-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDNM.py
479 lines (435 loc) · 28.2 KB
/
DNM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
import math
import numpy as np
import tensorflow as tf
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
from time import time
import argparse
import LoadData as DATA
from tensorflow.contrib.layers.python.layers import batch_norm as batch_norm
#################### Arguments ####################
def parse_args():
parser = argparse.ArgumentParser(description="Run DNM.")
parser.add_argument('--path', nargs='?', default='data/',
help='Input data path.')
parser.add_argument('--dataset', nargs='?', default='5/',
help='Choose a dataset with given training ratio.')
parser.add_argument('--epoch', type=int, default=200,
help='Number of epochs.')
parser.add_argument('--batch_size', type=int, default=256,
help='Batch size (128-512).')
parser.add_argument('--hidden_factor', type=int, default=64,
help='Number of hidden factors.')
parser.add_argument('--layers', nargs='?', default='[128]',
help="Size of each layer.")
parser.add_argument('--layers_rt', nargs='?', default='[64]',
help="Size of each layer.")
parser.add_argument('--layers_tp', nargs='?', default='[64]',
help="Size of each layer.")
parser.add_argument('--keep_prob', nargs='?', default='[1.0, 0.8]',
help='Keep probability for each deep layer and the Interaction layer. 1: no dropout. Note that the last index is for the Interaction layer.')
parser.add_argument('--lamda', type=float, default=0,
help='Regularizer for bilinear part.')
parser.add_argument('--lr', type=float, default=0.05,
help='Learning rate.')
parser.add_argument('--loss_type', nargs='?', default='L1_loss',
help='Specify a loss type (L1_loss or L2_loss).')
parser.add_argument('--optimizer', nargs='?', default='AdagradOptimizer',
help='Specify an optimizer type (AdamOptimizer, AdagradOptimizer, GradientDescentOptimizer, MomentumOptimizer).')
parser.add_argument('--verbose', type=int, default=1,
help='Show the results per X epochs (0, 1 ... any positive integer)')
parser.add_argument('--batch_norm', type=int, default=1,
help='Whether to perform batch normaization (0 or 1)')
parser.add_argument('--activation', nargs='?', default='relu',
help='Which activation function to use for deep layers: relu, sigmoid, tanh, identity')
parser.add_argument('--alpha', type=float, default=0.95,
help='The weight between two loss functions (0.95-0.99)')
parser.add_argument('--wsdl_support', type=int, default=0,
help='Whether to use WSDL for pretraining service embeddings')
return parser.parse_args()
class DNM(BaseEstimator, TransformerMixin):
def __init__(self, features_M_user, features_M_service, hidden_factor, layers, layers_rt, layers_tp, loss_type, epoch, batch_size, learning_rate, lamda_bilinear,
keep_prob, optimizer_type, batch_norm, activation_function, verbose, alpha, random_seed=2019):
# bind params to class
self.batch_size = batch_size
self.hidden_factor = hidden_factor
self.layers = layers
self.layers_rt = layers_rt
self.layers_tp = layers_tp
self.loss_type = loss_type
self.features_M_user = features_M_user
self.features_M_service = features_M_service
self.lamda_bilinear = lamda_bilinear
self.epoch = epoch
self.random_seed = random_seed
self.keep_prob = np.array(keep_prob)
self.no_dropout = np.array([1 for i in range(len(keep_prob))])
self.optimizer_type = optimizer_type
self.learning_rate = learning_rate
self.batch_norm = batch_norm
self.verbose = verbose
self.activation_function = activation_function
self.alpha = alpha
# performance of each epoch
self.train_rmse, self.train_mae, self.test_rmse_rt, self.test_rmse_tp, self.test_mae, self.test_mae_all = [], [], [], [], [], []
# init all variables in a tensorflow graph
self._init_graph()
def _init_graph(self):
'''
Init a tensorflow Graph containing: input data, variables, model, loss, optimizer
'''
self.graph = tf.Graph()
with self.graph.as_default(): # , tf.device('/cpu:0'):
# Set graph level random seed
tf.set_random_seed(self.random_seed)
# Input data.
self.train_user_features = tf.placeholder(tf.int32, shape=[None, None]) # None * features_U
self.train_service_features = tf.placeholder(tf.int32, shape=[None, None]) # None * feature_I
self.train_labels1 = tf.placeholder(tf.float32, shape=[None, 1]) # None * 1
self.train_labels2 = tf.placeholder(tf.float32, shape=[None, 1])
self.dropout_keep = tf.placeholder(tf.float32, shape=[None])
self.train_phase = tf.placeholder(tf.bool)
# Variables.
self.weights = self._initialize_weights()
# Model.
# _________ Embedding Layer _____________
left_embeddings = tf.nn.embedding_lookup(self.weights['left_embeddings'], self.train_user_features)
right_embeddings = tf.nn.embedding_lookup(self.weights['right_embeddings'], self.train_service_features)
# serid_embeddings = tf.nn.embedding_lookup(self.weights['serid_embeddings'], self.train_serid_features)
all_embeddings = tf.concat([left_embeddings, right_embeddings], 1)
self.summed_features_left_emb = tf.reduce_sum(left_embeddings, 1) # None * K
self.summed_features_right_emb = tf.reduce_sum(right_embeddings, 1) # None * K
self.summed_features_all_emb = tf.reduce_sum(all_embeddings, 1)
# _________ Interaction Layer _____________
self.CSMF = tf.multiply(self.summed_features_left_emb, self.summed_features_right_emb) # None * K
self.CSMF = tf.expand_dims(self.CSMF, 1)
self.summed_features_all_emb = tf.expand_dims(self.summed_features_all_emb, 1)
self.CSMF = tf.concat([self.summed_features_all_emb, self.CSMF], 1)
self.CSMF = tf.reduce_sum(self.CSMF, 1)
if self.batch_norm:
self.CSMF = self.batch_norm_layer(self.CSMF, train_phase=self.train_phase, scope_bn='bn_CSMF')
self.CSMF = tf.nn.dropout(self.CSMF, self.dropout_keep[-1]) # dropout at the interactin layer
self.PL = self.CSMF
# ________ Perception Layers __________
for i in range(0, len(self.layers)):
self.PL = tf.add(tf.matmul(self.PL, self.weights['layer_%d' % i]), self.weights['bias_%d' % i]) # None * layer[i] * 1
if self.batch_norm:
self.PL = self.batch_norm_layer(self.PL, train_phase=self.train_phase, scope_bn='bn_%d' % i) # None * layer[i] * 1
self.PL = self.activation_function(self.PL)
# self.PL = tf.nn.dropout(self.PL, self.dropout_keep[i]) # dropout at each Deep layer
self.RT = self.PL
self.TP = self.PL
# ________ Task Layers __________
for i in range(0, len(self.layers_rt)):
self.RT = tf.add(tf.matmul(self.RT, self.weights['rt_layer_%d' % i]), self.weights['rt_bias_%d' % i]) # None * layer[i] * 1
if self.batch_norm:
self.RT = self.batch_norm_layer(self.RT, train_phase=self.train_phase, scope_bn='rt_%d' % i) # None * layer[i] * 1
self.RT = self.activation_function(self.RT)
# self.RT = tf.nn.dropout(self.RT, self.dropout_keep[i]) # dropout at each Deep layer
self.RT = tf.matmul(self.RT, self.weights['rt_prediction']) # None * 1
for i in range(0, len(self.layers_tp)):
self.TP = tf.add(tf.matmul(self.TP, self.weights['tp_layer_%d' % i]), self.weights['tp_bias_%d' % i]) # None * layer[i] * 1
if self.batch_norm:
self.TP = self.batch_norm_layer(self.TP, train_phase=self.train_phase, scope_bn='tp_%d' % i) # None * layer[i] * 1
self.TP = self.activation_function(self.TP)
# self.TP = tf.nn.dropout(self.TP, self.dropout_keep[i]) # dropout at each Deep layer
self.TP = tf.matmul(self.TP, self.weights['tp_prediction']) # None * 1
# _________out_rt _________
self.Out_RT = tf.reduce_sum(self.RT, 1, keepdims=True) # None * 1
# _________out_tp _________
self.Out_TP = tf.reduce_sum(self.TP, 1, keepdims=True)
# self.Out_RT=self.Out_RT-tf.ones_like(self.Out_RT)
# self.Out_TP=self.Out_RT-tf.ones_like(self.Out_TP)
self.joint_loss = 0
# Compute the loss.
if self.loss_type == 'L1_loss':
self.loss1 = tf.reduce_sum(tf.abs(tf.subtract(self.train_labels1, self.Out_RT)))
self.loss2 = tf.reduce_sum(tf.abs(tf.subtract(self.train_labels2, self.Out_TP)))
self.joint_loss = self.alpha * self.loss1 + (1 - self.alpha) * self.loss2
if self.loss_type == 'L2_loss':
self.loss1 = tf.reduce_sum(tf.square(tf.subtract(self.train_labels1, self.Out_RT)))
self.loss2 = tf.reduce_sum(tf.square(tf.subtract(self.train_labels2, self.Out_TP)))
self.joint_loss = self.alpha * self.loss1 + (1 - self.alpha) * self.loss2
if self.lamda_bilinear > 0:
self.joint_loss = self.joint_loss + tf.contrib.layers.l2_regularizer(self.lamda_bilinear)(self.weights['left_embeddings'], self.weights['right_embeddings'])
# Optimizer.
if self.optimizer_type == 'AdamOptimizer':
self.optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate, beta1=0.9, beta2=0.999, epsilon=1e-8).minimize(self.joint_loss)
elif self.optimizer_type == 'AdagradOptimizer':
self.optimizer = tf.train.AdagradOptimizer(learning_rate=self.learning_rate, initial_accumulator_value=1e-8).minimize(self.joint_loss)
elif self.optimizer_type == 'GradientDescentOptimizer':
self.optimizer = tf.train.GradientDescentOptimizer(learning_rate=self.learning_rate).minimize(self.joint_loss)
elif self.optimizer_type == 'MomentumOptimizer':
self.optimizer = tf.train.MomentumOptimizer(learning_rate=self.learning_rate, momentum=0.95).minimize(self.joint_loss)
# init
self.saver = tf.train.Saver()
init = tf.global_variables_initializer()
self.sess = tf.Session()
self.sess.run(init)
# number of params
total_parameters = 0
for variable in self.weights.values():
shape = variable.get_shape() # shape is an array of tf.Dimension
variable_parameters = 1
for dim in shape:
variable_parameters *= dim.value
total_parameters += variable_parameters
if self.verbose > 0:
print ("#params: %d" % total_parameters)
def _initialize_weights(self):
all_weights = dict()
# without pretrain
all_weights['left_embeddings'] = tf.Variable(tf.random_normal([self.features_M_user, self.hidden_factor], 0.0, 0.01), name='left_embeddings')
all_weights['right_embeddings'] = tf.Variable(self.features_M_service, name='right_embeddings', dtype=np.float32) # features_M * K
# deep layers
num_layer = len(self.layers)
num_layer1 = len(self.layers_rt)
num_layer2 = len(self.layers_tp)
if num_layer > 0 and num_layer1 > 0 and num_layer2 > 0:
glorot = np.sqrt(2.0 / (self.hidden_factor + self.layers[0]))
glorot_rt = np.sqrt(2.0 / (self.hidden_factor + self.layers_rt[0]))
glorot_tp = np.sqrt(2.0 / (self.hidden_factor + self.layers_tp[0]))
# loc:mean scale:biao zhun cha size: out shape
all_weights['layer_0'] = tf.Variable(np.random.normal(loc=0, scale=glorot, size=(self.hidden_factor, self.layers[0])), dtype=np.float32)
all_weights['bias_0'] = tf.Variable(np.random.normal(loc=0, scale=glorot, size=(1, self.layers[0])), dtype=np.float32) # 1 * layers[0]
for i in range(1, num_layer):
glorot = np.sqrt(2.0 / (self.layers[i - 1] + self.layers[i]))
# 64 layer per layer 64 size
all_weights['layer_%d' % i] = tf.Variable(
np.random.normal(loc=0, scale=glorot, size=(self.layers[i - 1], self.layers[i])), dtype=np.float32) # layers[i-1]*layers[i]
all_weights['bias_%d' % i] = tf.Variable(
np.random.normal(loc=0, scale=glorot, size=(1, self.layers[i])), dtype=np.float32) # 1 * layer[i]
all_weights['rt_layer_0'] = tf.Variable(np.random.normal(loc=0, scale=glorot_rt, size=(self.layers[num_layer - 1], self.layers_rt[0])), dtype=np.float32)
all_weights['tp_layer_0'] = tf.Variable(np.random.normal(loc=0, scale=glorot_tp, size=(self.layers[num_layer - 1], self.layers_tp[0])), dtype=np.float32)
all_weights['rt_bias_0'] = tf.Variable(np.random.normal(loc=0, scale=glorot_rt, size=(1, self.layers_rt[0])), dtype=np.float32) # 1 * layers[0]
all_weights['tp_bias_0'] = tf.Variable(np.random.normal(loc=0, scale=glorot_tp, size=(1, self.layers_tp[0])), dtype=np.float32) # 1 * layers[0]
for i in range(1, num_layer1):
glorot = np.sqrt(2.0 / (self.layers_rt[i - 1] + self.layers_rt[i]))
# 64 layer per layer 64 size
all_weights['rt_layer_%d' % i] = tf.Variable(
np.random.normal(loc=0, scale=glorot, size=(self.layers_rt[i - 1], self.layers_rt[i])), dtype=np.float32) # layers[i-1]*layers[i]
all_weights['rt_bias_%d' % i] = tf.Variable(
np.random.normal(loc=0, scale=glorot, size=(1, self.layers_rt[i])), dtype=np.float32) # 1 * layer[i]
for i in range(1, num_layer2):
glorot = np.sqrt(2.0 / (self.layers_tp[i - 1] + self.layers_tp[i]))
# 64 layer per layer 64 size
all_weights['tp_layer_%d' % i] = tf.Variable(
np.random.normal(loc=0, scale=glorot, size=(self.layers_tp[i - 1], self.layers_tp[i])), dtype=np.float32) # layers[i-1]*layers[i]
all_weights['tp_bias_%d' % i] = tf.Variable(
np.random.normal(loc=0, scale=glorot, size=(1, self.layers_tp[i])), dtype=np.float32) # 1 * layer[i]
# prediction layer
glorot_rt = np.sqrt(2.0 / (self.layers_rt[-1] + 1))
all_weights['rt_prediction'] = tf.Variable(np.random.normal(loc=0, scale=glorot_rt, size=(self.layers_rt[-1], 1)), dtype=np.float32) # layers[-1] * 1
glorot_tp = np.sqrt(2.0 / (self.layers_tp[-1] + 1))
all_weights['tp_prediction'] = tf.Variable(np.random.normal(loc=0, scale=glorot_tp, size=(self.layers_tp[-1], 1)), dtype=np.float32) # layers[-1] * 1
else:
all_weights['prediction'] = tf.Variable(np.ones((self.hidden_factor, 1), dtype=np.float32)) # hidden_factor * 1
return all_weights
def batch_norm_layer(self, x, train_phase, scope_bn):
bn_train = batch_norm(x, decay=0.9, center=True, scale=True, updates_collections=None,
is_training=True, reuse=None, trainable=True, scope=scope_bn)
bn_inference = batch_norm(x, decay=0.9, center=True, scale=True, updates_collections=None,
is_training=False, reuse=True, trainable=True, scope=scope_bn)
z = tf.cond(train_phase, lambda: bn_train, lambda: bn_inference)
return z
def partial_fit(self, data): # fit a batch
feed_dict = {self.train_user_features: data['X_U'],
self.train_service_features: data['X_I'],
self.train_labels1: data['Y1'],
self.train_labels2: data['Y2'],
self.dropout_keep: self.keep_prob,
self.train_phase: True}
joint_loss, opt = self.sess.run((self.joint_loss, self.optimizer), feed_dict=feed_dict)
return joint_loss
def get_random_block_from_data(self, data, batch_size): # generate a random block of training data
start_index = np.random.randint(0, len(data['Y1']) - batch_size)
X_U, X_I, Y1 , Y2 = [], [], [], []
# forward get sample
i = start_index
while len(X_U) < batch_size and i < len(data['X_U']):
# if len(data['X_U'][i]) == len(data['X_U'][start_index]) | len(data['X_I'][i]) == len(data['X_I'][start_index]):
Y1.append([data['Y1'][i]])
Y2.append([data['Y2'][i]])
X_U.append(data['X_U'][i])
X_I.append(data['X_I'][i])
i = i + 1
# backward get sample
i = start_index
while len(X_U) < batch_size and i >= 0:
# if len(data['X_U'][i]) == len(data['X_U'][start_index]) | len(data['X_I'][i]) == len(data['X_I'][start_index]):
Y1.append([data['Y1'][i]])
Y2.append([data['Y2'][i]])
X_U.append(data['X_U'][i])
X_I.append(data['X_I'][i])
i = i - 1
return {'X_U': X_U, 'X_I': X_I, 'Y1': Y1, 'Y2':Y2}
def shuffle_in_unison_scary(self, a, b, c, d):
rng_state = np.random.get_state()
np.random.shuffle(a)
np.random.set_state(rng_state)
np.random.shuffle(b)
np.random.set_state(rng_state)
np.random.shuffle(c)
np.random.set_state(rng_state)
np.random.shuffle(d)
def get_block_from_test_data(self, data, batch_size, i): # generate a random block of training data
start_index = i * batch_size
X_U, X_I, Y1 , Y2 = [], [], [], []
# forward get sample
i = start_index
while len(X_U) < batch_size and i < len(data['X_U']):
Y1.append([data['Y1'][i]])
Y2.append([data['Y2'][i]])
X_U.append(data['X_U'][i])
X_I.append(data['X_I'][i])
i = i + 1
return {'X_U': X_U, 'X_I': X_I, 'Y1': Y1, 'Y2':Y2}
def part_evaluate(self, data): # evaluate the results for an input set
feed_dict = {self.train_user_features: data['X_U'],
self.train_service_features: data['X_I'],
self.train_labels1: data['Y1'],
self.train_labels2: data['Y2'],
self.dropout_keep: self.no_dropout,
self.train_phase: False}
predictions1, predictions2 = self.sess.run((self.Out_RT, self.Out_TP), feed_dict=feed_dict)
predictions1 = predictions1.tolist()
predictions2 = predictions2.tolist()
return predictions1, predictions2
def evaluate_test(self, data, predictions1, predictions2, num): # evaluate the results for an input set
num_example1 = num
num_example2 = num
y_pred1 = np.reshape(predictions1, (num_example1,))
y_pred2 = np.reshape(predictions2, (num_example2,))
y_true1 = np.reshape(data['Y1'][:num], (num_example1,))
y_true2 = np.reshape(data['Y2'][:num], (num_example2,))
predictions_bounded1 = np.maximum(y_pred1, np.ones(num_example1) * min(y_true1)) # bound the lower values
predictions_bounded1 = np.minimum(predictions_bounded1, np.ones(num_example1) * max(y_true1)) # bound the higher values
RMSE1 = math.sqrt(mean_squared_error(y_true1, predictions_bounded1))
MAE1 = mean_absolute_error(y_true1, predictions_bounded1)
NMAE1 = MAE1 / (max(y_true1) - min(y_true1))
predictions_bounded2 = np.maximum(y_pred2, np.ones(num_example2) * min(y_true2)) # bound the lower values
predictions_bounded2 = np.minimum(predictions_bounded2, np.ones(num_example2) * max(y_true2)) # bound the higher values
RMSE2 = math.sqrt(mean_squared_error(y_true2, predictions_bounded2))
MAE2 = mean_absolute_error(y_true2, predictions_bounded2)
NMAE2 = MAE2 / (max(y_true2) - min(y_true2))
RMSE = [RMSE1, RMSE2]
MAE = [MAE1, MAE2]
NMAE = [NMAE1, NMAE2]
return RMSE, MAE, NMAE
def train(self, Train_data, Test_data): # fit a dataset
# Check Init performance
if self.verbose > 0:
t2 = time()
init_train_rm, init_train_ma = self.evaluate_train(Train_data)
init_train_ma_all = init_train_ma[0] + init_train_ma[1]
# init_test_rm, init_test_ma = self.evaluate(Test_data)
if len(Test_data['Y1']) % self.batch_size == 0:
total_batch2 = int(len(Test_data['Y1']) / self.batch_size)
else:
total_batch2 = int(len(Test_data['Y1']) / self.batch_size) + 1
inPredictions1 = []
inPredictions2 = []
for i in range(total_batch2):
# generate a batch
batch_xs = self.get_block_from_test_data(Test_data, self.batch_size, i)
# evaluate
predictions1, predictions2 = self.part_evaluate(batch_xs)
inPredictions1.extend(predictions1)
inPredictions2.extend(predictions2)
inPredictions1 = np.array(inPredictions1)
inPredictions2 = np.array(inPredictions2)
init_test_rm, init_test_ma , init_test_nma = self.evaluate_test(Test_data, inPredictions1, inPredictions2, inPredictions1.shape[0])
init_test_ma_all = self.alpha * init_test_ma[0] + (1 - self.alpha) * init_test_ma[1]
# init_test_rm, init_test_ma = self.evaluate(Test_data)
print("Init:tr_rmse=[%.4f ,%.4f],tr_mae=[%.4f, %.4f] ,te_rmse=[%.4f ,%.4f],te_mae=[%.4f ,%.4f] ,te_nmae=[%.5f ,%.5f],te_mae_all=[%.3f] [%.1f s]" % (init_train_rm[0], init_train_rm[1], init_train_ma[0], \
init_train_ma[1], init_test_rm[0] , init_test_rm[1], init_test_ma[0], init_test_ma[1], init_test_nma[0], init_test_nma[1], init_test_ma_all, time() - t2))
for epoch in range(self.epoch):
t1 = time()
self.shuffle_in_unison_scary(Train_data['X_U'], Train_data['X_I'], Train_data['Y1'], Train_data['Y2'])
total_batch = int(len(Train_data['Y1']) / self.batch_size)
for i in range(total_batch):
# generate a batch
batch_xs = self.get_random_block_from_data(Train_data, self.batch_size)
# Fit training
self.partial_fit(batch_xs)
t2 = time()
if len(Test_data['Y1']) % self.batch_size == 0:
total_batch1 = int(len(Test_data['Y1']) / self.batch_size)
else:
total_batch1 = int(len(Test_data['Y1']) / self.batch_size) + 1
Predictions1 = []
Predictions2 = []
for i in range(total_batch1):
# generate a batch
batch_xs = self.get_block_from_test_data(Test_data, self.batch_size, i)
# evaluate
predictions1, predictions2 = self.part_evaluate(batch_xs)
Predictions1.extend(predictions1)
Predictions2.extend(predictions2)
Predictions1 = np.array(Predictions1)
Predictions2 = np.array(Predictions2)
# output validation
train_result_rmse, train_result_mae = self.evaluate_train(Train_data)
train_result_ma_all = train_result_mae[0] + train_result_mae[1]
test_result_rmse, test_result_mae, test_result_nmae = self.evaluate_test(Test_data, Predictions1, Predictions2, Predictions1.shape[0])
test_result_mae_all = self.alpha * test_result_mae[0] + (1 - self.alpha) * test_result_mae[1]
self.train_rmse.append(train_result_rmse)
self.train_mae.append(train_result_mae)
self.test_rmse_rt.append(test_result_rmse[0])
self.test_rmse_tp.append(test_result_rmse[1])
self.test_mae.append(test_result_mae)
self.test_mae_all.append(test_result_mae_all)
if self.verbose > 0 and epoch % self.verbose == 0:
print("Epoch %d [%.1f s] tr_rmse=[%.4f ,%.4f],tr_mae=[%.4f ,%.4f] , te_rmse=[%.4f ,%.4f],te_mae=[%.4f ,%.4f],te_mae_all=[%.3f] [%.1f s]"
% (epoch + 1, t2 - t1, train_result_rmse[0], train_result_rmse[1], train_result_mae[0], train_result_mae[1], test_result_rmse[0], test_result_rmse[1], test_result_mae[0], test_result_mae[1], test_result_mae_all, time() - t2))
def evaluate_train(self, data): # evaluate the results for an input set
num_example1 = len(data['Y1'])
num_example2 = len(data['Y2'])
feed_dict = {self.train_user_features: data['X_U'], self.train_service_features: data['X_I'], self.train_labels1: [[x_ext] for x_ext in data['Y1']], self.train_labels2: [[x_ext] for x_ext in data['Y2']], self.dropout_keep: self.no_dropout, self.train_phase: False}
predictions_rt, predictions_tp = self.sess.run((self.Out_RT, self.Out_TP), feed_dict=feed_dict)
y_pred1 = np.reshape(predictions_rt, (num_example1,))
y_pred2 = np.reshape(predictions_tp, (num_example1,))
y_true1 = np.reshape(data['Y1'], (num_example1,))
y_true2 = np.reshape(data['Y2'], (num_example2,))
predictions_bounded = np.maximum(y_pred1, np.ones(num_example1) * min(y_true1)) # bound the lower values
predictions_bounded = np.minimum(predictions_bounded, np.ones(num_example1) * max(y_true1)) # bound the higher values
RMSE1 = math.sqrt(mean_squared_error(y_true1, predictions_bounded))
MAE1 = mean_absolute_error(y_true1, predictions_bounded)
predictions_bounded2 = np.maximum(y_pred2, np.ones(num_example2) * min(y_true2)) # bound the lower values
predictions_bounded2 = np.minimum(predictions_bounded2, np.ones(num_example2) * max(y_true2)) # bound the higher values
RMSE2 = math.sqrt(mean_squared_error(y_true2, predictions_bounded2))
MAE2 = mean_absolute_error(y_true2, predictions_bounded2)
return [RMSE1, RMSE2], [MAE1, MAE2]
if __name__ == '__main__':
# Data loading
args = parse_args()
wsdl_support = args.wsdl_support
if wsdl_support == 1:
data = DATA.LoadData(args.path, args.dataset, '_wsdl/', args.hidden_factor)
elif wsdl_support == 0:
data = DATA.LoadData(args.path, args.dataset)
if args.verbose > 0:
print("DNM: dataset=%s, hidden_factor=%d, dropout_keep=%s, layers=%s, layers_rt=%s, layers_tp=%s, loss_type=%s, #epoch=%d, batch=%d, lr=%.4f, lambda=%.4f, optimizer=%s, batch_norm=%d, activation=%s"
% (args.dataset, args.hidden_factor, args.keep_prob, args.layers, args.layers_rt, args.layers_tp, args.loss_type, args.epoch, args.batch_size, args.lr, args.lamda, args.optimizer, args.batch_norm, args.activation))
activation_function = tf.nn.relu
# Training
t1 = time()
if wsdl_support == 1:
x = np.random.normal(0.0, 0.01, [data.features_M_service - 4107, args.hidden_factor])
x_ext = data.features_M_wsdl
x_ext = np.array(x_ext)
# print(x.shape, x_ext.shape)
# print(x_ext)
features_M_service = np.concatenate((x_ext, x), axis=0)
elif wsdl_support == 0:
features_M_service = np.random.normal(0.0, 0.01, [data.features_M_service, args.hidden_factor])
model = DNM(data.features_M_user, features_M_service, args.hidden_factor, eval(args.layers), eval(args.layers_rt), eval(args.layers_tp), args.loss_type,
args.epoch, args.batch_size, args.lr, args.lamda, eval(args.keep_prob), args.optimizer, args.batch_norm, activation_function, args.verbose, args.alpha)
model.train(data.Train_data, data.Test_data)
# Find the best validation result across iterations
best_valid_score = 0
if args.loss_type == 'L1_loss':
best_test_score = min(model.test_mae_all)
best_epoch = model.test_mae_all.index(best_test_score)
print(best_epoch + 1)