forked from remzi-arpacidusseau/ostep-homework
-
Notifications
You must be signed in to change notification settings - Fork 0
/
x86.py
executable file
·1008 lines (872 loc) · 37.1 KB
/
x86.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#! /usr/bin/env python
from __future__ import print_function
import sys
import time
import random
from optparse import OptionParser
# to make Python2 and Python3 act the same -- how dumb
def random_seed(seed):
try:
random.seed(seed, version=1)
except:
random.seed(seed)
return
def time_clock():
try:
rc = time_clock()
except:
rc = time.process_time()
return rc
#
# HELPER
#
def dospace(howmuch):
for i in range(howmuch):
print('%24s' % ' ', end=' ')
# useful instead of assert
def zassert(cond, str):
if cond == False:
print('ABORT::', str)
exit(1)
return
class cpu:
#
# INIT: how much memory?
#
def __init__(self, memory, memtrace, regtrace, cctrace, compute, verbose):
#
# CONSTANTS
#
# conditions
self.COND_GT = 0
self.COND_GTE = 1
self.COND_LT = 2
self.COND_LTE = 3
self.COND_EQ = 4
self.COND_NEQ = 5
# registers in system
self.REG_ZERO = 0
self.REG_AX = 1
self.REG_BX = 2
self.REG_CX = 3
self.REG_DX = 4
self.REG_SP = 5
self.REG_BP = 6
# system memory: in KB
self.max_memory = memory * 1024
# which memory addrs and registers to trace?
self.memtrace = memtrace
self.regtrace = regtrace
self.cctrace = cctrace
self.compute = compute
self.verbose = verbose
self.PC = 0
self.registers = {}
self.conditions = {}
self.labels = {}
self.vars = {}
self.memory = {}
self.pmemory = {} # for printable version of what's in memory (instructions)
self.condlist = [self.COND_GTE, self.COND_GT, self.COND_LTE, self.COND_LT, self.COND_NEQ, self.COND_EQ]
self.regnums = [self.REG_ZERO, self.REG_AX, self.REG_BX, self.REG_CX, self.REG_DX, self.REG_SP, self.REG_BP]
self.regnames = {}
self.regnames['zero'] = self.REG_ZERO # hidden zero-valued register
self.regnames['ax'] = self.REG_AX
self.regnames['bx'] = self.REG_BX
self.regnames['cx'] = self.REG_CX
self.regnames['dx'] = self.REG_DX
self.regnames['sp'] = self.REG_SP
self.regnames['bp'] = self.REG_BP
tmplist = []
for r in self.regtrace:
zassert(r in self.regnames, 'Register %s cannot be traced because it does not exist' % r)
tmplist.append(self.regnames[r])
self.regtrace = tmplist
self.init_memory()
self.init_registers()
self.init_condition_codes()
#
# BEFORE MACHINE RUNS
#
def init_condition_codes(self):
for c in self.condlist:
self.conditions[c] = False
def init_memory(self):
for i in range(self.max_memory):
self.memory[i] = 0
def init_registers(self):
for i in self.regnums:
self.registers[i] = 0
def dump_memory(self):
print('MEMORY DUMP')
for i in range(self.max_memory):
if i not in self.pmemory and i in self.memory and self.memory[i] != 0:
print(' m[%d]' % i, self.memory[i])
#
# INFORMING ABOUT THE HARDWARE
#
def get_regnum(self, name):
assert(name in self.regnames)
return self.regnames[name]
def get_regname(self, num):
assert(num in self.regnums)
for rname in self.regnames:
if self.regnames[rname] == num:
return rname
return ''
def get_regnums(self):
return self.regnums
def get_condlist(self):
return self.condlist
def get_reg(self, reg):
assert(reg in self.regnums)
return self.registers[reg]
def get_cond(self, cond):
assert(cond in self.condlist)
return self.conditions[cond]
def get_pc(self):
return self.PC
def set_reg(self, reg, value):
assert(reg in self.regnums)
self.registers[reg] = value
def set_cond(self, cond, value):
assert(cond in self.condlist)
self.conditions[cond] = value
def set_pc(self, pc):
self.PC = pc
#
# INSTRUCTIONS
#
def halt(self):
return -1
def iyield(self):
return -2
def nop(self):
return 0
def rdump(self):
print('REGISTERS::', end=' ')
print('ax:', self.registers[self.REG_AX], end=' ')
print('bx:', self.registers[self.REG_BX], end=' ')
print('cx:', self.registers[self.REG_CX], end=' ')
print('dx:', self.registers[self.REG_DX], end=' ')
def mdump(self, index):
print('m[%d] ' % index, self.memory[index])
def move_i_to_r(self, src, dst):
self.registers[dst] = src
return 0
# memory: value, register, register
def move_i_to_m(self, src, value, reg1, reg2):
tmp = value + self.registers[reg1] + self.registers[reg2]
self.memory[tmp] = src
return 0
def move_m_to_r(self, value, reg1, reg2, dst):
tmp = value + self.registers[reg1] + self.registers[reg2]
# print 'doing mov', 'val:', value, 'r1:', self.get_regname(reg1), self.registers[reg1], 'r2:', self.get_regname(reg2), self.registers[reg2], 'dst', self.get_regname(dst), 'tmp', tmp, 'reg[dst]', self.registers[dst], 'mem', self.memory[tmp]
self.registers[dst] = self.memory[tmp]
def move_r_to_m(self, src, value, reg1, reg2):
tmp = value + self.registers[reg1] + self.registers[reg2]
self.memory[tmp] = self.registers[src]
return 0
def move_r_to_r(self, src, dst):
self.registers[dst] = self.registers[src]
return 0
def add_i_to_r(self, src, dst):
self.registers[dst] += src
return 0
def add_r_to_r(self, src, dst):
self.registers[dst] += self.registers[src]
return 0
def sub_i_to_r(self, src, dst):
self.registers[dst] -= src
return 0
def sub_r_to_r(self, src, dst):
self.registers[dst] -= self.registers[src]
return 0
#
# SUPPORT FOR LOCKS
#
def atomic_exchange(self, src, value, reg1, reg2):
tmp = value + self.registers[reg1] + self.registers[reg2]
old = self.memory[tmp]
self.memory[tmp] = self.registers[src]
self.registers[src] = old
return 0
def fetchadd(self, src, value, reg1, reg2):
tmp = value + self.registers[reg1] + self.registers[reg2]
old = self.memory[tmp]
self.memory[tmp] = self.memory[tmp] + self.registers[src]
self.registers[src] = old
#
# TEST for conditions
#
def test_all(self, src, dst):
self.init_condition_codes()
if dst > src:
self.conditions[self.COND_GT] = True
if dst >= src:
self.conditions[self.COND_GTE] = True
if dst < src:
self.conditions[self.COND_LT] = True
if dst <= src:
self.conditions[self.COND_LTE] = True
if dst == src:
self.conditions[self.COND_EQ] = True
if dst != src:
self.conditions[self.COND_NEQ] = True
return 0
def test_i_r(self, src, dst):
self.init_condition_codes()
return self.test_all(src, self.registers[dst])
def test_r_i(self, src, dst):
self.init_condition_codes()
return self.test_all(self.registers[src], dst)
def test_r_r(self, src, dst):
self.init_condition_codes()
return self.test_all(self.registers[src], self.registers[dst])
#
# JUMPS
#
def jump(self, targ):
self.PC = targ
return 0
def jump_notequal(self, targ):
if self.conditions[self.COND_NEQ] == True:
self.PC = targ
return 0
def jump_equal(self, targ):
if self.conditions[self.COND_EQ] == True:
self.PC = targ
return 0
def jump_lessthan(self, targ):
if self.conditions[self.COND_LT] == True:
self.PC = targ
return 0
def jump_lessthanorequal(self, targ):
if self.conditions[self.COND_LTE] == True:
self.PC = targ
return 0
def jump_greaterthan(self, targ):
if self.conditions[self.COND_GT] == True:
self.PC = targ
return 0
def jump_greaterthanorequal(self, targ):
if self.conditions[self.COND_GTE] == True:
self.PC = targ
return 0
#
# CALL and RETURN
#
def call(self, targ):
self.registers[self.REG_SP] -= 4
self.memory[self.registers[self.REG_SP]] = self.PC
self.PC = targ
def ret(self):
self.PC = self.memory[self.registers[self.REG_SP]]
self.registers[self.REG_SP] += 4
#
# STACK and related
#
def push_r(self, reg):
self.registers[self.REG_SP] -= 4
self.memory[self.registers[self.REG_SP]] = self.registers[reg]
return 0
def push_m(self, value, reg1, reg2):
# print 'push_m', value, reg1, reg2
self.registers[self.REG_SP] -= 4
tmp = value + self.registers[reg1] + self.registers[reg2]
# push address onto stack, not memory value itself
self.memory[self.registers[self.REG_SP]] = tmp
return 0
def pop(self):
self.registers[self.REG_SP] += 4
def pop_r(self, dst):
self.registers[dst] = self.registers[self.REG_SP]
self.registers[self.REG_SP] += 4
#
# HELPER func for getarg
#
def register_translate(self, r):
if r in self.regnames:
return self.regnames[r]
zassert(False, 'Register %s is not a valid register' % r)
return
#
# HELPER in parsing mov (quite primitive) and other ops
# returns: (value, type)
# where type is (TYPE_REGISTER, TYPE_IMMEDIATE, TYPE_MEMORY)
#
# FORMATS
# %ax - register
# $10 - immediate
# 10 - direct memory
# 10(%ax) - memory + reg indirect
# 10(%ax,%bx) - memory + 2 reg indirect
# 10(%ax,%bx,4) - XXX (not handled)
#
def getarg(self, arg):
tmp1 = arg.replace(',', '')
tmp = tmp1.replace(' \t', '')
if tmp[0] == '$':
zassert(len(tmp) == 2, 'correct form is $number (not %s)' % tmp)
value = tmp.split('$')[1]
zassert(value.isdigit(), 'value [%s] must be a digit' % value)
return int(value), 'TYPE_IMMEDIATE'
elif tmp[0] == '%':
register = tmp.split('%')[1]
return self.register_translate(register), 'TYPE_REGISTER'
elif tmp[0] == '(':
register = tmp.split('(')[1].split(')')[0].split('%')[1]
return '%d,%d,%d' % (0, self.register_translate(register), self.register_translate('zero')), 'TYPE_MEMORY'
elif tmp[0] == '.':
targ = tmp
return targ, 'TYPE_LABEL'
elif tmp[0].isalpha() and not tmp[0].isdigit():
zassert(tmp in self.vars, 'Variable %s is not declared' % tmp)
# print '%d,%d,%d' % (self.vars[tmp], self.register_translate('zero'), self.register_translate('zero')), 'TYPE_MEMORY'
return '%d,%d,%d' % (self.vars[tmp], self.register_translate('zero'), self.register_translate('zero')), 'TYPE_MEMORY'
elif tmp[0].isdigit() or tmp[0] == '-':
# MOST GENERAL CASE: number(reg,reg) or number(reg)
# we ignore the common x86 number(reg,reg,constant) for now
neg = 1
if tmp[0] == '-':
tmp = tmp[1:]
neg = -1
s = tmp.split('(')
if len(s) == 1:
value = neg * int(tmp)
# print '%d,%d,%d' % (int(value), self.register_translate('zero'), self.register_translate('zero')), 'TYPE_MEMORY'
return '%d,%d,%d' % (int(value), self.register_translate('zero'), self.register_translate('zero')), 'TYPE_MEMORY'
elif len(s) == 2:
value = neg * int(s[0])
t = s[1].split(')')[0].split(',')
if len(t) == 1:
register = t[0].split('%')[1]
# print '%d,%d,%d' % (int(value), self.register_translate(register), self.register_translate('zero')), 'TYPE_MEMORY'
return '%d,%d,%d' % (int(value), self.register_translate(register), self.register_translate('zero')), 'TYPE_MEMORY'
elif len(t) == 2:
register1 = t[0].split('%')[1]
register2 = t[1].split('%')[1]
# print '%d,%d,%d' % (int(value), self.register_translate(register1), self.register_translate(register2)), 'TYPE_MEMORY'
return '%d,%d,%d' % (int(value), self.register_translate(register1), self.register_translate(register2)), 'TYPE_MEMORY'
else:
print('mov: bad argument [%s]' % tmp)
exit(1)
return
zassert(True, 'mov: bad argument [%s]' % arg)
return
#
# LOAD a program into memory
# make it ready to execute
#
def load(self, infile, loadaddr):
pc = int(loadaddr)
fd = open(infile)
bpc = loadaddr
data = 100
for line in fd:
cline = line.rstrip()
# print 'PASS 1', cline
# remove everything after the comment marker
ctmp = cline.split('#')
assert(len(ctmp) == 1 or len(ctmp) == 2)
if len(ctmp) == 2:
cline = ctmp[0]
# remove empty lines, and split line by spaces
tmp = cline.split()
if len(tmp) == 0:
continue
# only pay attention to labels and variables
if tmp[0] == '.var':
assert(len(tmp) == 2)
assert(tmp[0] not in self.vars)
self.vars[tmp[1]] = data
data += 4
zassert(data < bpc, 'Load address overrun by static data')
if self.verbose: print('ASSIGN VAR', tmp[0], "-->", tmp[1], self.vars[tmp[1]])
elif tmp[0][0] == '.':
assert(len(tmp) == 1)
self.labels[tmp[0]] = int(pc)
if self.verbose: print('ASSIGN LABEL', tmp[0], "-->", pc)
else:
pc += 1
fd.close()
if self.verbose: print('')
# second pass: do everything else
pc = int(loadaddr)
fd = open(infile)
for line in fd:
cline = line.rstrip()
# print 'PASS 2', cline
# remove everything after the comment marker
ctmp = cline.split('#')
assert(len(ctmp) == 1 or len(ctmp) == 2)
if len(ctmp) == 2:
cline = ctmp[0]
# remove empty lines, and split line by spaces
tmp = cline.split()
if len(tmp) == 0:
continue
# skip labels: all else must be instructions
if cline[0] != '.':
tmp = cline.split(None, 1)
opcode = tmp[0]
self.pmemory[pc] = cline.strip()
# MAIN OPCODE LOOP
if opcode == 'mov':
rtmp = tmp[1].split(',', 1)
zassert(len(tmp) == 2 and len(rtmp) == 2, 'mov: needs two args, separated by commas [%s]' % cline)
arg1 = rtmp[0].strip()
arg2 = rtmp[1].strip()
(src, stype) = self.getarg(arg1)
(dst, dtype) = self.getarg(arg2)
# print 'MOV', src, stype, dst, dtype
if stype == 'TYPE_MEMORY' and dtype == 'TYPE_MEMORY':
print('bad mov: two memory arguments')
exit(1)
elif stype == 'TYPE_IMMEDIATE' and dtype == 'TYPE_IMMEDIATE':
print('bad mov: two immediate arguments')
exit(1)
elif stype == 'TYPE_IMMEDIATE' and dtype == 'TYPE_REGISTER':
self.memory[pc] = 'self.move_i_to_r(%d, %d)' % (int(src), dst)
elif stype == 'TYPE_IMMEDIATE' and dtype == 'TYPE_REGISTER':
self.memory[pc] = 'self.move_i_to_r(%d, %d)' % (int(src), dst)
elif stype == 'TYPE_MEMORY' and dtype == 'TYPE_REGISTER':
tmp = src.split(',')
assert(len(tmp) == 3)
self.memory[pc] = 'self.move_m_to_r(%d, %d, %d, %d)' % (int(tmp[0]), int(tmp[1]), int(tmp[2]), dst)
elif stype == 'TYPE_REGISTER' and dtype == 'TYPE_MEMORY':
tmp = dst.split(',')
assert(len(tmp) == 3)
self.memory[pc] = 'self.move_r_to_m(%d, %d, %d, %d)' % (src, int(tmp[0]), int(tmp[1]), int(tmp[2]))
elif stype == 'TYPE_REGISTER' and dtype == 'TYPE_REGISTER':
self.memory[pc] = 'self.move_r_to_r(%d, %d)' % (src, dst)
elif stype == 'TYPE_IMMEDIATE' and dtype == 'TYPE_MEMORY':
tmp = dst.split(',')
assert(len(tmp) == 3)
self.memory[pc] = 'self.move_i_to_m(%d, %d, %d, %d)' % (src, int(tmp[0]), int(tmp[1]), int(tmp[2]))
else:
zassert(False, 'malformed mov instruction')
elif opcode == 'pop':
if len(tmp) == 1:
self.memory[pc] = 'self.pop()'
elif len(tmp) == 2:
arg = tmp[1].strip()
(dst, dtype) = self.getarg(arg)
zassert(dtype == 'TYPE_REGISTER', 'Can only pop into a register')
self.memory[pc] = 'self.pop_r(%d)' % dst
else:
zassert(False, 'pop instruction must take zero/one args')
elif opcode == 'push':
(src, stype) = self.getarg(tmp[1].strip())
if stype == 'TYPE_REGISTER':
self.memory[pc] = 'self.push_r(%d)' % (int(src))
elif stype == 'TYPE_MEMORY':
tmp = src.split(',')
assert(len(tmp) == 3)
self.memory[pc] = 'self.push_m(%d,%d,%d)' % (int(tmp[0]), int(tmp[1]), int(tmp[2]))
else:
zassert(False, 'Cannot push anything but registers')
elif opcode == 'call':
(targ, ttype) = self.getarg(tmp[1].strip())
if ttype == 'TYPE_LABEL':
self.memory[pc] = 'self.call(%d)' % (int(self.labels[targ]))
else:
zassert(False, 'Cannot call anything but a label')
elif opcode == 'ret':
assert(len(tmp) == 1)
self.memory[pc] = 'self.ret()'
elif opcode == 'add':
rtmp = tmp[1].split(',', 1)
zassert(len(tmp) == 2 and len(rtmp) == 2, 'add: needs two args, separated by commas [%s]' % cline)
arg1 = rtmp[0].strip()
arg2 = rtmp[1].strip()
(src, stype) = self.getarg(arg1)
(dst, dtype) = self.getarg(arg2)
if stype == 'TYPE_IMMEDIATE' and dtype == 'TYPE_REGISTER':
self.memory[pc] = 'self.add_i_to_r(%d, %d)' % (int(src), dst)
elif stype == 'TYPE_REGISTER' and dtype == 'TYPE_REGISTER':
self.memory[pc] = 'self.add_r_to_r(%d, %d)' % (int(src), dst)
else:
zassert(False, 'malformed usage of add instruction')
elif opcode == 'sub':
rtmp = tmp[1].split(',', 1)
zassert(len(tmp) == 2 and len(rtmp) == 2, 'sub: needs two args, separated by commas [%s]' % cline)
arg1 = rtmp[0].strip()
arg2 = rtmp[1].strip()
(src, stype) = self.getarg(arg1)
(dst, dtype) = self.getarg(arg2)
if stype == 'TYPE_IMMEDIATE' and dtype == 'TYPE_REGISTER':
self.memory[pc] = 'self.sub_i_to_r(%d, %d)' % (int(src), dst)
elif stype == 'TYPE_REGISTER' and dtype == 'TYPE_REGISTER':
self.memory[pc] = 'self.sub_r_to_r(%d, %d)' % (int(src), dst)
else:
zassert(False, 'malformed usage of sub instruction')
elif opcode == 'fetchadd':
rtmp = tmp[1].split(',', 1)
zassert(len(tmp) == 2 and len(rtmp) == 2, 'fetchadd: needs two args, separated by commas [%s]' % cline)
arg1 = rtmp[0].strip()
arg2 = rtmp[1].strip()
(src, stype) = self.getarg(arg1)
(dst, dtype) = self.getarg(arg2)
tmp = dst.split(',')
assert(len(tmp) == 3)
if stype == 'TYPE_REGISTER' and dtype == 'TYPE_MEMORY':
self.memory[pc] = 'self.fetchadd(%d, %d, %d, %d)' % (src, int(tmp[0]), int(tmp[1]), int(tmp[2]))
else:
zassert(False, 'poorly specified fetch and add')
elif opcode == 'xchg':
rtmp = tmp[1].split(',', 1)
zassert(len(tmp) == 2 and len(rtmp) == 2, 'xchg: needs two args, separated by commas [%s]' % cline)
arg1 = rtmp[0].strip()
arg2 = rtmp[1].strip()
(src, stype) = self.getarg(arg1)
(dst, dtype) = self.getarg(arg2)
tmp = dst.split(',')
assert(len(tmp) == 3)
if stype == 'TYPE_REGISTER' and dtype == 'TYPE_MEMORY':
self.memory[pc] = 'self.atomic_exchange(%d, %d, %d, %d)' % (src, int(tmp[0]), int(tmp[1]), int(tmp[2]))
else:
zassert(False, 'poorly specified atomic exchange')
elif opcode == 'test':
rtmp = tmp[1].split(',', 1)
zassert(len(tmp) == 2 and len(rtmp) == 2, 'test: needs two args, separated by commas [%s]' % cline)
arg1 = rtmp[0].strip()
arg2 = rtmp[1].strip()
(src, stype) = self.getarg(arg1)
(dst, dtype) = self.getarg(arg2)
if stype == 'TYPE_IMMEDIATE' and dtype == 'TYPE_REGISTER':
self.memory[pc] = 'self.test_i_r(%d, %d)' % (int(src), dst)
elif stype == 'TYPE_REGISTER' and dtype == 'TYPE_REGISTER':
self.memory[pc] = 'self.test_r_r(%d, %d)' % (int(src), dst)
elif stype == 'TYPE_REGISTER' and dtype == 'TYPE_IMMEDIATE':
self.memory[pc] = 'self.test_r_i(%d, %d)' % (int(src), dst)
else:
zassert(False, 'malformed usage of test instruction')
elif opcode == 'j':
(targ, ttype) = self.getarg(tmp[1].strip())
zassert(ttype == 'TYPE_LABEL', 'bad jump target [%s]' % tmp[1].strip())
self.memory[pc] = 'self.jump(%d)' % int(self.labels[targ])
elif opcode == 'jne':
(targ, ttype) = self.getarg(tmp[1].strip())
zassert(ttype == 'TYPE_LABEL', 'bad jump target [%s]' % tmp[1].strip())
self.memory[pc] = 'self.jump_notequal(%d)' % int(self.labels[targ])
elif opcode == 'je':
(targ, ttype) = self.getarg(tmp[1].strip())
zassert(ttype == 'TYPE_LABEL', 'bad jump target [%s]' % tmp[1].strip())
self.memory[pc] = 'self.jump_equal(%d)' % self.labels[targ]
elif opcode == 'jlt':
(targ, ttype) = self.getarg(tmp[1].strip())
zassert(ttype == 'TYPE_LABEL', 'bad jump target [%s]' % tmp[1].strip())
self.memory[pc] = 'self.jump_lessthan(%d)' % int(self.labels[targ])
elif opcode == 'jlte':
(targ, ttype) = self.getarg(tmp[1].strip())
zassert(ttype == 'TYPE_LABEL', 'bad jump target [%s]' % tmp[1].strip())
self.memory[pc] = 'self.jump_lessthanorequal(%s)' % self.labels[targ]
elif opcode == 'jgt':
(targ, ttype) = self.getarg(tmp[1].strip())
zassert(ttype == 'TYPE_LABEL', 'bad jump target [%s]' % tmp[1].strip())
self.memory[pc] = 'self.jump_greaterthan(%d)' % int(self.labels[targ])
elif opcode == 'jgte':
(targ, ttype) = self.getarg(tmp[1].strip())
zassert(ttype == 'TYPE_LABEL', 'bad jump target [%s]' % tmp[1].strip())
self.memory[pc] = 'self.jump_greaterthanorequal(%s)' % self.labels[targ]
elif opcode == 'nop':
self.memory[pc] = 'self.nop()'
elif opcode == 'halt':
self.memory[pc] = 'self.halt()'
elif opcode == 'yield':
self.memory[pc] = 'self.iyield()'
elif opcode == 'rdump':
self.memory[pc] = 'self.rdump()'
elif opcode == 'mdump':
self.memory[pc] = 'self.mdump(%s)' % tmp[1]
else:
print('illegal opcode: ', opcode)
exit(1)
if self.verbose: print('pc:%d LOADING %20s --> %s' % (pc, self.pmemory[pc], self.memory[pc]))
# INCREMENT PC for loader
pc += 1
# END: loop over file
fd.close()
if self.verbose: print('')
return
# END: load
def print_headers(self, procs):
# print some headers
if len(self.memtrace) > 0:
for m in self.memtrace:
if m[0].isdigit():
print('%5d' % int(m), end=' ')
else:
zassert(m in self.vars, 'Traced variable %s not declared' % m)
print('%5s' % m, end=' ')
print(' ', end=' ')
if len(self.regtrace) > 0:
for r in self.regtrace:
print('%5s' % self.get_regname(r), end=' ')
print(' ', end=' ')
if cctrace == True:
print('>= > <= < != ==', end=' ')
# and per thread
for i in range(procs.getnum()):
print(' Thread %d ' % i, end=' ')
print('')
return
def print_trace(self, newline):
if len(self.memtrace) > 0:
for m in self.memtrace:
if self.compute:
if m[0].isdigit():
print('%5d' % self.memory[int(m)], end=' ')
else:
zassert(m in self.vars, 'Traced variable %s not declared' % m)
print('%5d' % self.memory[self.vars[m]], end=' ')
else:
print('%5s' % '?', end=' ')
print(' ', end=' ')
if len(self.regtrace) > 0:
for r in self.regtrace:
if self.compute:
print('%5d' % self.registers[r], end=' ')
else:
print('%5s' % '?', end=' ')
print(' ', end=' ')
if cctrace == True:
for c in self.condlist:
if self.compute:
if self.conditions[c]:
print('1 ', end=' ')
else:
print('0 ', end=' ')
else:
print('? ', end=' ')
if (len(self.memtrace) > 0 or len(self.regtrace) > 0 or cctrace == True) and newline == True:
print('')
return
def setint(self, intfreq, intrand):
if intrand == False:
return intfreq
return int(random.random() * intfreq) + 1
def run(self, procs, intfreq, intrand):
# hw init: cc's, interrupt frequency, etc.
interrupt = self.setint(intfreq, intrand)
icount = 0
self.print_headers(procs)
self.print_trace(True)
while True:
# need thread ID of current process
tid = procs.getcurr().gettid()
# FETCH
prevPC = self.PC
instruction = self.memory[self.PC]
self.PC += 1
# DECODE and EXECUTE
# key: self.PC may be changed during eval; thus MUST be incremented BEFORE eval
rc = eval(instruction)
# tracing details: ALWAYS AFTER EXECUTION OF INSTRUCTION
self.print_trace(False)
# output: thread-proportional spacing followed by PC and instruction
dospace(tid)
print(prevPC, self.pmemory[prevPC])
icount += 1
# halt instruction issued
if rc == -1:
procs.done()
if procs.numdone() == procs.getnum():
return icount
procs.next()
procs.restore()
self.print_trace(False)
for i in range(procs.getnum()):
print('----- Halt;Switch ----- ', end=' ')
print('')
# do interrupt processing
interrupt -= 1
if interrupt == 0 or rc == -2:
interrupt = self.setint(intfreq, intrand)
procs.save()
procs.next()
procs.restore()
self.print_trace(False)
for i in range(procs.getnum()):
print('------ Interrupt ------ ', end=' ')
print('')
# END: while
return
#
# END: class cpu
#
#
# PROCESS LIST class
#
class proclist:
def __init__(self):
self.plist = []
self.curr = 0
self.active = 0
def done(self):
self.plist[self.curr].setdone()
self.active -= 1
def numdone(self):
return len(self.plist) - self.active
def getnum(self):
return len(self.plist)
def add(self, p):
self.active += 1
self.plist.append(p)
def getcurr(self):
return self.plist[self.curr]
def save(self):
self.plist[self.curr].save()
def restore(self):
self.plist[self.curr].restore()
def next(self):
for i in range(self.curr+1, len(self.plist)):
if self.plist[i].isdone() == False:
self.curr = i
return
for i in range(0, self.curr+1):
if self.plist[i].isdone() == False:
self.curr = i
return
#
# PROCESS class
#
class process:
def __init__(self, cpu, tid, pc, stackbottom, reginit):
self.cpu = cpu # object reference
self.tid = tid
self.pc = pc
self.regs = {}
self.cc = {}
self.done = False
self.stack = stackbottom
# init regs: all 0 or specially set to something
for r in self.cpu.get_regnums():
self.regs[r] = 0
if reginit != '':
# form: ax=1,bx=2 (for some subset of registers)
for r in reginit.split(':'):
tmp = r.split('=')
assert(len(tmp) == 2)
self.regs[self.cpu.get_regnum(tmp[0])] = int(tmp[1])
# init CCs
for c in self.cpu.get_condlist():
self.cc[c] = False
# stack
self.regs[self.cpu.get_regnum('sp')] = stackbottom
# print 'REG', self.cpu.get_regnum('sp'), self.regs[self.cpu.get_regnum('sp')]
return
def gettid(self):
return self.tid
def save(self):
self.pc = self.cpu.get_pc()
for c in self.cpu.get_condlist():
self.cc[c] = self.cpu.get_cond(c)
for r in self.cpu.get_regnums():
self.regs[r] = self.cpu.get_reg(r)
def restore(self):
self.cpu.set_pc(self.pc)
for c in self.cpu.get_condlist():
self.cpu.set_cond(c, self.cc[c])
for r in self.cpu.get_regnums():
self.cpu.set_reg(r, self.regs[r])
def setdone(self):
self.done = True
def isdone(self):
return self.done == True
#
# main program
#
parser = OptionParser()
parser.add_option('-s', '--seed', default=0, help='the random seed', action='store', type='int', dest='seed')
parser.add_option('-t', '--threads', default=2, help='number of threads', action='store', type='int', dest='numthreads')
parser.add_option('-p', '--program', default='', help='source program (in .s)', action='store', type='string', dest='progfile')
parser.add_option('-i', '--interrupt', default=50, help='interrupt frequency', action='store', type='int', dest='intfreq')
parser.add_option('-r', '--randints', default=False, help='if interrupts are random', action='store_true', dest='intrand')
parser.add_option('-a', '--argv', default='',
help='comma-separated per-thread args (e.g., ax=1,ax=2 sets thread 0 ax reg to 1 and thread 1 ax reg to 2); specify multiple regs per thread via colon-separated list (e.g., ax=1:bx=2,cx=3 sets thread 0 ax and bx and just cx for thread 1)',
action='store', type='string', dest='argv')
parser.add_option('-L', '--loadaddr', default=1000, help='address where to load code', action='store', type='int', dest='loadaddr')
parser.add_option('-m', '--memsize', default=128, help='size of address space (KB)', action='store', type='int', dest='memsize')
parser.add_option('-M', '--memtrace', default='', help='comma-separated list of addrs to trace (e.g., 20000,20001)', action='store',
type='string', dest='memtrace')
parser.add_option('-R', '--regtrace', default='', help='comma-separated list of regs to trace (e.g., ax,bx,cx,dx)', action='store',
type='string', dest='regtrace')
parser.add_option('-C', '--cctrace', default=False, help='should we trace condition codes', action='store_true', dest='cctrace')
parser.add_option('-S', '--printstats',default=False, help='print some extra stats', action='store_true', dest='printstats')
parser.add_option('-v', '--verbose', default=False, help='print some extra info', action='store_true', dest='verbose')
parser.add_option('-c', '--compute', default=False, help='compute answers for me', action='store_true', dest='solve')
(options, args) = parser.parse_args()
print('ARG seed', options.seed)
print('ARG numthreads', options.numthreads)
print('ARG program', options.progfile)
print('ARG interrupt frequency', options.intfreq)
print('ARG interrupt randomness',options.intrand)
print('ARG argv', options.argv)
print('ARG load address', options.loadaddr)
print('ARG memsize', options.memsize)
print('ARG memtrace', options.memtrace)
print('ARG regtrace', options.regtrace)
print('ARG cctrace', options.cctrace)
print('ARG printstats', options.printstats)
print('ARG verbose', options.verbose)
print('')
seed = int(options.seed)
numthreads = int(options.numthreads)
intfreq = int(options.intfreq)
zassert(intfreq > 0, 'Interrupt frequency must be greater than 0')
intrand = int(options.intrand)
progfile = options.progfile
zassert(progfile != '', 'Program file must be specified')
argv = options.argv.split(',')
zassert(len(argv) == numthreads or len(argv) == 1, 'argv: must be one per-thread or just one set of values for all threads')
loadaddr = options.loadaddr
memsize = options.memsize
random_seed(seed)
memtrace = []
if options.memtrace != '':
for m in options.memtrace.split(','):
memtrace.append(m)
regtrace = []
if options.regtrace != '':
for r in options.regtrace.split(','):
regtrace.append(r)
cctrace = options.cctrace
printstats = options.printstats
verbose = options.verbose
#
# MAIN program
#
debug = False
debug = False
cpu = cpu(memsize, memtrace, regtrace, cctrace, options.solve, verbose)
# load a program
cpu.load(progfile, loadaddr)
# process list
procs = proclist()
pid = 0
stack = memsize * 1000
for t in range(numthreads):
if len(argv) > 1:
arg = argv[pid]
else:
arg = argv[0]
procs.add(process(cpu, pid, loadaddr, stack, arg))
stack -= 1000
pid += 1
# get first one ready!
procs.restore()
# run it
if printstats:
t1 = time_clock()
ic = cpu.run(procs, intfreq, intrand)
if printstats:
t2 = time_clock()
if printstats:
print('')
print('STATS:: Instructions %d' % ic)
print('STATS:: Emulation Rate %.2f kinst/sec' % (float(ic) / float(t2 - t1) / 1000.0))