-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathkpconv_pytorch_mix3d.patch
36 lines (33 loc) · 1.4 KB
/
kpconv_pytorch_mix3d.patch
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
diff --git a/datasets/SemanticKitti.py b/datasets/SemanticKitti.py
index 7a781e9..7d77bd4 100644
--- a/datasets/SemanticKitti.py
+++ b/datasets/SemanticKitti.py
@@ -418,6 +418,10 @@ class SemanticKittiDataset(PointCloudDataset):
# Concatenate batch
###################
+ # MOVE TO CENTER FOR MIX3D
+ for p_i in range(len(p_list)):
+ p_list[p_i] -= p_list[p_i].mean(axis=0)
+
stacked_points = np.concatenate(p_list, axis=0)
features = np.concatenate(f_list, axis=0)
labels = np.concatenate(l_list, axis=0)
@@ -427,6 +431,15 @@ class SemanticKittiDataset(PointCloudDataset):
scales = np.array(s_list, dtype=np.float32)
rots = np.stack(R_list, axis=0)
+ # roughly 20% non-merged
+ remainder = (stack_lengths.shape[0] - 2) // 4
+
+ if (stack_lengths.shape[0] - remainder) % 2 == 1:
+ remainder += 1
+
+ combined_lengths = np.sum(np.reshape(stack_lengths[:-remainder], (-1, 2)), axis=1)
+ stack_lengths = np.concatenate([combined_lengths, stack_lengths[-remainder:]]).astype(np.int32)
+
# Input features (Use reflectance, input height or all coordinates)
stacked_features = np.ones_like(stacked_points[:, :1], dtype=np.float32)
if self.config.in_features_dim == 1:
@@ -1453,3 +1466,4 @@ def debug_class_w(dataset, loader):
print(s)
i += 1
+