forked from bazingagin/npc_gzip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexperiments.py
187 lines (179 loc) · 7.64 KB
/
experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Experiment framework
import os
import torch
import numpy as np
import statistics
import operator
from collections import Counter, defaultdict
from tqdm import tqdm
import random
from functools import partial
from itertools import repeat
from copy import deepcopy
from statistics import mode
import pickle
from sklearn.metrics.cluster import adjusted_rand_score, normalized_mutual_info_score
class KnnExpText:
def __init__(self, agg_f, comp, dis):
self.aggregation_func = agg_f
self.compressor = comp
self.distance_func = dis
self.dis_matrix = []
def calc_dis(self, data, train_data=None, fast=False):
if train_data is not None:
data_to_compare = train_data
else:
data_to_compare = data
for i, t1 in tqdm(enumerate(data)):
distance4i = []
if fast:
t1_compressed = self.compressor.get_compressed_len_fast(t1)
else:
t1_compressed = self.compressor.get_compressed_len(t1)
for j, t2 in enumerate(data_to_compare):
if fast:
t2_compressed = self.compressor.get_compressed_len_fast(t2)
t1t2_compressed = self.compressor.get_compressed_len_fast(self.aggregation_func(t1,t2))
else:
t2_compressed = self.compressor.get_compressed_len(t2)
t1t2_compressed = self.compressor.get_compressed_len(self.aggregation_func(t1, t2))
distance = self.distance_func(t1_compressed, t2_compressed, t1t2_compressed)
distance4i.append(distance)
self.dis_matrix.append(distance4i)
def calc_dis_with_single_compressed_given(self, data, data_len=None, train_data=None):
if train_data is not None:
data_to_compare = train_data
else:
data_to_compare = data
for i, t1 in tqdm(enumerate(data)):
distance4i = []
t1_compressed = self.compressor.get_compressed_len_given_prob(t1, data_len[i])
for j, t2 in tqdm(enumerate(data_to_compare)):
t2_compressed = self.compressor.get_compressed_len_given_prob(t2, data_len[j])
t1t2_compressed = self.compressor.get_compressed_len(self.aggregation_func(t1, t2))
distance = self.distance_func(t1_compressed, t2_compressed, t1t2_compressed)
distance4i.append(distance)
self.dis_matrix.append(distance4i)
def calc_dis_single(self, t1, t2):
t1_compressed = self.compressor.get_compressed_len(t1)
t2_compressed = self.compressor.get_compressed_len(t2)
t1t2_compressed = self.compressor.get_compressed_len(self.aggregation_func(t1, t2))
distance = self.distance_func(t1_compressed, t2_compressed, t1t2_compressed)
return distance
def calc_dis_single_multi(self, train_data, datum):
distance4i = []
t1_compressed = self.compressor.get_compressed_len(datum)
for j, t2 in tqdm(enumerate(train_data)):
t2_compressed = self.compressor.get_compressed_len(t2)
t1t2_compressed = self.compressor.get_compressed_len(self.aggregation_func(datum, t2))
distance = self.distance_func(t1_compressed, t2_compressed, t1t2_compressed)
distance4i.append(distance)
return distance4i
def calc_dis_with_vector(self, data, train_data=None):
if train_data is not None:
data_to_compare = train_data
else:
data_to_compare = data
for i, t1 in tqdm(enumerate(data)):
distance4i = []
for j, t2 in enumerate(data_to_compare):
distance = self.distance_func(t1, t2)
distance4i.append(distance)
self.dis_matrix.append(distance4i)
def calc_acc(self, k, label, train_label=None, provided_distance_matrix=None, rand=False):
if provided_distance_matrix is not None:
self.dis_matrix = provided_distance_matrix
correct = []
pred = []
if train_label is not None:
compare_label = train_label
start = 0
end = k
else:
compare_label = label
start = 1
end = k+1
for i in range(len(self.dis_matrix)):
sorted_idx = np.argsort(np.array(self.dis_matrix[i]))
pred_labels = defaultdict(int)
for j in range(start, end):
pred_l = compare_label[sorted_idx[j]]
pred_labels[pred_l] += 1
sorted_pred_lab = sorted(pred_labels.items(), key=operator.itemgetter(1), reverse=True)
most_count = sorted_pred_lab[0][1]
if_right = 0
most_label = sorted_pred_lab[0][0]
most_voted_labels = []
for pair in sorted_pred_lab:
if pair[1] < most_count:
break
if not rand:
if pair[0] == label[i]:
if_right = 1
most_label = pair[0]
else:
most_voted_labels.append(pair[0])
if rand:
most_label = random.choice(most_voted_labels)
if_right = 1 if most_label==label[i] else 0
pred.append(most_label)
correct.append(if_right)
print("Accuracy is {}".format(sum(correct)/len(correct)))
return pred, correct
def combine_dis_acc(self, k, data, label, train_data=None, train_label=None):
correct = []
pred = []
if train_label is not None:
compare_label = train_label
start = 0
end = k
else:
compare_label = label
start = 1
end = k+1
if train_data is not None:
data_to_compare = train_data
else:
data_to_compare = data
for i, t1 in tqdm(enumerate(data)):
distance4i = self.calc_dis_single_multi(data_to_compare, t1)
sorted_idx = np.argsort(np.array(distance4i))
pred_labels = defaultdict(int)
for j in range(start, end):
pred_l = compare_label[sorted_idx[j]]
pred_labels[pred_l] += 1
sorted_pred_lab = sorted(pred_labels.items(), key=operator.itemgetter(1), reverse=True)
most_count = sorted_pred_lab[0][1]
if_right = 0
most_label = sorted_pred_lab[0][0]
for pair in sorted_pred_lab:
if pair[1] < most_count:
break
if pair[0] == label[i]:
if_right = 1
most_label = pair[0]
pred.append(most_label)
correct.append(if_right)
print("Accuracy is {}".format(sum(correct) / len(correct)))
return pred, correct
def combine_dis_acc_single(self, k, train_data, train_label, datum, label):
# Support multi processing - must provide train data and train label
distance4i = self.calc_dis_single_multi(train_data, datum)
sorted_idx = np.argpartition(np.array(distance4i), range(k))
pred_labels = defaultdict(int)
for j in range(k):
pred_l = train_label[sorted_idx[j]]
pred_labels[pred_l] += 1
sorted_pred_lab = sorted(pred_labels.items(), key=operator.itemgetter(1), reverse=True)
most_count = sorted_pred_lab[0][1]
if_right = 0
most_label = sorted_pred_lab[0][0]
for pair in sorted_pred_lab:
if pair[1] < most_count:
break
if pair[0] == label:
if_right = 1
most_label = pair[0]
pred=most_label
correct=if_right
return pred, correct