You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hello there!
I'm running the demo.ipynb from rt-mrcnn-master/samples. https://github.com/noxouille/rt-mrcnn
I converted it to demo.py. I commented this statement #get_ipython().run_line_magic('matplotlib', 'inline').
When I run it ($python demo.py), it gives the following error.
tensorflow.python.framework.errors_impl.InvalidArgumentError: Incompatible shapes: [1,256,48,64] vs. [1,256,47,63]
Now I don't understand what to do. Any help please. For more details I paste the whole messages below.
Thanks
(test) *****@*-Server:~/Projects/rt-mrcnn-master/samples$ python demo.py
Using TensorFlow backend.
Hello there!
I'm running the demo.ipynb from rt-mrcnn-master/samples.
https://github.com/noxouille/rt-mrcnn
I converted it to demo.py. I commented this statement #get_ipython().run_line_magic('matplotlib', 'inline').
When I run it ($python demo.py), it gives the following error.
tensorflow.python.framework.errors_impl.InvalidArgumentError: Incompatible shapes: [1,256,48,64] vs. [1,256,47,63]
Now I don't understand what to do. Any help please. For more details I paste the whole messages below.
Thanks
(test) *****@*-Server:~/Projects/rt-mrcnn-master/samples$ python demo.py
Using TensorFlow backend.
Configurations:
BACKBONE resnet101
BACKBONE_STRIDES [4, 8, 16, 32, 64]
BATCH_SIZE 1
BBOX_STD_DEV [0.1 0.1 0.2 0.2]
COMPUTE_BACKBONE_SHAPE None
DETECTION_MAX_INSTANCES 100
DETECTION_MIN_CONFIDENCE 0.7
DETECTION_NMS_THRESHOLD 0.3
FPN_CLASSIF_FC_LAYERS_SIZE 1024
GPU_COUNT 1
GRADIENT_CLIP_NORM 5.0
IMAGES_PER_GPU 1
IMAGE_CHANNEL_COUNT 3
IMAGE_MAX_DIM 1024
IMAGE_META_SIZE 93
IMAGE_MIN_DIM 800
IMAGE_MIN_SCALE 0
IMAGE_RESIZE_MODE none
IMAGE_SHAPE [1024 1024 3]
LEARNING_MOMENTUM 0.9
LEARNING_RATE 0.001
LOSS_WEIGHTS {'rpn_class_loss': 1.0, 'rpn_bbox_loss': 1.0, 'mrcnn_class_loss': 1.0, 'mrcnn_bbox_loss': 1.0, 'mrcnn_mask_loss': 1.0}
MASK_POOL_SIZE 14
MASK_SHAPE [28, 28]
MAX_GT_INSTANCES 100
MEAN_PIXEL [123.7 116.8 103.9]
MINI_MASK_SHAPE (56, 56)
NAME coco
NUM_CLASSES 81
POOL_SIZE 7
POST_NMS_ROIS_INFERENCE 1000
POST_NMS_ROIS_TRAINING 2000
PRE_NMS_LIMIT 6000
ROI_POSITIVE_RATIO 0.33
RPN_ANCHOR_RATIOS [0.5, 1, 2]
RPN_ANCHOR_SCALES (32, 64, 128, 256, 512)
RPN_ANCHOR_STRIDE 1
RPN_BBOX_STD_DEV [0.1 0.1 0.2 0.2]
RPN_NMS_THRESHOLD 0.7
RPN_TRAIN_ANCHORS_PER_IMAGE 256
STEPS_PER_EPOCH 1000
TOP_DOWN_PYRAMID_SIZE 256
TRAIN_BN False
TRAIN_ROIS_PER_IMAGE 200
USE_MINI_MASK True
USE_RPN_ROIS True
VALIDATION_STEPS 50
WEIGHT_DECAY 0.0001
WARNING:tensorflow:From /home/faheem/.conda/envs/test/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
WARNING:tensorflow:From /home/faheem/.conda/envs/test/lib/python3.6/site-packages/mask_rcnn-2.1-py3.6.egg/mrcnn/model.py:772: to_float (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
2019-05-23 14:21:14.601297: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 AVX512F FMA
2019-05-23 14:21:14.623461: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 3500000000 Hz
2019-05-23 14:21:14.624053: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x557c7f67bbb0 executing computations on platform Host. Devices:
2019-05-23 14:21:14.624102: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (0): ,
2019-05-23 14:21:15.355519: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x557c7f7613d0 executing computations on platform CUDA. Devices:
2019-05-23 14:21:15.355558: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (0): GeForce GTX 1080 Ti, Compute Capability 6.1
2019-05-23 14:21:15.355568: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (1): GeForce GTX 1080 Ti, Compute Capability 6.1
2019-05-23 14:21:15.355576: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (2): GeForce GTX 1080 Ti, Compute Capability 6.1
2019-05-23 14:21:15.355584: I tensorflow/compiler/xla/service/service.cc:158] StreamExecutor device (3): GeForce GTX 1080 Ti, Compute Capability 6.1
2019-05-23 14:21:15.356344: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1433] Found device 0 with properties:
name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.62
pciBusID: 0000:19:00.0
totalMemory: 10.92GiB freeMemory: 10.76GiB
2019-05-23 14:21:15.356526: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1433] Found device 1 with properties:
name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.62
pciBusID: 0000:1a:00.0
totalMemory: 10.92GiB freeMemory: 10.76GiB
2019-05-23 14:21:15.356698: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1433] Found device 2 with properties:
name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.62
pciBusID: 0000:67:00.0
totalMemory: 10.92GiB freeMemory: 10.76GiB
2019-05-23 14:21:15.356865: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1433] Found device 3 with properties:
name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.62
pciBusID: 0000:68:00.0
totalMemory: 10.92GiB freeMemory: 10.70GiB
2019-05-23 14:21:15.364666: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1512] Adding visible gpu devices: 0, 1, 2, 3
2019-05-23 14:21:15.368640: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-05-23 14:21:15.368659: I tensorflow/core/common_runtime/gpu/gpu_device.cc:990] 0 1 2 3
2019-05-23 14:21:15.368664: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1003] 0: N Y Y Y
2019-05-23 14:21:15.368668: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1003] 1: Y N Y Y
2019-05-23 14:21:15.368672: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1003] 2: Y Y N Y
2019-05-23 14:21:15.368675: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1003] 3: Y Y Y N
2019-05-23 14:21:15.369197: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 10468 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:19:00.0, compute capability: 6.1)
2019-05-23 14:21:15.369500: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:1 with 10468 MB memory) -> physical GPU (device: 1, name: GeForce GTX 1080 Ti, pci bus id: 0000:1a:00.0, compute capability: 6.1)
2019-05-23 14:21:15.369730: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:2 with 10468 MB memory) -> physical GPU (device: 2, name: GeForce GTX 1080 Ti, pci bus id: 0000:67:00.0, compute capability: 6.1)
2019-05-23 14:21:15.370062: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:3 with 10407 MB memory) -> physical GPU (device: 3, name: GeForce GTX 1080 Ti, pci bus id: 0000:68:00.0, compute capability: 6.1)
Processing 1 images
image shape: (375, 500, 3) min: 0.00000 max: 255.00000 uint8
molded_images shape: (1, 375, 500, 3) min: -123.70000 max: 151.10000 float64
image_metas shape: (1, 93) min: 0.00000 max: 500.00000 int64
anchors shape: (1, 47157, 4) min: -0.96802 max: 1.82096 float32
2019-05-23 14:21:19.397662: I tensorflow/stream_executor/dso_loader.cc:152] successfully opened CUDA library libcublas.so.10.0 locally
Traceback (most recent call last):
File "demo.py", line 131, in
results = model.detect([image], verbose=1)
File "/home/faheem/.conda/envs/test/lib/python3.6/site-packages/mask_rcnn-2.1-py3.6.egg/mrcnn/model.py", line 2524, in detect
File "/home/faheem/.conda/envs/test/lib/python3.6/site-packages/keras/engine/training.py", line 1169, in predict
steps=steps)
File "/home/faheem/.conda/envs/test/lib/python3.6/site-packages/keras/engine/training_arrays.py", line 294, in predict_loop
batch_outs = f(ins_batch)
File "/home/faheem/.conda/envs/test/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py", line 2715, in call
return self._call(inputs)
File "/home/faheem/.conda/envs/test/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py", line 2675, in _call
fetched = self._callable_fn(*array_vals)
File "/home/faheem/.conda/envs/test/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1439, in call
run_metadata_ptr)
File "/home/faheem/.conda/envs/test/lib/python3.6/site-packages/tensorflow/python/framework/errors_impl.py", line 528, in exit
c_api.TF_GetCode(self.status.status))
tensorflow.python.framework.errors_impl.InvalidArgumentError: Incompatible shapes: [1,256,48,64] vs. [1,256,47,63]
[[{{node fpn_p3add/add}}]]
[[{{node mrcnn_detection/map/TensorArrayUnstack/range}}]]
The text was updated successfully, but these errors were encountered: