Skip to content

Latest commit

 

History

History
483 lines (391 loc) · 9.14 KB

fourier.md

File metadata and controls

483 lines (391 loc) · 9.14 KB

Fourier Analysis

Discrete Fourier Transform

In the space $\mathbb{C}^n$, fourier provide an orthogonal basis

$$ { v_k = (\omega^0, \omega^k, \omega^{2k}, \dots, \omega^{(n-1)k})}_{0\le k\le n-1} $$

with $ \omega = e^{2\pi i/n},$ the $n$-th root of $1$.

This proposition is valable thanks to

$$ \langle v_k, v_l \rangle = n\cdot \delta_{k,l}. $$

and $\forall k\in\mathbb{Z}, ||v_k||^2 = n$.

As a consequence,

$$ I_n

\frac{1}{n} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \ 1 & \omega & \omega^2 & \cdots & \omega^{(n-1)} \ \vdots & \vdots & \vdots & \ddots & \vdots \ 1 & \omega^{n-1} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)(n-1)} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \ 1 & \bar\omega & \bar\omega^2 & \cdots & \bar\omega^{(n-1)} \ \vdots & \vdots & \vdots & \ddots & \vdots \ 1 & \bar\omega^{n-1} & \bar\omega^{2(n-1)} & \cdots & \bar\omega^{(n-1)(n-1)} \end{bmatrix} $$

The discrete fourier transform can be represented as follows,

$$ \begin{bmatrix} \hat f_0 \ \hat f_1 \ \vdots \ \hat f_{n-1} \ \end{bmatrix}

\begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \ 1 & \bar\omega & \bar\omega^2 & \cdots & \bar\omega^{(n-1)} \ \vdots & \vdots & \vdots & \ddots & \vdots \ 1 & \bar\omega^{n-1} & \bar\omega^{2(n-1)} & \cdots & \bar\omega^{(n-1)(n-1)} \end{bmatrix} \begin{bmatrix} f_0 \ f_1 \ \vdots \ f_{n-1} \ \end{bmatrix} $$

then the inverse fourier transform would be

$$ \begin{bmatrix} f_0 \ f_1 \ \vdots \ f_{n-1} \ \end{bmatrix}

\frac{1}{n} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \ 1 & \omega & \omega^2 & \cdots & \omega^{(n-1)} \ \vdots & \vdots & \vdots & \ddots & \vdots \ 1 & \omega^{n-1} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)(n-1)} \end{bmatrix} \begin{bmatrix} \hat f_0 \ \hat f_1 \ \vdots \ \hat f_{n-1} \ \end{bmatrix} $$

Equivalently, the fourier transform element

$$ \hat f_k = \sum_{j=0}^{n-1} \bar\omega^{jk} f_j, \quad 0\le k \le n-1, $$

and the inverse fourier transform element recovered by

$$ f_l = \sum_{k=0}^{n-1} \omega^{kl} \hat f_k, \quad 0\le l \le n-1. $$

Fast Fourier Transform (FFT)

Note that $\forall k\in\mathbb{Z}, e^{2\pi k} = 1$, the elements in matrix above are massively in common, $n$ elements disinct, precisely.

With the orthogonality, rewrite the formula as follows,

$$ \begin{aligned} \hat f_k = & \sum_{j=0}^{n-1} \omega^{jk} f_j \\ = & \sum_{j=0}^{n-1} \omega^{2jk} f_{2j} + \sum_{j=0}^{n-1} \omega^{2jk+k} f_{2j+1} \\ = & \sum_{j=0}^{n-1} \omega^{2jk} f_{2j} + \omega^{k}\sum_{j=0}^{n-1} \omega^{2jk} f_{2j+1} \\ \end{aligned} $$

The above result shows that the coefficients of fourier transform can be calculated recursively using the method of divide and conquer which reduce the calculation complexity from $O(n^2)$ to $O(n\operatorname{log}n)$.

Denote the transform matrix as $\Omega$, then

$$ \Omega_{2n} = \begin{bmatrix} I_n & D_n \\ I_n & -D_n \\ \end{bmatrix} \begin{bmatrix} \Omega_n & 0 \\ 0 & \Omega_n \\ \end{bmatrix} P $$

with $P$ is a permutation matrix and

$$ D_n = \begin{bmatrix} \omega^0 & & & & \ & \omega^1 & & & \ & & \omega^2 & & \ & & & \ddots & \ \end{bmatrix}.

$$

Fourier series

Consider the space $L^1(-\frac{T}{2},\frac{T}{2})$, the functions ${\psi_k = e^{ikt\cdot 2\pi/T}, t\in\mathbb{R}}_{k\in\mathbb{Z}} $, form a orthogonal basis since

$$ \langle \psi_k,\psi_l \rangle = \int_{-T/2}^{T/2}e^{ikt\cdot 2\pi/T} e^{-ilt\cdot 2\pi/T}dt = T\cdot\delta_{k,l} $$

Complex form

For function $f \in L^1(-\frac{T}{2},\frac{T}{2}) $,

$$ f(t) = \sum_{k=-\infty}^{\infty} c_k e^{ikt\cdot 2\pi/T} $$

where

$$ c_k = \frac{1}{T} \langle f(t), e^{ikt\cdot 2\pi/T} \rangle = \frac{1}{T} \int_{-T/2}^{T/2}f(t)e^{-ikt\cdot 2\pi/T}dt $$

From complex to real

Since $e^{i\theta} = \operatorname{cos}\theta + i\operatorname{sin}\theta $, suppose $c_k= a_k + ib_k,, a_k,b_k\in\mathbb{R}$, then

$$ \begin{aligned} f(t) =& \sum_{k=-\infty}^{\infty} (a_k + ib_k) (\operatorname{cos}(kt\cdot 2\pi/T) + i\operatorname{sin}(kt\cdot 2\pi/T)) \\ = & (a_0+ib_0) + \sum_{k=1}^{\infty} (a_k + ib_k) (\operatorname{cos}(kt\cdot 2\pi/T) + i\operatorname{sin}(kt\cdot 2\pi/T)) \\ & +\sum_{k=1}^{\infty} (a_{-k} + ib_{-k}) (\operatorname{cos}(-kt\cdot 2\pi/T) + i\operatorname{sin}(-kt\cdot 2\pi/T)) \\ \end{aligned} $$

if $f(t)\in\mathbb{R}$, $a_k=a_{-k}$ and $b_k=-b_{-k}$ which means $c_k=\bar{c_k}$, then

$$ f(t) = a_0 + \sum_{k=1}^{\infty} (2a_k) \operatorname{cos}(kt\cdot 2\pi/T) + (-2b_k)\operatorname{sin}(kt\cdot 2\pi/T)) $$

Real value, conventional form

For $2\pi$-periodic function $f$,

$$ f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \operatorname{cos}(kt) + b_k\operatorname{sin}(kt)) $$

where

$$ a_k = \frac{1}{||\operatorname{cos}(kt)||^2} \langle f(t), \operatorname{cos}(kt)\rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \operatorname{cos}(kt) dt $$

$$ b_k = \frac{1}{||\operatorname{sin}(kt)||^2} \langle f(t), \operatorname{sin}(kt)\rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \operatorname{sin}(kt) dt $$

Fourier Transform

From fourier series to fourier transform

$$ f(t) = \sum_{k=-\infty}^{\infty} \left( \frac{1}{T} \int_{-T/2}^{T/2}f(x)e^{-ikx\cdot 2\pi/T}dx \right) \cdot e^{ikt\cdot 2\pi/T} $$

Since

$$ \int_{-\infty}^{\infty} {f}(t) dt = \lim_{T\to\infty} \sum_{k=-\infty}^{\infty} \frac{2\pi}{T} f(k\cdot\frac{2\pi}{T}) $$

which leads,

$$ \begin{aligned} f(t) &= \lim_{T\to\infty}\sum_{k=-\infty}^{\infty} \left( \frac{1}{T} \int_{-T/2}^{T/2}f(x)e^{-ikx\cdot 2\pi/T} \cdot e^{ikt\cdot 2\pi/T} dx \right) \\ &= \frac{1}{2\pi} \lim_{T\to\infty}\sum_{k=-\infty}^{\infty} \frac{2\pi}{T} \left( \int_{-T/2}^{T/2}f(x)e^{-ikx\cdot 2\pi/T} \cdot e^{ikt\cdot 2\pi/T} dx \right) \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \left( \int_{-\infty}^{\infty}f(x)e^{-ix\cdot \xi} \cdot e^{it\cdot \xi} dx \right) d\xi \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \left( \int_{-\infty}^{\infty}f(x)e^{-ix\cdot \xi} dx \right) e^{it\cdot \xi} d\xi \\ \end{aligned} $$

Denote the Fourier transform as follows,

$$ \hat {f}(\xi )

\int_{-\infty}^{\infty}f(x)e^{-ix\cdot \xi} dx $$

then the Inverse Fourier transform

$$ f(t)

\frac{1}{2\pi} \int_{-\infty}^{\infty} \hat {f}(\xi ) e^{it\cdot \xi} d\xi $$

this is non-unitary, angular frequency form.

Fourier transform (unitary, oridnay frequency form)

For function $f\in L^1(\mathbb{R})$, i.e. $\int_{-\infty}^{\infty}|f(t)|dt < \infty$,

$$ \hat {f}(\xi ) =\int_{-\infty }^{\infty } f(t)e^{-2\pi i\xi t },dt $$

with $\hat f\in L^1(\mathbb{R})$, i.e. $\int_{-\infty}^{\infty}|f(\xi)|d\xi < \infty$.

Inverse Fourier transform

$$ {f}(t) = \int_{-\infty }^{\infty } \hat f(\xi)e^{2\pi it\xi },d\xi $$

More

If function $f$ is frequency band-limited, i.e. $ \exists \Omega \le 0, \forall |\xi| \ge \Omega, \hat f(\xi) = 0. $ Then

$$ \hat f(\xi) = \sum_{k=-\infty}^{\infty} c_k e^{ik\xi\cdot \pi/\Omega} $$

where

$$ c_k = \frac{1}{2\Omega} \langle \hat f(\xi), e^{ik\xi\cdot \pi/\Omega} \rangle = \frac{1}{2\Omega} \int_{-\Omega}^{\Omega}\hat f(\xi)e^{-ik\xi\cdot \pi/\Omega}d\xi $$

Further

$$ c_k = \frac{2\pi}{2\Omega}\frac{1}{2\pi} \int_{-\infty}^{\infty}\hat f(\xi)e^{i(-k\pi/\Omega)\xi}d\xi = \frac{2\pi}{2\Omega} f(-k\pi/\Omega) $$

and

$$ \hat f(\xi) = \sum_{k=-\infty}^{\infty} \frac{2\pi}{2\Omega} f(-k\pi/\Omega) e^{ik\xi\cdot \pi/\Omega} = \sum_{k=-\infty}^{\infty} \frac{2\pi}{2\Omega} f(k\pi/\Omega) e^{-ik\xi\cdot \pi/\Omega} $$

Therefore,

$$ \begin{aligned} f(t) &= \frac{1}{2\pi} \int_{-\Omega}^{\Omega} \hat {f}(\xi ) e^{it\cdot \xi} d\xi\ &= \frac{1}{2\pi} \int_{-\Omega}^{\Omega} \left( \sum_{k=-\infty}^{\infty} \frac{2\pi}{2\Omega} f(k\pi/\Omega) e^{-ik\xi\cdot \pi/\Omega} \right) e^{it\cdot \xi} d\xi \ &= \frac{1}{2\Omega} \sum_{k=-\infty}^{\infty} f(k\pi/\Omega) \int_{-\Omega}^{\Omega} e^{-i\xi(k\cdot \pi/\Omega-t)} d\xi \ &= \frac{1}{2\Omega} \sum_{k=-\infty}^{\infty} f(k\pi/\Omega) \left[ \frac{1}{-i(k\cdot \pi/\Omega-t)} e^{-i\xi(k\cdot \pi/\Omega-t)}
\right]{-\Omega}^{\Omega} \ &= \sum{k=-\infty}^{\infty} f(k\pi/\Omega) \frac{\operatorname{sin}(k\pi-\Omega t)}{k\pi- \Omega t} \end{aligned} $$

Derivatives.

$$ \int_{-\infty}^{\infty}f'(t)e^{-it\cdot \xi} dt

\left[ f(t)e^{-it\cdot \xi}\right]{-\infty}^{\infty} - \int{-\infty}^{\infty}f(t)(-i\xi)e^{-it\cdot \xi} dt

(i\xi)\int_{-\infty}^{\infty}f(t)e^{-it\cdot \xi} dt $$

$$ \mathcal{F}(\frac{df(t)}{dt})

(i\xi) \mathcal{F}(f(t)) $$

Convolution

Definition

$$ (f*g)(x) = \int_{-\infty}^{\infty}f(\xi)g(x-\xi) d \xi $$

$$ \mathcal{F}(f*g) = \mathcal{F}(f)\cdot\mathcal{F}(g) $$

$$ fg = gf $$

$$ \begin{aligned} \mathcal{F}(f*g) = & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}f(\xi)g(x-\xi) d\xi e^{-ix\cdot t} dx \

= & \int_{-\infty}^{\infty} f(\xi) \left( \int_{-\infty}^{\infty} g(x-\xi) e^{-ix\cdot t} dx \right) d\xi \

= & \int_{-\infty}^{\infty} f(\xi) \left( \int_{-\infty}^{\infty} g(x-\xi) e^{-i(x-\xi)\cdot t} d(x-\xi) \right) e^{-i\xi\cdot t} d\xi \

= & \hat g(t) \int_{-\infty}^{\infty} f(\xi) e^{-i\xi\cdot t} d\xi \

= & \mathcal{F}(f)\cdot\mathcal{F}(g) \ \end{aligned} $$

Parseval's theorem

$$ \int_{-\infty}^{\infty}|\hat f(\xi)|^2d\xi = 2\pi \int_{-\infty}^{\infty}|f(t)|^2dt $$