-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFeatureImportance.py
35 lines (29 loc) · 1.37 KB
/
FeatureImportance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestClassifier
data = pd.read_csv("Dataset/heart.csv")
data.head()
label_encoder = LabelEncoder()
data["Sex"] = label_encoder.fit_transform(data["Sex"])
data["ChestPainType"] = label_encoder.fit_transform(data["ChestPainType"])
data["RestingECG"] = label_encoder.fit_transform(data["RestingECG"])
data["ExerciseAngina"] = label_encoder.fit_transform(data["ExerciseAngina"])
data["ST_Slope"] = label_encoder.fit_transform(data["ST_Slope"])
X = data.drop("HeartDisease", axis=1)
y = data["HeartDisease"]
rf_classifier = RandomForestClassifier()
rf_classifier.fit(X,y)
feature_importances = rf_classifier.feature_importances_
feature_importances_df = pd.DataFrame({'Feature': X.columns, 'Importances': feature_importances})
feature_importances_df = feature_importances_df.sort_values(by="Importances", ascending=False)
print("Ranked list of features by importances:")
print(feature_importances_df)
corr_matrix = X.corr()
importances_matrix = pd.DataFrame(corr_matrix)
importances_matrix['Importance'] = feature_importances
plt.figure(figsize=(12,8))
sns.heatmap(importances_matrix, annot=True, cmap='coolwarm', vmin=-1, vmax=1, center=0, linewidths=0.5, linecolor="black")
plt.title("Feature Correlation and Importance Heatmap")
plt.show()