Discrete Fourier Transform
In the space $\mathbb{C}^n$ , fourier provide an orthogonal basis
$$
{ v_k = (\omega^0, \omega^k, \omega^{2k}, \dots, \omega^{(n-1)k})}_{0\le k\le n-1}
$$
with $ \omega = e^{2\pi i/n},$
the $n$ -th root of $1$ .
This proposition is valable thanks to
$$
\langle v_k, v_l \rangle
= n\cdot \delta_{k,l}.
$$
and $\forall k\in\mathbb{Z}, ||v_k||^2 = n$ .
As a consequence,
\frac{1}{n}
\begin{bmatrix}
1 & 1 & 1 & \cdots & 1 \
1 & \omega & \omega^2 & \cdots & \omega^{(n-1)} \
\vdots & \vdots & \vdots & \ddots & \vdots \
1 & \omega^{n-1} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)(n-1)}
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 1 & \cdots & 1 \
1 & \bar\omega & \bar\omega^2 & \cdots & \bar\omega^{(n-1)} \
\vdots & \vdots & \vdots & \ddots & \vdots \
1 & \bar\omega^{n-1} & \bar\omega^{2(n-1)} & \cdots & \bar\omega^{(n-1)(n-1)}
\end{bmatrix}
$$
The discrete fourier transform can be represented as follows,
$$
\begin{bmatrix}
\hat f_0 \
\hat f_1 \
\vdots \
\hat f_{n-1} \
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 1 & \cdots & 1 \
1 & \bar\omega & \bar\omega^2 & \cdots & \bar\omega^{(n-1)} \
\vdots & \vdots & \vdots & \ddots & \vdots \
1 & \bar\omega^{n-1} & \bar\omega^{2(n-1)} & \cdots & \bar\omega^{(n-1)(n-1)}
\end{bmatrix}
\begin{bmatrix}
f_0 \
f_1 \
\vdots \
f_{n-1} \
\end{bmatrix}
$$
then the inverse fourier transform would be
$$
\begin{bmatrix}
f_0 \
f_1 \
\vdots \
f_{n-1} \
\end{bmatrix}
\frac{1}{n}
\begin{bmatrix}
1 & 1 & 1 & \cdots & 1 \
1 & \omega & \omega^2 & \cdots & \omega^{(n-1)} \
\vdots & \vdots & \vdots & \ddots & \vdots \
1 & \omega^{n-1} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)(n-1)}
\end{bmatrix}
\begin{bmatrix}
\hat f_0 \
\hat f_1 \
\vdots \
\hat f_{n-1} \
\end{bmatrix}
$$
Equivalently,
the fourier transform element
$$
\hat f_k = \sum_{j=0}^{n-1} \bar\omega^{jk} f_j, \quad 0\le k \le n-1,
$$
and the inverse fourier transform element recovered by
$$
f_l = \sum_{k=0}^{n-1} \omega^{kl} \hat f_k, \quad 0\le l \le n-1.
$$
Fast Fourier Transform (FFT)
Note that
$\forall k\in\mathbb{Z}, e^{2\pi k} = 1$ ,
the elements in matrix above are massively in common, $n$ elements disinct, precisely.
With the orthogonality,
rewrite the formula as follows,
$$
\begin{aligned}
\hat f_k = & \sum_{j=0}^{n-1} \omega^{jk} f_j \\
= & \sum_{j=0}^{n-1} \omega^{2jk} f_{2j} + \sum_{j=0}^{n-1} \omega^{2jk+k} f_{2j+1} \\
= & \sum_{j=0}^{n-1} \omega^{2jk} f_{2j} + \omega^{k}\sum_{j=0}^{n-1} \omega^{2jk} f_{2j+1} \\
\end{aligned}
$$
The above result shows that the coefficients of fourier transform can be calculated recursively using the method of divide and conquer
which reduce the calculation complexity from $O(n^2)$ to $O(n\operatorname{log}n)$ .
Denote the transform matrix as $\Omega$ , then
$$
\Omega_{2n} =
\begin{bmatrix}
I_n & D_n \\
I_n & -D_n \\
\end{bmatrix}
\begin{bmatrix}
\Omega_n & 0 \\
0 & \Omega_n \\
\end{bmatrix}
P
$$
with $P$ is a permutation matrix and
$$
D_n =
\begin{bmatrix}
\omega^0 & & & & \
& \omega^1 & & & \
& & \omega^2 & & \
& & & \ddots & \
\end{bmatrix}.
$$
Consider the space $L^1(-\frac{T}{2},\frac{T}{2})$ ,
the functions ${\psi_k = e^{ikt\cdot 2\pi/T}, t\in\mathbb{R}}_{k\in\mathbb{Z}} $ ,
form a orthogonal basis
since
$$
\langle \psi_k,\psi_l \rangle =
\int_{-T/2}^{T/2}e^{ikt\cdot 2\pi/T} e^{-ilt\cdot 2\pi/T}dt =
T\cdot\delta_{k,l}
$$
For function $f \in L^1(-\frac{T}{2},\frac{T}{2}) $ ,
$$
f(t) = \sum_{k=-\infty}^{\infty} c_k e^{ikt\cdot 2\pi/T}
$$
where
$$
c_k = \frac{1}{T} \langle f(t), e^{ikt\cdot 2\pi/T} \rangle
= \frac{1}{T} \int_{-T/2}^{T/2}f(t)e^{-ikt\cdot 2\pi/T}dt
$$
Since $e^{i\theta} = \operatorname{cos}\theta + i\operatorname{sin}\theta $ ,
suppose $c_k= a_k + ib_k,, a_k,b_k\in\mathbb{R}$ , then
$$
\begin{aligned}
f(t) =& \sum_{k=-\infty}^{\infty} (a_k + ib_k) (\operatorname{cos}(kt\cdot 2\pi/T) + i\operatorname{sin}(kt\cdot 2\pi/T)) \\
= & (a_0+ib_0) + \sum_{k=1}^{\infty} (a_k + ib_k) (\operatorname{cos}(kt\cdot 2\pi/T) + i\operatorname{sin}(kt\cdot 2\pi/T)) \\
& +\sum_{k=1}^{\infty} (a_{-k} + ib_{-k}) (\operatorname{cos}(-kt\cdot 2\pi/T) + i\operatorname{sin}(-kt\cdot 2\pi/T)) \\
\end{aligned}
$$
if $f(t)\in\mathbb{R}$ ,
$a_k=a_{-k}$ and $b_k=-b_{-k}$ which means $c_k=\bar{c_k}$ , then
$$
f(t) = a_0 + \sum_{k=1}^{\infty} (2a_k) \operatorname{cos}(kt\cdot 2\pi/T) + (-2b_k)\operatorname{sin}(kt\cdot 2\pi/T))
$$
Real value, conventional form
For $2\pi$ -periodic function $f$ ,
$$
f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \operatorname{cos}(kt) + b_k\operatorname{sin}(kt))
$$
where
$$
a_k
= \frac{1}{||\operatorname{cos}(kt)||^2} \langle f(t), \operatorname{cos}(kt)\rangle
= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \operatorname{cos}(kt) dt
$$
$$
b_k
= \frac{1}{||\operatorname{sin}(kt)||^2} \langle f(t), \operatorname{sin}(kt)\rangle
= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \operatorname{sin}(kt) dt
$$
From fourier series to fourier transform
$$
f(t) = \sum_{k=-\infty}^{\infty}
\left(
\frac{1}{T} \int_{-T/2}^{T/2}f(x)e^{-ikx\cdot 2\pi/T}dx
\right)
\cdot
e^{ikt\cdot 2\pi/T}
$$
Since
$$
\int_{-\infty}^{\infty}
{f}(t) dt =
\lim_{T\to\infty}
\sum_{k=-\infty}^{\infty}
\frac{2\pi}{T} f(k\cdot\frac{2\pi}{T})
$$
which leads,
$$
\begin{aligned}
f(t)
&=
\lim_{T\to\infty}\sum_{k=-\infty}^{\infty}
\left(
\frac{1}{T} \int_{-T/2}^{T/2}f(x)e^{-ikx\cdot 2\pi/T}
\cdot
e^{ikt\cdot 2\pi/T}
dx
\right) \\
&=
\frac{1}{2\pi}
\lim_{T\to\infty}\sum_{k=-\infty}^{\infty}
\frac{2\pi}{T}
\left(
\int_{-T/2}^{T/2}f(x)e^{-ikx\cdot 2\pi/T}
\cdot
e^{ikt\cdot 2\pi/T}
dx
\right) \\
&=
\frac{1}{2\pi}
\int_{-\infty}^{\infty}
\left(
\int_{-\infty}^{\infty}f(x)e^{-ix\cdot \xi}
\cdot
e^{it\cdot \xi}
dx
\right)
d\xi \\
&=
\frac{1}{2\pi}
\int_{-\infty}^{\infty}
\left(
\int_{-\infty}^{\infty}f(x)e^{-ix\cdot \xi}
dx
\right)
e^{it\cdot \xi}
d\xi \\
\end{aligned}
$$
Denote the Fourier transform as follows,
\int_{-\infty}^{\infty}f(x)e^{-ix\cdot \xi}
dx
$$
then the Inverse Fourier transform
\frac{1}{2\pi}
\int_{-\infty}^{\infty}
\hat {f}(\xi )
e^{it\cdot \xi}
d\xi
$$
this is non-unitary, angular frequency form.
Fourier transform (unitary, oridnay frequency form)
For function $f\in L^1(\mathbb{R})$ ,
i.e. $\int_{-\infty}^{\infty}|f(t)|dt < \infty$ ,
$$
\hat {f}(\xi )
=\int_{-\infty }^{\infty } f(t)e^{-2\pi i\xi t },dt
$$
with
$\hat f\in L^1(\mathbb{R})$ , i.e.
$\int_{-\infty}^{\infty}|f(\xi)|d\xi < \infty$ .
Inverse Fourier transform
$$
{f}(t) = \int_{-\infty }^{\infty } \hat f(\xi)e^{2\pi it\xi },d\xi
$$
If function $f$ is frequency band-limited, i.e.
$ \exists \Omega \le 0, \forall |\xi| \ge \Omega, \hat f(\xi) = 0. $
Then
$$
\hat f(\xi) = \sum_{k=-\infty}^{\infty} c_k e^{ik\xi\cdot \pi/\Omega}
$$
where
$$
c_k = \frac{1}{2\Omega} \langle \hat f(\xi), e^{ik\xi\cdot \pi/\Omega} \rangle
= \frac{1}{2\Omega} \int_{-\Omega}^{\Omega}\hat f(\xi)e^{-ik\xi\cdot \pi/\Omega}d\xi
$$
Further
$$
c_k
= \frac{2\pi}{2\Omega}\frac{1}{2\pi} \int_{-\infty}^{\infty}\hat f(\xi)e^{i(-k\pi/\Omega)\xi}d\xi
= \frac{2\pi}{2\Omega} f(-k\pi/\Omega)
$$
and
$$
\hat f(\xi)
= \sum_{k=-\infty}^{\infty} \frac{2\pi}{2\Omega} f(-k\pi/\Omega) e^{ik\xi\cdot \pi/\Omega}
= \sum_{k=-\infty}^{\infty} \frac{2\pi}{2\Omega} f(k\pi/\Omega) e^{-ik\xi\cdot \pi/\Omega}
$$
Therefore,
$$
\begin{aligned}
f(t)
&= \frac{1}{2\pi} \int_{-\Omega}^{\Omega} \hat {f}(\xi ) e^{it\cdot \xi} d\xi\
&= \frac{1}{2\pi} \int_{-\Omega}^{\Omega} \left( \sum_{k=-\infty}^{\infty}
\frac{2\pi}{2\Omega} f(k\pi/\Omega) e^{-ik\xi\cdot \pi/\Omega} \right) e^{it\cdot \xi} d\xi \
&= \frac{1}{2\Omega} \sum_{k=-\infty}^{\infty} f(k\pi/\Omega)
\int_{-\Omega}^{\Omega} e^{-i\xi(k\cdot \pi/\Omega-t)} d\xi \
&= \frac{1}{2\Omega} \sum_{k=-\infty}^{\infty} f(k\pi/\Omega)
\left[
\frac{1}{-i(k\cdot \pi/\Omega-t)}
e^{-i\xi(k\cdot \pi/\Omega-t)}
\right]{-\Omega}^{\Omega} \
&= \sum {k=-\infty}^{\infty} f(k\pi/\Omega)
\frac{\operatorname{sin}(k\pi-\Omega t)}{k\pi- \Omega t}
\end{aligned}
$$
$$
\int_{-\infty}^{\infty}f'(t)e^{-it\cdot \xi} dt
\left[ f(t)e^{-it\cdot \xi}\right]{-\infty}^{\infty} -
\int {-\infty}^{\infty}f(t)(-i\xi)e^{-it\cdot \xi} dt
(i\xi)\int_{-\infty}^{\infty}f(t)e^{-it\cdot \xi} dt
$$
$$
\mathcal{F}(\frac{df(t)}{dt})
(i\xi)
\mathcal{F}(f(t))
$$
Definition
$$
(f*g)(x) = \int_{-\infty}^{\infty}f(\xi)g(x-\xi) d \xi
$$
$$
\mathcal{F}(f*g) = \mathcal{F}(f)\cdot\mathcal{F}(g)
$$
$$
fg = g f
$$
$$
\begin{aligned}
\mathcal{F}(f*g)
= &
\int_{-\infty}^{\infty}
\int_{-\infty}^{\infty}f(\xi)g(x-\xi) d\xi
e^{-ix\cdot t}
dx \
= &
\int_{-\infty}^{\infty}
f(\xi)
\left(
\int_{-\infty}^{\infty}
g(x-\xi)
e^{-ix\cdot t}
dx
\right)
d\xi \
= &
\int_{-\infty}^{\infty}
f(\xi)
\left(
\int_{-\infty}^{\infty}
g(x-\xi)
e^{-i(x-\xi)\cdot t}
d(x-\xi)
\right)
e^{-i\xi\cdot t}
d\xi \
= &
\hat g(t)
\int_{-\infty}^{\infty}
f(\xi)
e^{-i\xi\cdot t}
d\xi \
= &
\mathcal{F}(f)\cdot\mathcal{F}(g) \
\end{aligned}
$$
$$
\int_{-\infty}^{\infty}|\hat f(\xi)|^2d\xi =
2\pi \int_{-\infty}^{\infty}|f(t)|^2dt
$$