-
Notifications
You must be signed in to change notification settings - Fork 248
/
Copy pathdatagen.py
148 lines (119 loc) · 4.46 KB
/
datagen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
'''Load image/labels/boxes from an annotation file.
The list file is like:
img.jpg xmin ymin xmax ymax label xmin ymin xmax ymax label ...
'''
from __future__ import print_function
import os
import sys
import random
import torch
import torch.utils.data as data
import torchvision.transforms as transforms
from PIL import Image
from encoder import DataEncoder
from transform import resize, random_flip, random_crop, center_crop
class ListDataset(data.Dataset):
def __init__(self, root, list_file, train, transform, input_size):
'''
Args:
root: (str) ditectory to images.
list_file: (str) path to index file.
train: (boolean) train or test.
transform: ([transforms]) image transforms.
input_size: (int) model input size.
'''
self.root = root
self.train = train
self.transform = transform
self.input_size = input_size
self.fnames = []
self.boxes = []
self.labels = []
self.encoder = DataEncoder()
with open(list_file) as f:
lines = f.readlines()
self.num_samples = len(lines)
for line in lines:
splited = line.strip().split()
self.fnames.append(splited[0])
num_boxes = (len(splited) - 1) // 5
box = []
label = []
for i in range(num_boxes):
xmin = splited[1+5*i]
ymin = splited[2+5*i]
xmax = splited[3+5*i]
ymax = splited[4+5*i]
c = splited[5+5*i]
box.append([float(xmin),float(ymin),float(xmax),float(ymax)])
label.append(int(c))
self.boxes.append(torch.Tensor(box))
self.labels.append(torch.LongTensor(label))
def __getitem__(self, idx):
'''Load image.
Args:
idx: (int) image index.
Returns:
img: (tensor) image tensor.
loc_targets: (tensor) location targets.
cls_targets: (tensor) class label targets.
'''
# Load image and boxes.
fname = self.fnames[idx]
img = Image.open(os.path.join(self.root, fname))
if img.mode != 'RGB':
img = img.convert('RGB')
boxes = self.boxes[idx].clone()
labels = self.labels[idx]
size = self.input_size
# Data augmentation.
if self.train:
img, boxes = random_flip(img, boxes)
img, boxes = random_crop(img, boxes)
img, boxes = resize(img, boxes, (size,size))
else:
img, boxes = resize(img, boxes, size)
img, boxes = center_crop(img, boxes, (size,size))
img = self.transform(img)
return img, boxes, labels
def collate_fn(self, batch):
'''Pad images and encode targets.
As for images are of different sizes, we need to pad them to the same size.
Args:
batch: (list) of images, cls_targets, loc_targets.
Returns:
padded images, stacked cls_targets, stacked loc_targets.
'''
imgs = [x[0] for x in batch]
boxes = [x[1] for x in batch]
labels = [x[2] for x in batch]
h = w = self.input_size
num_imgs = len(imgs)
inputs = torch.zeros(num_imgs, 3, h, w)
loc_targets = []
cls_targets = []
for i in range(num_imgs):
inputs[i] = imgs[i]
loc_target, cls_target = self.encoder.encode(boxes[i], labels[i], input_size=(w,h))
loc_targets.append(loc_target)
cls_targets.append(cls_target)
return inputs, torch.stack(loc_targets), torch.stack(cls_targets)
def __len__(self):
return self.num_samples
def test():
import torchvision
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.485,0.456,0.406), (0.229,0.224,0.225))
])
dataset = ListDataset(root='/mnt/hgfs/D/download/PASCAL_VOC/voc_all_images',
list_file='./data/voc12_train.txt', train=True, transform=transform, input_size=600)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=8, shuffle=False, num_workers=1, collate_fn=dataset.collate_fn)
for images, loc_targets, cls_targets in dataloader:
print(images.size())
print(loc_targets.size())
print(cls_targets.size())
grid = torchvision.utils.make_grid(images, 1)
torchvision.utils.save_image(grid, 'a.jpg')
break
# test()