-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathutil.py
188 lines (141 loc) · 4.62 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import torch
import random
from enum import IntEnum
from itertools import product, combinations
from util import convert_xywh_to_ltrb
class RelSize(IntEnum):
UNKNOWN = 0
SMALLER = 1
EQUAL = 2
LARGER = 3
class RelLoc(IntEnum):
UNKNOWN = 4
LEFT = 5
TOP = 6
RIGHT = 7
BOTTOM = 8
CENTER = 9
REL_SIZE_ALPHA = 0.1
def detect_size_relation(b1, b2):
a1, a2 = b1[2] * b1[3], b2[2] * b2[3]
a1_sm = (1 - REL_SIZE_ALPHA) * a1
a1_lg = (1 + REL_SIZE_ALPHA) * a1
if a2 <= a1_sm:
return RelSize.SMALLER
if a1_sm < a2 and a2 < a1_lg:
return RelSize.EQUAL
if a1_lg <= a2:
return RelSize.LARGER
raise RuntimeError(b1, b2)
def detect_loc_relation(b1, b2, canvas=False):
if canvas:
yc = b2[1]
y_sm, y_lg = 1. / 3, 2. / 3
if yc <= y_sm:
return RelLoc.TOP
if y_sm < yc and yc < y_lg:
return RelLoc.CENTER
if y_lg <= yc:
return RelLoc.BOTTOM
else:
l1, t1, r1, b1 = convert_xywh_to_ltrb(b1)
l2, t2, r2, b2 = convert_xywh_to_ltrb(b2)
if b2 <= t1:
return RelLoc.TOP
if b1 <= t2:
return RelLoc.BOTTOM
if t1 < b2 and t2 < b1:
if r2 <= l1:
return RelLoc.LEFT
if r1 <= l2:
return RelLoc.RIGHT
if l1 < r2 and l2 < r1:
return RelLoc.CENTER
raise RuntimeError(b1, b2, canvas)
def get_rel_text(rel, canvas=False):
if type(rel) == RelSize:
index = rel - RelSize.UNKNOWN - 1
if canvas:
return [
'within canvas',
'spread over canvas',
'out of canvas',
][index]
else:
return [
'larger than',
'equal to',
'smaller than',
][index]
else:
index = rel - RelLoc.UNKNOWN - 1
if canvas:
return [
'', 'at top',
'', 'at bottom',
'at middle',
][index]
else:
return [
'right to', 'below',
'left to', 'above',
'around',
][index]
class LexicographicSort():
def __call__(self, data):
assert not data.attr['has_canvas_element']
l, t, _, _ = convert_xywh_to_ltrb(data.x.t())
_zip = zip(*sorted(enumerate(zip(t, l)), key=lambda c: c[1:]))
idx = list(list(_zip)[0])
data.x_orig, data.y_orig = data.x, data.y
data.x, data.y = data.x[idx], data.y[idx]
return data
class HorizontalFlip():
def __call__(self, data):
data.x = data.x.clone()
data.x[:, 0] = 1 - data.x[:, 0]
return data
class AddCanvasElement():
def __init__(self):
self.x = torch.tensor([[.5, .5, 1., 1.]], dtype=torch.float)
self.y = torch.tensor([0], dtype=torch.long)
def __call__(self, data):
if not data.attr['has_canvas_element']:
data.x = torch.cat([self.x, data.x], dim=0)
data.y = torch.cat([self.y, data.y + 1], dim=0)
data.attr = data.attr.copy()
data.attr['has_canvas_element'] = True
return data
class AddRelation():
def __init__(self, seed=None, ratio=0.1):
self.ratio = ratio
self.generator = random.Random()
if seed is not None:
self.generator.seed(seed)
def __call__(self, data):
N = data.x.size(0)
has_canvas = data.attr['has_canvas_element']
rel_all = list(product(range(2), combinations(range(N), 2)))
size = int(len(rel_all) * self.ratio)
rel_sample = set(self.generator.sample(rel_all, size))
edge_index, edge_attr = [], []
rel_unk = 1 << RelSize.UNKNOWN | 1 << RelLoc.UNKNOWN
for i, j in combinations(range(N), 2):
bi, bj = data.x[i], data.x[j]
canvas = data.y[i] == 0 and has_canvas
if (0, (i, j)) in rel_sample:
rel_size = 1 << detect_size_relation(bi, bj)
else:
rel_size = 1 << RelSize.UNKNOWN
if (1, (i, j)) in rel_sample:
rel_loc = 1 << detect_loc_relation(bi, bj, canvas)
else:
rel_loc = 1 << RelLoc.UNKNOWN
rel = rel_size | rel_loc
if rel != rel_unk:
edge_index.append((i, j))
edge_attr.append(rel)
data.edge_index = torch.as_tensor(edge_index).long()
data.edge_index = data.edge_index.t().contiguous()
data.edge_attr = torch.as_tensor(edge_attr).long()
return data