-
Notifications
You must be signed in to change notification settings - Fork 0
/
vaihingen_dataset.py
240 lines (205 loc) · 10.1 KB
/
vaihingen_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import os
import os.path as osp
import numpy as np
import torch
from torch.utils.data import Dataset
import cv2
import matplotlib.pyplot as plt
import albumentations as albu
import matplotlib.patches as mpatches
from PIL import Image
import random
from .transform import *
from canny_creat_mask_pri import canny_dec
CLASSES = ('ImSurf', 'Building', 'LowVeg', 'Tree', 'Car', 'Clutter')
PALETTE = [[255, 255, 255], [0, 0, 255], [0, 255, 255], [0, 255, 0], [255, 204, 0], [255, 0, 0]]
ORIGIN_IMG_SIZE = (1024, 1024)
INPUT_IMG_SIZE = (1024, 1024)
TEST_IMG_SIZE = (1024, 1024)
def get_training_transform():
train_transform = [
albu.RandomRotate90(p=0.5),
albu.Normalize()
]
return albu.Compose(train_transform)
def train_aug(img, mask):
crop_aug = Compose([RandomScale(scale_list=[0.5, 0.75, 1.0, 1.25, 1.5], mode='value'),
SmartCropV1(crop_size=512, max_ratio=0.75,
ignore_index=len(CLASSES), nopad=False)])
img, mask = crop_aug(img, mask)
img, mask = np.array(img), np.array(mask)
aug = get_training_transform()(image=img.copy(), mask=mask.copy())
img, mask = aug['image'], aug['mask']
return img, mask
def get_val_transform():
val_transform = [
albu.Normalize()
]
return albu.Compose(val_transform)
def val_aug(img, mask):
img, mask = np.array(img), np.array(mask)
aug = get_val_transform()(image=img.copy(), mask=mask.copy())
img, mask = aug['image'], aug['mask']
return img, mask
class VaihingenDataset(Dataset):
def __init__(self, data_root='../GeoSeg/data/vaihingen/test', mode='val', img_dir='images_1024', mask_dir='masks_1024',
img_suffix='.tif', mask_suffix='.png', transform=val_aug, mosaic_ratio=0.0,
img_size=ORIGIN_IMG_SIZE):
self.data_root = data_root
self.img_dir = img_dir
self.mask_dir = mask_dir
self.img_suffix = img_suffix
self.mask_suffix = mask_suffix
self.transform = transform
self.mode = mode
self.mosaic_ratio = mosaic_ratio
self.img_size = img_size
self.img_ids = self.get_img_ids(self.data_root, self.img_dir, self.mask_dir)
def __getitem__(self, index):
p_ratio = random.random()
if p_ratio > self.mosaic_ratio or self.mode == 'val' or self.mode == 'test':
img, mask = self.load_img_and_mask(index)
if self.transform:
img, mask = self.transform(img, mask)
else:
img, mask = self.load_mosaic_img_and_mask(index)
if self.transform:
img, mask = self.transform(img, mask)
img = torch.from_numpy(img).permute(2, 0, 1).float()
if self.mode == 'val' or self.mode == 'test':
canny, canny_2, canny_3, rgb_resize, rgb_resize_2, rgb_resize_3 = canny_dec(mask.copy(), False)
else:
canny, canny_2, canny_3, rgb_resize, rgb_resize_2, rgb_resize_3 = canny_dec(mask.copy(), True)
mask = torch.from_numpy(mask).long()
rgb_resize = torch.from_numpy(rgb_resize).long()
rgb_resize_2 = torch.from_numpy(rgb_resize_2).long()
rgb_resize_3 = torch.from_numpy(rgb_resize_3).long()
img_id = self.img_ids[index]
results = dict(img_id=img_id, img=img, gt_semantic_seg=mask, canny=canny, canny_2=canny_2, canny_3=canny_3, rgb_resize=rgb_resize, rgb_resize_2=rgb_resize_2, rgb_resize_3=rgb_resize_3)
return results
def __len__(self):
return len(self.img_ids)
def get_img_ids(self, data_root, img_dir, mask_dir):
img_filename_list = os.listdir(osp.join(data_root, img_dir))
mask_filename_list = os.listdir(osp.join(data_root, mask_dir))
assert len(img_filename_list) == len(mask_filename_list)
img_ids = [str(id.split('.')[0]) for id in mask_filename_list]
return img_ids
def load_img_and_mask(self, index):
img_id = self.img_ids[index]
img_name = osp.join(self.data_root, self.img_dir, img_id + self.img_suffix)
mask_name = osp.join(self.data_root, self.mask_dir, img_id + self.mask_suffix)
img = Image.open(img_name).convert('RGB')
mask = Image.open(mask_name).convert('L')
return img, mask
def load_mosaic_img_and_mask(self, index):
indexes = [index] + [random.randint(0, len(self.img_ids) - 1) for _ in range(3)]
img_a, mask_a = self.load_img_and_mask(indexes[0])
img_b, mask_b = self.load_img_and_mask(indexes[1])
img_c, mask_c = self.load_img_and_mask(indexes[2])
img_d, mask_d = self.load_img_and_mask(indexes[3])
img_a, mask_a = np.array(img_a), np.array(mask_a)
img_b, mask_b = np.array(img_b), np.array(mask_b)
img_c, mask_c = np.array(img_c), np.array(mask_c)
img_d, mask_d = np.array(img_d), np.array(mask_d)
h = self.img_size[0]
w = self.img_size[1]
start_x = w // 4
strat_y = h // 4
# The coordinates of the splice center
offset_x = random.randint(start_x, (w - start_x))
offset_y = random.randint(strat_y, (h - strat_y))
crop_size_a = (offset_x, offset_y)
crop_size_b = (w - offset_x, offset_y)
crop_size_c = (offset_x, h - offset_y)
crop_size_d = (w - offset_x, h - offset_y)
random_crop_a = albu.RandomCrop(width=crop_size_a[0], height=crop_size_a[1])
random_crop_b = albu.RandomCrop(width=crop_size_b[0], height=crop_size_b[1])
random_crop_c = albu.RandomCrop(width=crop_size_c[0], height=crop_size_c[1])
random_crop_d = albu.RandomCrop(width=crop_size_d[0], height=crop_size_d[1])
croped_a = random_crop_a(image=img_a.copy(), mask=mask_a.copy())
croped_b = random_crop_b(image=img_b.copy(), mask=mask_b.copy())
croped_c = random_crop_c(image=img_c.copy(), mask=mask_c.copy())
croped_d = random_crop_d(image=img_d.copy(), mask=mask_d.copy())
img_crop_a, mask_crop_a = croped_a['image'], croped_a['mask']
img_crop_b, mask_crop_b = croped_b['image'], croped_b['mask']
img_crop_c, mask_crop_c = croped_c['image'], croped_c['mask']
img_crop_d, mask_crop_d = croped_d['image'], croped_d['mask']
top = np.concatenate((img_crop_a, img_crop_b), axis=1)
bottom = np.concatenate((img_crop_c, img_crop_d), axis=1)
img = np.concatenate((top, bottom), axis=0)
top_mask = np.concatenate((mask_crop_a, mask_crop_b), axis=1)
bottom_mask = np.concatenate((mask_crop_c, mask_crop_d), axis=1)
mask = np.concatenate((top_mask, bottom_mask), axis=0)
mask = np.ascontiguousarray(mask)
img = np.ascontiguousarray(img)
img = Image.fromarray(img)
mask = Image.fromarray(mask)
# print(img.shape)
return img, mask
def show_img_mask_seg(seg_path, img_path, mask_path, start_seg_index):
seg_list = os.listdir(seg_path)
seg_list = [f for f in seg_list if f.endswith('.png')]
fig, ax = plt.subplots(2, 3, figsize=(18, 12))
seg_list = seg_list[start_seg_index:start_seg_index+2]
patches = [mpatches.Patch(color=np.array(PALETTE[i])/255., label=CLASSES[i]) for i in range(len(CLASSES))]
for i in range(len(seg_list)):
seg_id = seg_list[i]
img_seg = cv2.imread(f'{seg_path}/{seg_id}', cv2.IMREAD_UNCHANGED)
img_seg = img_seg.astype(np.uint8)
img_seg = Image.fromarray(img_seg).convert('P')
img_seg.putpalette(np.array(PALETTE, dtype=np.uint8))
img_seg = np.array(img_seg.convert('RGB'))
mask = cv2.imread(f'{mask_path}/{seg_id}', cv2.IMREAD_UNCHANGED)
mask = mask.astype(np.uint8)
mask = Image.fromarray(mask).convert('P')
mask.putpalette(np.array(PALETTE, dtype=np.uint8))
mask = np.array(mask.convert('RGB'))
img_id = str(seg_id.split('.')[0])+'.tif'
img = cv2.imread(f'{img_path}/{img_id}', cv2.IMREAD_COLOR)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
ax[i, 0].set_axis_off()
ax[i, 0].imshow(img)
ax[i, 0].set_title('RS IMAGE ' + img_id)
ax[i, 1].set_axis_off()
ax[i, 1].imshow(mask)
ax[i, 1].set_title('Mask True ' + seg_id)
ax[i, 2].set_axis_off()
ax[i, 2].imshow(img_seg)
ax[i, 2].set_title('Mask Predict ' + seg_id)
ax[i, 2].legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0., fontsize='large')
def show_seg(seg_path, img_path, start_seg_index):
seg_list = os.listdir(seg_path)
seg_list = [f for f in seg_list if f.endswith('.png')]
fig, ax = plt.subplots(2, 2, figsize=(12, 12))
seg_list = seg_list[start_seg_index:start_seg_index+2]
patches = [mpatches.Patch(color=np.array(PALETTE[i])/255., label=CLASSES[i]) for i in range(len(CLASSES))]
for i in range(len(seg_list)):
seg_id = seg_list[i]
img_seg = cv2.imread(f'{seg_path}/{seg_id}', cv2.IMREAD_UNCHANGED)
img_seg = img_seg.astype(np.uint8)
img_seg = Image.fromarray(img_seg).convert('P')
img_seg.putpalette(np.array(PALETTE, dtype=np.uint8))
img_seg = np.array(img_seg.convert('RGB'))
img_id = str(seg_id.split('.')[0])+'.tif'
img = cv2.imread(f'{img_path}/{img_id}', cv2.IMREAD_COLOR)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
ax[i, 0].set_axis_off()
ax[i, 0].imshow(img)
ax[i, 0].set_title('RS IMAGE '+img_id)
ax[i, 1].set_axis_off()
ax[i, 1].imshow(img_seg)
ax[i, 1].set_title('Seg IMAGE '+seg_id)
ax[i, 1].legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0., fontsize='large')
def show_mask(img, mask, img_id):
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(12, 12))
patches = [mpatches.Patch(color=np.array(PALETTE[i])/255., label=CLASSES[i]) for i in range(len(CLASSES))]
mask = mask.astype(np.uint8)
mask = Image.fromarray(mask).convert('P')
mask.putpalette(np.array(PALETTE, dtype=np.uint8))
mask = np.array(mask.convert('RGB'))
ax1.imshow(img)
ax1.set_title('RS IMAGE ' + str(img_id)+'.tif')
ax2.imshow(mask)
ax2.set_title('Mask ' + str(img_id)+'.png')
ax2.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0., fontsize='large')