertionState::overflow_error: + throwOverflowError(); } - float max_load_factor() const noexcept { // NOLINT(modernize-use-nodiscard) - ROBIN_HOOD_TRACE(this) - return MaxLoadFactor100 / 100.0F; - } + return mKeyVals[idxAndState.first].getSecond(); + } - // Average number of elements per bucket. Since we allow only 1 per bucket - float load_factor() const noexcept { // NOLINT(modernize-use-nodiscard) - ROBIN_HOOD_TRACE(this) - return static_cast(size()) / static_cast(mMask + 1); + template + void insert(Iter first, Iter last) + { + for (; first != last; ++first) { + // value_type ctor needed because this might be called with std::pair's + insert(value_type(*first)); } + } - ROBIN_HOOD(NODISCARD) size_t mask() const noexcept { - ROBIN_HOOD_TRACE(this) - return mMask; + void insert(std::initializer_list ilist) + { + for (auto&& vt : ilist) { + insert(std::move(vt)); } + } - ROBIN_HOOD(NODISCARD) size_t calcMaxNumElementsAllowed(size_t maxElements) const noexcept { - if (ROBIN_HOOD_LIKELY(maxElements <= (std::numeric_limits::max)() / 100)) { - return maxElements * MaxLoadFactor100 / 100; - } + template + std::pair emplace(Args&&... args) + { + ROBIN_HOOD_TRACE(this) + Node n{*this, std::forward(args)...}; + auto idxAndState = insertKeyPrepareEmptySpot(getFirstConst(n)); + switch (idxAndState.second) { + case InsertionState::key_found: + n.destroy(*this); + break; - // we might be a bit inprecise, but since maxElements is quite large that doesn't matter - return (maxElements / 100) * MaxLoadFactor100; - } + case InsertionState::new_node: + ::new (static_cast(&mKeyVals[idxAndState.first])) Node(*this, std::move(n)); + break; - ROBIN_HOOD(NODISCARD) size_t calcNumBytesInfo(size_t numElements) const noexcept { - // we add a uint64_t, which houses the sentinel (first byte) and padding so we can load - // 64bit types. - return numElements + sizeof(uint64_t); - } + case InsertionState::overwrite_node: + mKeyVals[idxAndState.first] = std::move(n); + break; - ROBIN_HOOD(NODISCARD) - size_t calcNumElementsWithBuffer(size_t numElements) const noexcept { - auto maxNumElementsAllowed = calcMaxNumElementsAllowed(numElements); - return numElements + (std::min)(maxNumElementsAllowed, (static_cast(0xFF))); + case InsertionState::overflow_error: + n.destroy(*this); + throwOverflowError(); + break; } - // calculation only allowed for 2^n values - ROBIN_HOOD(NODISCARD) size_t calcNumBytesTotal(size_t numElements) const { + return std::make_pair(iterator(mKeyVals + idxAndState.first, mInfo + idxAndState.first), + InsertionState::key_found != idxAndState.second); + } + + template + iterator emplace_hint(const_iterator position, Args&&... args) + { + (void)position; + return emplace(std::forward(args)...).first; + } + + template + std::pair try_emplace(const key_type& key, Args&&... args) + { + return try_emplace_impl(key, std::forward(args)...); + } + + template + std::pair try_emplace(key_type&& key, Args&&... args) + { + return try_emplace_impl(std::move(key), std::forward(args)...); + } + + template + iterator try_emplace(const_iterator hint, const key_type& key, Args&&... args) + { + (void)hint; + return try_emplace_impl(key, std::forward(args)...).first; + } + + template + iterator try_emplace(const_iterator hint, key_type&& key, Args&&... args) + { + (void)hint; + return try_emplace_impl(std::move(key), std::forward(args)...).first; + } + + template + std::pair insert_or_assign(const key_type& key, Mapped&& obj) + { + return insertOrAssignImpl(key, std::forward(obj)); + } + + template + std::pair insert_or_assign(key_type&& key, Mapped&& obj) + { + return insertOrAssignImpl(std::move(key), std::forward(obj)); + } + + template + iterator insert_or_assign(const_iterator hint, const key_type& key, Mapped&& obj) + { + (void)hint; + return insertOrAssignImpl(key, std::forward(obj)).first; + } + + template + iterator insert_or_assign(const_iterator hint, key_type&& key, Mapped&& obj) + { + (void)hint; + return insertOrAssignImpl(std::move(key), std::forward(obj)).first; + } + + std::pair insert(const value_type& keyval) + { + ROBIN_HOOD_TRACE(this) + return emplace(keyval); + } + + iterator insert(const_iterator hint, const value_type& keyval) + { + (void)hint; + return emplace(keyval).first; + } + + std::pair insert(value_type&& keyval) + { + return emplace(std::move(keyval)); + } + + iterator insert(const_iterator hint, value_type&& keyval) + { + (void)hint; + return emplace(std::move(keyval)).first; + } + + // Returns 1 if key is found, 0 otherwise. + size_t count(const key_type& key) const + { // NOLINT(modernize-use-nodiscard) + ROBIN_HOOD_TRACE(this) + auto kv = mKeyVals + findIdx(key); + if (kv != reinterpret_cast_no_cast_align_warning(mInfo)) { + return 1; + } + return 0; + } + + template + // NOLINTNEXTLINE(modernize-use-nodiscard) + typename std::enable_if::type count(const OtherKey& key) const + { + ROBIN_HOOD_TRACE(this) + auto kv = mKeyVals + findIdx(key); + if (kv != reinterpret_cast_no_cast_align_warning(mInfo)) { + return 1; + } + return 0; + } + + bool contains(const key_type& key) const + { // NOLINT(modernize-use-nodiscard) + return 1U == count(key); + } + + template + // NOLINTNEXTLINE(modernize-use-nodiscard) + typename std::enable_if::type contains(const OtherKey& key) const + { + return 1U == count(key); + } + + // Returns a reference to the value found for key. + // Throws std::out_of_range if element cannot be found + template + // NOLINTNEXTLINE(modernize-use-nodiscard) + typename std::enable_if::value, Q&>::type at(key_type const& key) + { + ROBIN_HOOD_TRACE(this) + auto kv = mKeyVals + findIdx(key); + if (kv == reinterpret_cast_no_cast_align_warning(mInfo)) { + doThrow("key not found"); + } + return kv->getSecond(); + } + + // Returns a reference to the value found for key. + // Throws std::out_of_range if element cannot be found + template + // NOLINTNEXTLINE(modernize-use-nodiscard) + typename std::enable_if::value, Q const&>::type at(key_type const& key) const + { + ROBIN_HOOD_TRACE(this) + auto kv = mKeyVals + findIdx(key); + if (kv == reinterpret_cast_no_cast_align_warning(mInfo)) { + doThrow("key not found"); + } + return kv->getSecond(); + } + + const_iterator find(const key_type& key) const + { // NOLINT(modernize-use-nodiscard) + ROBIN_HOOD_TRACE(this) + const size_t idx = findIdx(key); + return const_iterator{mKeyVals + idx, mInfo + idx}; + } + + template + const_iterator find(const OtherKey& key, is_transparent_tag /*unused*/) const + { + ROBIN_HOOD_TRACE(this) + const size_t idx = findIdx(key); + return const_iterator{mKeyVals + idx, mInfo + idx}; + } + + template + typename std::enable_if::type // NOLINT(modernize-use-nodiscard) + find(const OtherKey& key) const + { // NOLINT(modernize-use-nodiscard) + ROBIN_HOOD_TRACE(this) + const size_t idx = findIdx(key); + return const_iterator{mKeyVals + idx, mInfo + idx}; + } + + iterator find(const key_type& key) + { + ROBIN_HOOD_TRACE(this) + const size_t idx = findIdx(key); + return iterator{mKeyVals + idx, mInfo + idx}; + } + + template + iterator find(const OtherKey& key, is_transparent_tag /*unused*/) + { + ROBIN_HOOD_TRACE(this) + const size_t idx = findIdx(key); + return iterator{mKeyVals + idx, mInfo + idx}; + } + + template + typename std::enable_if::type find(const OtherKey& key) + { + ROBIN_HOOD_TRACE(this) + const size_t idx = findIdx(key); + return iterator{mKeyVals + idx, mInfo + idx}; + } + + iterator begin() + { + ROBIN_HOOD_TRACE(this) + if (empty()) { + return end(); + } + return iterator(mKeyVals, mInfo, fast_forward_tag{}); + } + const_iterator begin() const + { // NOLINT(modernize-use-nodiscard) + ROBIN_HOOD_TRACE(this) + return cbegin(); + } + const_iterator cbegin() const + { // NOLINT(modernize-use-nodiscard) + ROBIN_HOOD_TRACE(this) + if (empty()) { + return cend(); + } + return const_iterator(mKeyVals, mInfo, fast_forward_tag{}); + } + + iterator end() + { + ROBIN_HOOD_TRACE(this) + // no need to supply valid info pointer: end() must not be dereferenced, and only node + // pointer is compared. + return iterator{reinterpret_cast_no_cast_align_warning(mInfo), nullptr}; + } + const_iterator end() const + { // NOLINT(modernize-use-nodiscard) + ROBIN_HOOD_TRACE(this) + return cend(); + } + const_iterator cend() const + { // NOLINT(modernize-use-nodiscard) + ROBIN_HOOD_TRACE(this) + return const_iterator{reinterpret_cast_no_cast_align_warning(mInfo), nullptr}; + } + + iterator erase(const_iterator pos) + { + ROBIN_HOOD_TRACE(this) + // its safe to perform const cast here + // NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast) + return erase(iterator{const_cast(pos.mKeyVals), const_cast(pos.mInfo)}); + } + + // Erases element at pos, returns iterator to the next element. + iterator erase(iterator pos) + { + ROBIN_HOOD_TRACE(this) + // we assume that pos always points to a valid entry, and not end(). + auto const idx = static_cast(pos.mKeyVals - mKeyVals); + + shiftDown(idx); + --mNumElements; + + if (*pos.mInfo) { + // we've backward shifted, return this again + return pos; + } + + // no backward shift, return next element + return ++pos; + } + + size_t erase(const key_type& key) + { + ROBIN_HOOD_TRACE(this) + size_t idx{}; + InfoType info{}; + keyToIdx(key, &idx, &info); + + // check while info matches with the source idx + do { + if (info == mInfo[idx] && WKeyEqual::operator()(key, mKeyVals[idx].getFirst())) { + shiftDown(idx); + --mNumElements; + return 1; + } + next(&info, &idx); + } while (info <= mInfo[idx]); + + // nothing found to delete + return 0; + } + + // reserves space for the specified number of elements. Makes sure the old data fits. + // exactly the same as reserve(c). + void rehash(size_t c) + { + // forces a reserve + reserve(c, true); + } + + // reserves space for the specified number of elements. Makes sure the old data fits. + // Exactly the same as rehash(c). Use rehash(0) to shrink to fit. + void reserve(size_t c) + { + // reserve, but don't force rehash + reserve(c, false); + } + + // If possible reallocates the map to a smaller one. This frees the underlying table. + // Does not do anything if load_factor is too large for decreasing the table's size. + void compact() + { + ROBIN_HOOD_TRACE(this) + auto newSize = InitialNumElements; + while (calcMaxNumElementsAllowed(newSize) < mNumElements && newSize != 0) { + newSize *= 2; + } + if (ROBIN_HOOD_UNLIKELY(newSize == 0)) { + throwOverflowError(); + } + + ROBIN_HOOD_LOG("newSize > mMask + 1: " << newSize << " > " << mMask << " + 1") + + // only actually do anything when the new size is bigger than the old one. This prevents to + // continuously allocate for each reserve() call. + if (newSize < mMask + 1) { + rehashPowerOfTwo(newSize, true); + } + } + + size_type size() const noexcept + { // NOLINT(modernize-use-nodiscard) + ROBIN_HOOD_TRACE(this) + return mNumElements; + } + + size_type max_size() const noexcept + { // NOLINT(modernize-use-nodiscard) + ROBIN_HOOD_TRACE(this) + return static_cast(-1); + } + + ROBIN_HOOD(NODISCARD) + bool empty() const noexcept + { + ROBIN_HOOD_TRACE(this) + return 0 == mNumElements; + } + + float max_load_factor() const noexcept + { // NOLINT(modernize-use-nodiscard) + ROBIN_HOOD_TRACE(this) + return MaxLoadFactor100 / 100.0F; + } + + // Average number of elements per bucket. Since we allow only 1 per bucket + float load_factor() const noexcept + { // NOLINT(modernize-use-nodiscard) + ROBIN_HOOD_TRACE(this) + return static_cast(size()) / static_cast(mMask + 1); + } + + ROBIN_HOOD(NODISCARD) + size_t mask() const noexcept + { + ROBIN_HOOD_TRACE(this) + return mMask; + } + + ROBIN_HOOD(NODISCARD) + size_t calcMaxNumElementsAllowed(size_t maxElements) const noexcept + { + if (ROBIN_HOOD_LIKELY(maxElements <= (std::numeric_limits::max)() / 100)) { + return maxElements * MaxLoadFactor100 / 100; + } + + // we might be a bit inprecise, but since maxElements is quite large that doesn't matter + return (maxElements / 100) * MaxLoadFactor100; + } + + ROBIN_HOOD(NODISCARD) + size_t calcNumBytesInfo(size_t numElements) const noexcept + { + // we add a uint64_t, which houses the sentinel (first byte) and padding so we can load + // 64bit types. + return numElements + sizeof(uint64_t); + } + + ROBIN_HOOD(NODISCARD) + size_t calcNumElementsWithBuffer(size_t numElements) const noexcept + { + auto maxNumElementsAllowed = calcMaxNumElementsAllowed(numElements); + return numElements + (std::min)(maxNumElementsAllowed, (static_cast(0xFF))); + } + + // calculation only allowed for 2^n values + ROBIN_HOOD(NODISCARD) + size_t calcNumBytesTotal(size_t numElements) const + { #if ROBIN_HOOD(BITNESS) == 64 - return numElements * sizeof(Node) + calcNumBytesInfo(numElements); + return numElements * sizeof(Node) + calcNumBytesInfo(numElements); #else - // make sure we're doing 64bit operations, so we are at least safe against 32bit overflows. - auto const ne = static_cast(numElements); - auto const s = static_cast(sizeof(Node)); - auto const infos = static_cast(calcNumBytesInfo(numElements)); - - auto const total64 = ne * s + infos; - auto const total = static_cast(total64); - - if (ROBIN_HOOD_UNLIKELY(static_cast(total) != total64)) { - throwOverflowError(); - } - return total; -#endif - } + // make sure we're doing 64bit operations, so we are at least safe against 32bit overflows. + auto const ne = static_cast(numElements); + auto const s = static_cast(sizeof(Node)); + auto const infos = static_cast(calcNumBytesInfo(numElements)); -private: - template - ROBIN_HOOD(NODISCARD) - typename std::enable_if::value, bool>::type has(const value_type& e) const { - ROBIN_HOOD_TRACE(this) - auto it = find(e.first); - return it != end() && it->second == e.second; - } + auto const total64 = ne * s + infos; + auto const total = static_cast(total64); - template - ROBIN_HOOD(NODISCARD) - typename std::enable_if::value, bool>::type has(const value_type& e) const { - ROBIN_HOOD_TRACE(this) - return find(e) != end(); + if (ROBIN_HOOD_UNLIKELY(static_cast(total) != total64)) { + throwOverflowError(); } - - void reserve(size_t c, bool forceRehash) { - ROBIN_HOOD_TRACE(this) - auto const minElementsAllowed = (std::max)(c, mNumElements); - auto newSize = InitialNumElements; - while (calcMaxNumElementsAllowed(newSize) < minElementsAllowed && newSize != 0) { - newSize *= 2; - } - if (ROBIN_HOOD_UNLIKELY(newSize == 0)) { - throwOverflowError(); - } - - ROBIN_HOOD_LOG("newSize > mMask + 1: " << newSize << " > " << mMask << " + 1") - - // only actually do anything when the new size is bigger than the old one. This prevents to - // continuously allocate for each reserve() call. - if (forceRehash || newSize > mMask + 1) { - rehashPowerOfTwo(newSize, false); - } - } - - // reserves space for at least the specified number of elements. - // only works if numBuckets if power of two - // True on success, false otherwise - void rehashPowerOfTwo(size_t numBuckets, bool forceFree) { - ROBIN_HOOD_TRACE(this) - - Node* const oldKeyVals = mKeyVals; - uint8_t const* const oldInfo = mInfo; - - const size_t oldMaxElementsWithBuffer = calcNumElementsWithBuffer(mMask + 1); - - // resize operation: move stuff - initData(numBuckets); - if (oldMaxElementsWithBuffer > 1) { - for (size_t i = 0; i < oldMaxElementsWithBuffer; ++i) { - if (oldInfo[i] != 0) { - // might throw an exception, which is really bad since we are in the middle of - // moving stuff. - insert_move(std::move(oldKeyVals[i])); - // destroy the node but DON'T destroy the data. - oldKeyVals[i].~Node(); - } - } - - // this check is not necessary as it's guarded by the previous if, but it helps - // silence g++'s overeager "attempt to free a non-heap object 'map' - // [-Werror=free-nonheap-object]" warning. - if (oldKeyVals != reinterpret_cast_no_cast_align_warning(&mMask)) { - // don't destroy old data: put it into the pool instead - if (forceFree) { - std::free(oldKeyVals); - } else { - DataPool::addOrFree(oldKeyVals, calcNumBytesTotal(oldMaxElementsWithBuffer)); - } - } + return total; +#endif + } + + private: + template + ROBIN_HOOD(NODISCARD) + typename std::enable_if::value, bool>::type has(const value_type& e) const + { + ROBIN_HOOD_TRACE(this) + auto it = find(e.first); + return it != end() && it->second == e.second; + } + + template + ROBIN_HOOD(NODISCARD) + typename std::enable_if::value, bool>::type has(const value_type& e) const + { + ROBIN_HOOD_TRACE(this) + return find(e) != end(); + } + + void reserve(size_t c, bool forceRehash) + { + ROBIN_HOOD_TRACE(this) + auto const minElementsAllowed = (std::max)(c, mNumElements); + auto newSize = InitialNumElements; + while (calcMaxNumElementsAllowed(newSize) < minElementsAllowed && newSize != 0) { + newSize *= 2; + } + if (ROBIN_HOOD_UNLIKELY(newSize == 0)) { + throwOverflowError(); + } + + ROBIN_HOOD_LOG("newSize > mMask + 1: " << newSize << " > " << mMask << " + 1") + + // only actually do anything when the new size is bigger than the old one. This prevents to + // continuously allocate for each reserve() call. + if (forceRehash || newSize > mMask + 1) { + rehashPowerOfTwo(newSize, false); + } + } + + // reserves space for at least the specified number of elements. + // only works if numBuckets if power of two + // True on success, false otherwise + void rehashPowerOfTwo(size_t numBuckets, bool forceFree) + { + ROBIN_HOOD_TRACE(this) + + Node* const oldKeyVals = mKeyVals; + uint8_t const* const oldInfo = mInfo; + + const size_t oldMaxElementsWithBuffer = calcNumElementsWithBuffer(mMask + 1); + + // resize operation: move stuff + initData(numBuckets); + if (oldMaxElementsWithBuffer > 1) { + for (size_t i = 0; i < oldMaxElementsWithBuffer; ++i) { + if (oldInfo[i] != 0) { + // might throw an exception, which is really bad since we are in the middle of + // moving stuff. + insert_move(std::move(oldKeyVals[i])); + // destroy the node but DON'T destroy the data. + oldKeyVals[i].~Node(); + } + } + + // this check is not necessary as it's guarded by the previous if, but it helps + // silence g++'s overeager "attempt to free a non-heap object 'map' + // [-Werror=free-nonheap-object]" warning. + if (oldKeyVals != reinterpret_cast_no_cast_align_warning(&mMask)) { + // don't destroy old data: put it into the pool instead + if (forceFree) { + std::free(oldKeyVals); + } else { + DataPool::addOrFree(oldKeyVals, calcNumBytesTotal(oldMaxElementsWithBuffer)); } + } } + } - ROBIN_HOOD(NOINLINE) void throwOverflowError() const { + ROBIN_HOOD(NOINLINE) + void throwOverflowError() const + { #if ROBIN_HOOD(HAS_EXCEPTIONS) - throw std::overflow_error("robin_hood::map overflow"); + throw std::overflow_error("robin_hood::map overflow"); #else - abort(); + abort(); #endif - } - - template - std::pair try_emplace_impl(OtherKey&& key, Args&&... args) { - ROBIN_HOOD_TRACE(this) - auto idxAndState = insertKeyPrepareEmptySpot(key); - switch (idxAndState.second) { - case InsertionState::key_found: - break; - - case InsertionState::new_node: - ::new (static_cast(&mKeyVals[idxAndState.first])) Node( - *this, std::piecewise_construct, std::forward_as_tuple(std::forward(key)), - std::forward_as_tuple(std::forward(args)...)); - break; - - case InsertionState::overwrite_node: - mKeyVals[idxAndState.first] = Node(*this, std::piecewise_construct, - std::forward_as_tuple(std::forward(key)), - std::forward_as_tuple(std::forward(args)...)); - break; - - case InsertionState::overflow_error: - throwOverflowError(); - break; - } - - return std::make_pair(iterator(mKeyVals + idxAndState.first, mInfo + idxAndState.first), - InsertionState::key_found != idxAndState.second); - } - - template - std::pair insertOrAssignImpl(OtherKey&& key, Mapped&& obj) { - ROBIN_HOOD_TRACE(this) - auto idxAndState = insertKeyPrepareEmptySpot(key); - switch (idxAndState.second) { - case InsertionState::key_found: - mKeyVals[idxAndState.first].getSecond() = std::forward(obj); - break; - - case InsertionState::new_node: - ::new (static_cast(&mKeyVals[idxAndState.first])) Node( - *this, std::piecewise_construct, std::forward_as_tuple(std::forward(key)), - std::forward_as_tuple(std::forward(obj))); - break; - - case InsertionState::overwrite_node: - mKeyVals[idxAndState.first] = Node(*this, std::piecewise_construct, - std::forward_as_tuple(std::forward(key)), - std::forward_as_tuple(std::forward(obj))); - break; - - case InsertionState::overflow_error: - throwOverflowError(); - break; - } - - return std::make_pair(iterator(mKeyVals + idxAndState.first, mInfo + idxAndState.first), - InsertionState::key_found != idxAndState.second); - } - - void initData(size_t max_elements) { - mNumElements = 0; - mMask = max_elements - 1; - mMaxNumElementsAllowed = calcMaxNumElementsAllowed(max_elements); - - auto const numElementsWithBuffer = calcNumElementsWithBuffer(max_elements); - - // malloc & zero mInfo. Faster than calloc everything. - auto const numBytesTotal = calcNumBytesTotal(numElementsWithBuffer); - ROBIN_HOOD_LOG("std::calloc " << numBytesTotal << " = calcNumBytesTotal(" - << numElementsWithBuffer << ")") - mKeyVals = reinterpret_cast( - detail::assertNotNull(std::malloc(numBytesTotal))); - mInfo = reinterpret_cast(mKeyVals + numElementsWithBuffer); - std::memset(mInfo, 0, numBytesTotal - numElementsWithBuffer * sizeof(Node)); - - // set sentinel - mInfo[numElementsWithBuffer] = 1; - - mInfoInc = InitialInfoInc; - mInfoHashShift = InitialInfoHashShift; - } - - enum class InsertionState { overflow_error, key_found, new_node, overwrite_node }; - - // Finds key, and if not already present prepares a spot where to pot the key & value. - // This potentially shifts nodes out of the way, updates mInfo and number of inserted - // elements, so the only operation left to do is create/assign a new node at that spot. - template - std::pair insertKeyPrepareEmptySpot(OtherKey&& key) { - for (int i = 0; i < 256; ++i) { - size_t idx{}; - InfoType info{}; - keyToIdx(key, &idx, &info); - nextWhileLess(&info, &idx); - - // while we potentially have a match - while (info == mInfo[idx]) { - if (WKeyEqual::operator()(key, mKeyVals[idx].getFirst())) { - // key already exists, do NOT insert. - // see http://en.cppreference.com/w/cpp/container/unordered_map/insert - return std::make_pair(idx, InsertionState::key_found); - } - next(&info, &idx); - } - - // unlikely that this evaluates to true - if (ROBIN_HOOD_UNLIKELY(mNumElements >= mMaxNumElementsAllowed)) { - if (!increase_size()) { - return std::make_pair(size_t(0), InsertionState::overflow_error); - } - continue; - } - - // key not found, so we are now exactly where we want to insert it. - auto const insertion_idx = idx; - auto const insertion_info = info; - if (ROBIN_HOOD_UNLIKELY(insertion_info + mInfoInc > 0xFF)) { - mMaxNumElementsAllowed = 0; - } - - // find an empty spot - while (0 != mInfo[idx]) { - next(&info, &idx); - } - - if (idx != insertion_idx) { - shiftUp(idx, insertion_idx); - } - // put at empty spot - mInfo[insertion_idx] = static_cast(insertion_info); - ++mNumElements; - return std::make_pair(insertion_idx, idx == insertion_idx - ? InsertionState::new_node - : InsertionState::overwrite_node); - } + } + + template + std::pair try_emplace_impl(OtherKey&& key, Args&&... args) + { + ROBIN_HOOD_TRACE(this) + auto idxAndState = insertKeyPrepareEmptySpot(key); + switch (idxAndState.second) { + case InsertionState::key_found: + break; - // enough attempts failed, so finally give up. - return std::make_pair(size_t(0), InsertionState::overflow_error); - } + case InsertionState::new_node: + ::new (static_cast(&mKeyVals[idxAndState.first])) Node( + *this, std::piecewise_construct, std::forward_as_tuple(std::forward(key)), + std::forward_as_tuple(std::forward(args)...)); + break; - bool try_increase_info() { - ROBIN_HOOD_LOG("mInfoInc=" << mInfoInc << ", numElements=" << mNumElements - << ", maxNumElementsAllowed=" - << calcMaxNumElementsAllowed(mMask + 1)) - if (mInfoInc <= 2) { - // need to be > 2 so that shift works (otherwise undefined behavior!) - return false; - } - // we got space left, try to make info smaller - mInfoInc = static_cast(mInfoInc >> 1U); - - // remove one bit of the hash, leaving more space for the distance info. - // This is extremely fast because we can operate on 8 bytes at once. - ++mInfoHashShift; - auto const numElementsWithBuffer = calcNumElementsWithBuffer(mMask + 1); - - for (size_t i = 0; i < numElementsWithBuffer; i += 8) { - auto val = unaligned_load(mInfo + i); - val = (val >> 1U) & UINT64_C(0x7f7f7f7f7f7f7f7f); - std::memcpy(mInfo + i, &val, sizeof(val)); - } - // update sentinel, which might have been cleared out! - mInfo[numElementsWithBuffer] = 1; + case InsertionState::overwrite_node: + mKeyVals[idxAndState.first] = Node(*this, std::piecewise_construct, + std::forward_as_tuple(std::forward(key)), + std::forward_as_tuple(std::forward(args)...)); + break; - mMaxNumElementsAllowed = calcMaxNumElementsAllowed(mMask + 1); - return true; + case InsertionState::overflow_error: + throwOverflowError(); + break; } - // True if resize was possible, false otherwise - bool increase_size() { - // nothing allocated yet? just allocate InitialNumElements - if (0 == mMask) { - initData(InitialNumElements); - return true; - } - - auto const maxNumElementsAllowed = calcMaxNumElementsAllowed(mMask + 1); - if (mNumElements < maxNumElementsAllowed && try_increase_info()) { - return true; - } - - ROBIN_HOOD_LOG("mNumElements=" << mNumElements << ", maxNumElementsAllowed=" - << maxNumElementsAllowed << ", load=" - << (static_cast(mNumElements) * 100.0 / - (static_cast(mMask) + 1))) - - if (mNumElements * 2 < calcMaxNumElementsAllowed(mMask + 1)) { - // we have to resize, even though there would still be plenty of space left! - // Try to rehash instead. Delete freed memory so we don't steadyily increase mem in case - // we have to rehash a few times - nextHashMultiplier(); - rehashPowerOfTwo(mMask + 1, true); - } else { - // we've reached the capacity of the map, so the hash seems to work nice. Keep using it. - rehashPowerOfTwo((mMask + 1) * 2, false); - } - return true; - } + return std::make_pair(iterator(mKeyVals + idxAndState.first, mInfo + idxAndState.first), + InsertionState::key_found != idxAndState.second); + } - void nextHashMultiplier() { - // adding an *even* number, so that the multiplier will always stay odd. This is necessary - // so that the hash stays a mixing function (and thus doesn't have any information loss). - mHashMultiplier += UINT64_C(0xc4ceb9fe1a85ec54); - } + template + std::pair insertOrAssignImpl(OtherKey&& key, Mapped&& obj) + { + ROBIN_HOOD_TRACE(this) + auto idxAndState = insertKeyPrepareEmptySpot(key); + switch (idxAndState.second) { + case InsertionState::key_found: + mKeyVals[idxAndState.first].getSecond() = std::forward(obj); + break; - void destroy() { - if (0 == mMask) { - // don't deallocate! - return; - } + case InsertionState::new_node: + ::new (static_cast(&mKeyVals[idxAndState.first])) Node( + *this, std::piecewise_construct, std::forward_as_tuple(std::forward(key)), + std::forward_as_tuple(std::forward(obj))); + break; - Destroyer::value>{} - .nodesDoNotDeallocate(*this); + case InsertionState::overwrite_node: + mKeyVals[idxAndState.first] = Node(*this, std::piecewise_construct, + std::forward_as_tuple(std::forward(key)), + std::forward_as_tuple(std::forward(obj))); + break; - // This protection against not deleting mMask shouldn't be needed as it's sufficiently - // protected with the 0==mMask check, but I have this anyways because g++ 7 otherwise - // reports a compile error: attempt to free a non-heap object 'fm' - // [-Werror=free-nonheap-object] - if (mKeyVals != reinterpret_cast_no_cast_align_warning(&mMask)) { - ROBIN_HOOD_LOG("std::free") - std::free(mKeyVals); - } + case InsertionState::overflow_error: + throwOverflowError(); + break; } - void init() noexcept { - mKeyVals = reinterpret_cast_no_cast_align_warning(&mMask); - mInfo = reinterpret_cast(&mMask); - mNumElements = 0; - mMask = 0; + return std::make_pair(iterator(mKeyVals + idxAndState.first, mInfo + idxAndState.first), + InsertionState::key_found != idxAndState.second); + } + + void initData(size_t max_elements) + { + mNumElements = 0; + mMask = max_elements - 1; + mMaxNumElementsAllowed = calcMaxNumElementsAllowed(max_elements); + + auto const numElementsWithBuffer = calcNumElementsWithBuffer(max_elements); + + // malloc & zero mInfo. Faster than calloc everything. + auto const numBytesTotal = calcNumBytesTotal(numElementsWithBuffer); + ROBIN_HOOD_LOG("std::calloc " << numBytesTotal << " = calcNumBytesTotal(" + << numElementsWithBuffer << ")") + mKeyVals = reinterpret_cast( + detail::assertNotNull(std::malloc(numBytesTotal))); + mInfo = reinterpret_cast(mKeyVals + numElementsWithBuffer); + std::memset(mInfo, 0, numBytesTotal - numElementsWithBuffer * sizeof(Node)); + + // set sentinel + mInfo[numElementsWithBuffer] = 1; + + mInfoInc = InitialInfoInc; + mInfoHashShift = InitialInfoHashShift; + } + + enum class InsertionState { overflow_error, + key_found, + new_node, + overwrite_node }; + + // Finds key, and if not already present prepares a spot where to pot the key & value. + // This potentially shifts nodes out of the way, updates mInfo and number of inserted + // elements, so the only operation left to do is create/assign a new node at that spot. + template + std::pair insertKeyPrepareEmptySpot(OtherKey&& key) + { + for (int i = 0; i < 256; ++i) { + size_t idx{}; + InfoType info{}; + keyToIdx(key, &idx, &info); + nextWhileLess(&info, &idx); + + // while we potentially have a match + while (info == mInfo[idx]) { + if (WKeyEqual::operator()(key, mKeyVals[idx].getFirst())) { + // key already exists, do NOT insert. + // see http://en.cppreference.com/w/cpp/container/unordered_map/insert + return std::make_pair(idx, InsertionState::key_found); + } + next(&info, &idx); + } + + // unlikely that this evaluates to true + if (ROBIN_HOOD_UNLIKELY(mNumElements >= mMaxNumElementsAllowed)) { + if (!increase_size()) { + return std::make_pair(size_t(0), InsertionState::overflow_error); + } + continue; + } + + // key not found, so we are now exactly where we want to insert it. + auto const insertion_idx = idx; + auto const insertion_info = info; + if (ROBIN_HOOD_UNLIKELY(insertion_info + mInfoInc > 0xFF)) { mMaxNumElementsAllowed = 0; - mInfoInc = InitialInfoInc; - mInfoHashShift = InitialInfoHashShift; - } - - // members are sorted so no padding occurs - uint64_t mHashMultiplier = UINT64_C(0xc4ceb9fe1a85ec53); // 8 byte 8 - Node* mKeyVals = reinterpret_cast_no_cast_align_warning(&mMask); // 8 byte 16 - uint8_t* mInfo = reinterpret_cast(&mMask); // 8 byte 24 - size_t mNumElements = 0; // 8 byte 32 - size_t mMask = 0; // 8 byte 40 - size_t mMaxNumElementsAllowed = 0; // 8 byte 48 - InfoType mInfoInc = InitialInfoInc; // 4 byte 52 - InfoType mInfoHashShift = InitialInfoHashShift; // 4 byte 56 - // 16 byte 56 if NodeAllocator + } + + // find an empty spot + while (0 != mInfo[idx]) { + next(&info, &idx); + } + + if (idx != insertion_idx) { + shiftUp(idx, insertion_idx); + } + // put at empty spot + mInfo[insertion_idx] = static_cast(insertion_info); + ++mNumElements; + return std::make_pair(insertion_idx, idx == insertion_idx + ? InsertionState::new_node + : InsertionState::overwrite_node); + } + + // enough attempts failed, so finally give up. + return std::make_pair(size_t(0), InsertionState::overflow_error); + } + + bool try_increase_info() + { + ROBIN_HOOD_LOG("mInfoInc=" << mInfoInc << ", numElements=" << mNumElements + << ", maxNumElementsAllowed=" + << calcMaxNumElementsAllowed(mMask + 1)) + if (mInfoInc <= 2) { + // need to be > 2 so that shift works (otherwise undefined behavior!) + return false; + } + // we got space left, try to make info smaller + mInfoInc = static_cast(mInfoInc >> 1U); + + // remove one bit of the hash, leaving more space for the distance info. + // This is extremely fast because we can operate on 8 bytes at once. + ++mInfoHashShift; + auto const numElementsWithBuffer = calcNumElementsWithBuffer(mMask + 1); + + for (size_t i = 0; i < numElementsWithBuffer; i += 8) { + auto val = unaligned_load(mInfo + i); + val = (val >> 1U) & UINT64_C(0x7f7f7f7f7f7f7f7f); + std::memcpy(mInfo + i, &val, sizeof(val)); + } + // update sentinel, which might have been cleared out! + mInfo[numElementsWithBuffer] = 1; + + mMaxNumElementsAllowed = calcMaxNumElementsAllowed(mMask + 1); + return true; + } + + // True if resize was possible, false otherwise + bool increase_size() + { + // nothing allocated yet? just allocate InitialNumElements + if (0 == mMask) { + initData(InitialNumElements); + return true; + } + + auto const maxNumElementsAllowed = calcMaxNumElementsAllowed(mMask + 1); + if (mNumElements < maxNumElementsAllowed && try_increase_info()) { + return true; + } + + ROBIN_HOOD_LOG("mNumElements=" << mNumElements << ", maxNumElementsAllowed=" + << maxNumElementsAllowed << ", load=" + << (static_cast(mNumElements) * 100.0 / + (static_cast(mMask) + 1))) + + if (mNumElements * 2 < calcMaxNumElementsAllowed(mMask + 1)) { + // we have to resize, even though there would still be plenty of space left! + // Try to rehash instead. Delete freed memory so we don't steadyily increase mem in case + // we have to rehash a few times + nextHashMultiplier(); + rehashPowerOfTwo(mMask + 1, true); + } else { + // we've reached the capacity of the map, so the hash seems to work nice. Keep using it. + rehashPowerOfTwo((mMask + 1) * 2, false); + } + return true; + } + + void nextHashMultiplier() + { + // adding an *even* number, so that the multiplier will always stay odd. This is necessary + // so that the hash stays a mixing function (and thus doesn't have any information loss). + mHashMultiplier += UINT64_C(0xc4ceb9fe1a85ec54); + } + + void destroy() + { + if (0 == mMask) { + // don't deallocate! + return; + } + + Destroyer::value>{} + .nodesDoNotDeallocate(*this); + + // This protection against not deleting mMask shouldn't be needed as it's sufficiently + // protected with the 0==mMask check, but I have this anyways because g++ 7 otherwise + // reports a compile error: attempt to free a non-heap object 'fm' + // [-Werror=free-nonheap-object] + if (mKeyVals != reinterpret_cast_no_cast_align_warning(&mMask)) { + ROBIN_HOOD_LOG("std::free") + std::free(mKeyVals); + } + } + + void init() noexcept + { + mKeyVals = reinterpret_cast_no_cast_align_warning(&mMask); + mInfo = reinterpret_cast(&mMask); + mNumElements = 0; + mMask = 0; + mMaxNumElementsAllowed = 0; + mInfoInc = InitialInfoInc; + mInfoHashShift = InitialInfoHashShift; + } + + // members are sorted so no padding occurs + uint64_t mHashMultiplier = UINT64_C(0xc4ceb9fe1a85ec53); // 8 byte 8 + Node* mKeyVals = reinterpret_cast_no_cast_align_warning(&mMask); // 8 byte 16 + uint8_t* mInfo = reinterpret_cast(&mMask); // 8 byte 24 + size_t mNumElements = 0; // 8 byte 32 + size_t mMask = 0; // 8 byte 40 + size_t mMaxNumElementsAllowed = 0; // 8 byte 48 + InfoType mInfoInc = InitialInfoInc; // 4 byte 52 + InfoType mInfoHashShift = InitialInfoHashShift; // 4 byte 56 + // 16 byte 56 if NodeAllocator }; } // namespace detail @@ -2517,10 +2715,10 @@ using unordered_node_map = detail::Table, typename KeyEqual = std::equal_to, size_t MaxLoadFactor100 = 80> using unordered_map = - detail::Table) <= sizeof(size_t) * 6 && - std::is_nothrow_move_constructible>::value && - std::is_nothrow_move_assignable>::value, - MaxLoadFactor100, Key, T, Hash, KeyEqual>; + detail::Table) <= sizeof(size_t) * 6 && + std::is_nothrow_move_constructible>::value && + std::is_nothrow_move_assignable>::value, + MaxLoadFactor100, Key, T, Hash, KeyEqual>; // set @@ -2535,8 +2733,8 @@ using unordered_node_set = detail::Table, typename KeyEqual = std::equal_to, size_t MaxLoadFactor100 = 80> using unordered_set = detail::Table::value && - std::is_nothrow_move_assignable::value, + std::is_nothrow_move_constructible::value && + std::is_nothrow_move_assignable::value, MaxLoadFactor100, Key, void, Hash, KeyEqual>; } // namespace robin_hood