forked from traffic-analysis/deepcoffea
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_fens.py
466 lines (371 loc) · 17.9 KB
/
train_fens.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
from __future__ import print_function
try:
import cPickle as thepickle
except ImportError:
import _pickle as thepickle
import gc
from keras.callbacks import LambdaCallback
from new_model import create_model, create_model_2d
# import keras.backend.tensorflow_backend as ktf
import tensorflow as tf
import os
from keras.models import Model
from keras.layers import Input, Lambda, Dot
from keras import optimizers
import sys
import numpy as np
import argparse
import random
import pickle
import keras.backend as K
#### Stop the model training when 0.002 to get the best result in the paper!!!!
os.environ["CUDA_VISIBLE_DEVICES"] = "0";
parser = argparse.ArgumentParser()
def get_params():
parser.add_argument ('--tor_len', required=False, default=500)
parser.add_argument ('--exit_len', required=False, default=800)
parser.add_argument ('--win_interval', required=False, default=5)
parser.add_argument ('--num_window', required=False, default=11)
parser.add_argument ('--alpha', required=False, default=0.1)
parser.add_argument ('--input', required=False, default='./data/datasets/train_data/crawle_new_overlap_interval')
parser.add_argument ('--test', required=False, default='./data/datasets/test_data/crawle_overlap_new2021_interval')
parser.add_argument ('--model', required=False, default="./data/model/crawle_overlap_new2021_")
args = parser.parse_args ()
return args
def get_session(gpu_fraction=0.85):
gpu_options = tf.compat.v1.GPUOptions(per_process_gpu_memory_fraction=gpu_fraction,
allow_growth=True)
return tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(gpu_options=gpu_options))
def load_whole_seq_new(tor_seq,exit_seq,circuit_labels,test_c,train_c,model_gb):
train_window1=[]
train_window2=[]
test_window1=[]
test_window2=[]
window_tor=[]
window_exit=[]
window_tor_size = []
window_exit_size = []
window_tor_ipd = []
window_exit_ipd = []
print("extract both ipd and size features...")
for i in range(len(tor_seq)):
window_tor_size.append([float(pair["size"])/1000.0 for pair in tor_seq[i]])
window_exit_size.append([float(pair["size"]) / 1000.0 for pair in exit_seq[i]])
window_tor_ipd.append ([float(pair["ipd"])* 1000.0 for pair in tor_seq[i]])
window_exit_ipd.append ([float(pair["ipd"])* 1000.0 for pair in exit_seq[i]])
print('window_tor_size', np.array(window_tor_size, dtype=object).shape)
print('window_exit_size', np.array(window_exit_size, dtype=object).shape)
print('window_tor_ipd', np.array(window_tor_ipd, dtype=object).shape)
print('window_exit_ipd', np.array(window_exit_ipd, dtype=object).shape)
window_tor_ipd = np.array(window_tor_ipd, dtype=object)
window_exit_ipd = np.array(window_exit_ipd, dtype=object)
# Change the first idp to 0 across all windows.
new_window_tor_ipd = []
new_window_exit_ipd = []
for trace in window_tor_ipd:
new_trace = [0]+list(trace[1:])
new_window_tor_ipd.append([ipd for ipd in new_trace])
for trace in window_exit_ipd:
new_trace = [0]+list(trace[1:])
new_window_exit_ipd.append([ipd for ipd in new_trace])
window_tor_ipd = new_window_tor_ipd
window_exit_ipd = new_window_exit_ipd
print('window_tor_ipd',window_tor_ipd[10][:10])
print('window_exit_ipd',window_exit_ipd[10][:10])
for i in range(len(window_tor_ipd)):
window_tor.append(np.concatenate((window_tor_ipd[i], window_tor_size[i]), axis=None))
window_exit.append(np.concatenate((window_exit_ipd[i], window_exit_size[i]), axis=None))
window_tor = np.array(window_tor, dtype=object)
window_exit = np.array(window_exit, dtype=object)
print('window_tor', window_tor.shape)
print('window_exit', window_exit.shape)
for w, c in zip (window_tor, circuit_labels):
if c in train_c:
train_window1.append(w)
elif c in test_c:
test_window1.append(w)
for w, c in zip (window_exit, circuit_labels):
if c in train_c:
train_window2.append(w)
elif c in test_c:
test_window2.append(w)
print ('train_window1', np.array(train_window1, dtype=object).shape)
print ('train_window2', np.array(train_window1, dtype=object).shape)
return np.array(train_window1, dtype=object), np.array(train_window2, dtype=object), np.array(test_window1, dtype=object), np.array(test_window2, dtype=object), np.array(test_window1, dtype=object), np.array(test_window2, dtype=object)
if __name__ == '__main__':
args = get_params()
tf.compat.v1.keras.backend.set_session(get_session())
model_gb = 'cnn1d'
## Params for time-based window
interval = args.win_interval#5
t_flow_size = int(args.tor_len)#500#400#238 # 238#150#184 # 238#264
e_flow_size = int(args.exit_len)#800#330#140
num_windows = int(args.num_window)#11#21#5
window_index_list = np.arange(num_windows)
pad_t = t_flow_size * 2
pad_e = e_flow_size * 2
alpha_value = float(args.alpha)#0.1
train_windows1 = []
valid_windows1 = []
test_windows1 = []
train_windows2 = []
valid_windows2 = []
test_windows2 = []
train_labels = []
test_labels = []
valid_labels = []
for i, window_index in enumerate(window_index_list):
print(f"Processing {i} of {len(window_index_list)}...")
addn = 2
pickle_path = args.input+str(interval)+'_win'+ str(window_index) +'_addn'+ str(addn) +'_w_superpkt.pickle'
with open (pickle_path, 'rb') as handle:
traces = pickle.load (handle)
tor_seq = traces["tor"]
exit_seq = traces["exit"]
labels = traces["label"]
circuit_labels = np.array ([int (labels[i].split ('_')[0]) for i in range (len (labels))])
print (tor_seq[0])
circuit = {}
for i in range(len(labels)):
if labels[i].split ('_')[0] not in circuit.keys ():
circuit[labels[i].split ('_')[0]] = 1
else:
circuit[labels[i].split ('_')[0]] += 1
# No overlapping circuits between training and testing sets
global test_c
global train_c
if window_index == 0:
test_c = []
train_c = []
sum_ins = 2093
keys = list (circuit.keys ())
random.shuffle (keys)
for key in keys:
if sum_ins > 0:
sum_ins -= circuit[key]
test_c.append (key)
else:
train_c.append (key)
test_c = np.array (test_c).astype ('int')
train_c = np.array (train_c).astype ('int')
# print (train_c)
print ('test_c', test_c)
print ('train_c', train_c)
###########
train_set_x1, train_set_x2, test_set_x1, test_set_x2, valid_set_x1, valid_set_x2 = load_whole_seq_new(tor_seq,exit_seq,circuit_labels,test_c,train_c,model_gb)
temp_test1 = []
temp_test2 = []
print(train_set_x1.shape)
print(valid_set_x1.shape)
print(test_set_x1.shape)
print('train_set_x1', train_set_x1.shape)
for x in train_set_x1:
train_windows1.append(np.reshape(np.pad(x[:pad_t], (0, pad_t - len(x[:pad_t])), 'constant'), [-1, 1]))
for x in valid_set_x1:
valid_windows1.append(np.reshape(np.pad(x[:pad_t], (0, pad_t - len(x[:pad_t])), 'constant'), [-1, 1]))
for x in test_set_x1:
temp_test1.append(np.reshape(np.pad(x[:pad_t], (0, pad_t - len(x[:pad_t])), 'constant'), [-1, 1]))
for x in train_set_x2:
train_windows2.append(np.reshape(np.pad(x[:pad_e], (0, pad_e - len(x[:pad_e])), 'constant'), [-1, 1]))
for x in valid_set_x2:
valid_windows2.append(np.reshape(np.pad(x[:pad_e], (0, pad_e - len(x[:pad_e])), 'constant'), [-1, 1]))
for x in test_set_x2:
temp_test2.append(np.reshape(np.pad(x[:pad_e], (0, pad_e - len(x[:pad_e])), 'constant'), [-1, 1]))
print('temp_test1: ', np.array(temp_test1).shape)
print('temp_test2: ', np.array(temp_test2).shape)
test_windows1.append(np.array(temp_test1))
test_windows2.append(np.array(temp_test2))
np.savez_compressed(args.test+str(interval)+'_test' + str(num_windows) + 'addn'+str(addn)+'_w_superpkt.npz',
tor=np.array(test_windows1),
exit=np.array(test_windows2))
train_windows1 = np.array(train_windows1)
valid_windows1 = np.array(valid_windows1)
train_windows2 = np.array(train_windows2)
valid_windows2 = np.array(valid_windows2)
train_labels = np.array(train_labels)
test_labels = np.array(test_labels)
valid_labels = np.array(valid_labels)
print('train_windows1: ', np.array(train_windows1).shape)
print('train_windows2: ', np.array(train_windows2).shape)
print('test_windows1: ', np.array(test_windows1).shape)
print('test_windows2: ', np.array(test_windows2).shape)
input_shape1 = (pad_t, 1)
input_shape2 = (pad_e, 1)
shared_model1 = create_model(input_shape=input_shape1, emb_size=64, model_name='tor') ##
shared_model2 = create_model(input_shape=input_shape2, emb_size=64, model_name='exit') ##
anchor = Input(input_shape1, name='anchor')
positive = Input(input_shape2, name='positive')
negative = Input(input_shape2, name='negative')
a = shared_model1(anchor)
p = shared_model2(positive)
n = shared_model2(negative)
print('a shape', a.shape)
print('p shape', p.shape)
print('n shape', n.shape)
pos_sim = Dot(axes=-1, normalize=True)([a, p])
neg_sim = Dot(axes=-1, normalize=True)([a, n])
print('pos_sim shape', pos_sim.shape)
print('neg_sim shape', neg_sim.shape)
# customized loss
def cosine_triplet_loss(X):
_alpha = alpha_value
positive_sim, negative_sim = X
losses = K.maximum(0.0, negative_sim - positive_sim + _alpha)
# if similarity is based on the distance functions, use below
# losses = K.maximum(0.0, positive_sim - negative_sim + _alpha)
return K.mean(losses)
loss = Lambda(cosine_triplet_loss, output_shape=(1,))([pos_sim, neg_sim])
model_triplet = Model(
inputs=[anchor, positive, negative],
outputs=loss)
print(model_triplet.summary())
opt = optimizers.SGD(lr=0.001, decay=1e-6, momentum=0.9, nesterov=True)
def identity_loss(y_true, y_pred):
return K.mean(y_pred - 0 * y_true)
model_triplet.compile(loss=identity_loss, optimizer=opt)
batch_size = 128 # batch_size_value
def intersect(a, b):
return list(set(a) & set(b))
def build_similarities(conv1, conv2, tor_t, exit_t):
tor_embs = conv1.predict(tor_t)
exit_embs = conv2.predict(exit_t)
all_embs = np.concatenate((tor_embs, exit_embs), axis=0)
del tor_t
del exit_t
del tor_embs
del exit_embs
all_embs = all_embs / np.linalg.norm(all_embs, axis=-1, keepdims=True)
mid = int(len(all_embs) / 2)
all_sims = np.dot(all_embs[:mid], all_embs[mid:].T)
del all_embs
gc.collect()
return all_sims
def build_negatives(anc_idxs, pos_idxs, similarities, neg_imgs_idx, num_retries=50):
# If no similarities were computed, return a random negative
if similarities is None:
# print(neg_imgs_idx)
# print(anc_idxs)
anc_idxs = list(anc_idxs)
valid_neg_pool = neg_imgs_idx # .difference(anc_idxs)
print('valid_neg_pool', valid_neg_pool.shape)
return np.random.choice(valid_neg_pool, len(anc_idxs), replace=False)
final_neg = []
# for each positive pair
for (anc_idx, pos_idx) in zip(anc_idxs, pos_idxs):
anchor_class = anc_idx
# print('anchor_class',anchor_class)
valid_neg_pool = neg_imgs_idx # .difference(np.array([anchor_class]))
# positive similarity
sim = similarities[anc_idx, pos_idx]
# find all negatives which are semi(hard)
possible_ids = np.where((similarities[anc_idx] + alpha_value) > sim)[0]
possible_ids = intersect(valid_neg_pool, possible_ids)
appended = False
for iteration in range(num_retries):
if len(possible_ids) == 0:
break
idx_neg = np.random.choice(possible_ids, 1)[0]
if idx_neg != anchor_class:
final_neg.append(idx_neg)
appended = True
break
if not appended:
final_neg.append(np.random.choice(valid_neg_pool, 1)[0])
del similarities
gc.collect()
return final_neg
class SemiHardTripletGenerator():
def __init__(self, Xa_train, Xp_train, batch_size, neg_traces_train_idx, Xa_train_all, Xp_train_all, conv1, conv2):
self.batch_size = batch_size # 128
self.Xa = Xa_train
self.Xp = Xp_train
self.Xa_all = Xa_train_all
self.Xp_all = Xp_train_all
self.cur_train_index = 0
self.num_samples = Xa_train.shape[0]
self.neg_traces_idx = neg_traces_train_idx
if conv1:
self.similarities = build_similarities(conv1, conv2, self.Xa_all, self.Xp_all) # compute all similarities including cross pairs
else:
self.similarities = None
def next_train(self):
while 1:
print(f"\nself.curr_train_index: {self.cur_train_index}")
if self.cur_train_index >= self.num_samples:
self.cur_train_index = 0 # initialize the index for the next epoch
# fill one batch
traces_a = np.array(range(self.cur_train_index,
self.cur_train_index + self.batch_size))
traces_p = np.array(range(self.cur_train_index,
self.cur_train_index + self.batch_size))
self.cur_train_index += self.batch_size
traces_n = build_negatives(traces_a, traces_p, self.similarities, self.neg_traces_idx)
gc.collect()
yield ([self.Xa[traces_a],
self.Xp[traces_p],
self.Xp_all[traces_n]],
np.zeros(shape=(traces_a.shape[0]))
)
# At first epoch we don't generate hard triplets
all_traces_train_idx = np.array(range(len(train_windows1)))
gen_hard = SemiHardTripletGenerator(train_windows1, train_windows2, batch_size, all_traces_train_idx,
train_windows1, train_windows2, None, None)
nb_epochs = 10000
description = 'coffeh2'
best_loss = sys.float_info.max
def saveModel(epoch, logs):
global best_loss
loss = logs['loss']
if loss < best_loss:
print("\nloss is improved from {} to {}. save the model".format(str(best_loss),
str(loss)))
best_loss = loss
shared_model1.save_weights(
args.model + str(num_windows) + "_interval"+str(interval)+ '_addn'+str(addn)+"_model1_w_superpkt.h5")
shared_model2.save_weights(
args.model + str(num_windows) + "_interval"+str(interval)+'_addn'+str(addn)+"_model2_w_superpkt.h5")
else:
print("\nloss is not improved from {}.".format(str(best_loss)))
for epoch in range(nb_epochs):
print("built new hard generator for epoch " + str(epoch))
if epoch % 2 == 0:
if epoch == 0:
model_triplet.fit_generator(generator=gen_hard.next_train(),
steps_per_epoch=train_windows1.shape[0] // batch_size - 1,
epochs=1, verbose=1)
del gen_hard.Xa
del gen_hard.Xp
del gen_hard.Xa_all
del gen_hard.Xp_all
else:
model_triplet.fit_generator(generator=gen_hard.next_train(),
steps_per_epoch=(train_windows1.shape[0] // 2) // batch_size - 1,
epochs=1, verbose=1, callbacks=[LambdaCallback(on_epoch_end=saveModel)])
del gen_hard.similarities
del gen_hard.Xa
del gen_hard.Xp
del gen_hard.Xa_all
del gen_hard.Xp_all
else:
model_triplet.fit_generator(generator=gen_hard.next_train(),
steps_per_epoch=(train_windows1.shape[0] // 2) // batch_size - 1,
epochs=1, verbose=1, callbacks=[LambdaCallback(on_epoch_end=saveModel)])
del gen_hard.similarities
del gen_hard.Xa
del gen_hard.Xp
del gen_hard.Xa_all
del gen_hard.Xp_all
gc.collect()
mid = int(len(train_windows1) / 2)
random_ind = np.array(range(len(train_windows1)))
np.random.shuffle(random_ind)
X1 = np.array(random_ind[:mid])
X2 = np.array(random_ind[mid:])
if (epoch + 1) % 2 == 1:
gen_hard = SemiHardTripletGenerator(train_windows1[X1], train_windows2[X1], batch_size, X2, train_windows1,
train_windows2,
shared_model1, shared_model2) # prev gen_hard_odd
else:
gen_hard = SemiHardTripletGenerator(train_windows1[X2], train_windows2[X2], batch_size,
X1, train_windows1, train_windows2,
shared_model1, shared_model2) # prev gen_hard_even