-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtf_poc_dataset.py
executable file
·100 lines (75 loc) · 3.23 KB
/
tf_poc_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tensorflow as tf
import numpy as np
_poc_tf_module = None
def load_poc_tf_plugin():
global _poc_tf_module
if _poc_tf_module is not None:
return _poc_tf_module
# asssumming it's compatible
_poc_tf_module = tf.load_op_library("./libpoc_tf_dataset.so")
return _poc_tf_module
from tensorflow.python.data.util import nest
load_poc_tf_plugin()
from tensorflow.python.framework import ops
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.data.util import structure
import functools
##
## Dataset Python wrapper
##
def dataset_options():
options = tf.data.Options()
options.experimental_optimization.apply_default_optimizations = False
options.experimental_optimization.autotune = False
return options
class _PocDatasetV2(dataset_ops.DatasetV2):
def __init__(self, input_dataset, input_device, output_device, output_dtypes, output_shapes, process_on='cpu', fail_on_device_mismatch=True):
# Skipping all error checking for tersness
output_classes = nest.map_structure(lambda _: ops.Tensor, output_dtypes)
self._input_dataset = input_dataset
self._input_device = input_device
self._output_device = output_device
self._process_on = process_on
self._output_shapes = output_shapes
self._output_dtypes = output_dtypes
self._fail_on_device_mismatch = fail_on_device_mismatch
self._structure = structure.convert_legacy_structure(self._output_dtypes, self._output_shapes, output_classes)
super(_PocDatasetV2, self).__init__(self._as_variant_tensor())
@property
def element_spec(self):
return self._structure
@property
def _element_structure(self):
return self._structure
def _inputs(self):
# Apparently here TF is happy with a list
return nest.flatten(self._input_dataset)
def _as_variant_tensor(self):
# Call to the Op
return _poc_tf_module.poc_dataset(
self._input_dataset._variant_tensor,
input_device=self._input_device, # TODO(klecki): take this from input dataset placements?
output_device=self._output_device,
process_on=self._process_on,
output_shapes=self._output_shapes,
output_dtypes=self._output_dtypes,
fail_on_device_mismatch=self._fail_on_device_mismatch)
_PocDatasetImpl = _PocDatasetV2
class PocDataset(dataset_ops._OptionsDataset):
@functools.wraps(_PocDatasetV2.__init__)
def __init__(self, *args, **kwargs):
dataset_impl = _PocDatasetImpl(*args, **kwargs)
super(PocDataset, self).__init__(dataset_impl, dataset_options())