forked from marcellacornia/sam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
attentive_convlstm.py
158 lines (122 loc) · 7.24 KB
/
attentive_convlstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from __future__ import division
import keras.backend as K
from keras.layers import Layer, InputSpec
from keras.layers.convolutional import Convolution2D
from keras import initializations, activations
class AttentiveConvLSTM(Layer):
def __init__(self, nb_filters_in, nb_filters_out, nb_filters_att, nb_rows, nb_cols,
init='normal', inner_init='orthogonal', attentive_init='zero',
activation='tanh', inner_activation='sigmoid',
W_regularizer=None, U_regularizer=None,
weights=None, go_backwards=False,
**kwargs):
self.nb_filters_in = nb_filters_in
self.nb_filters_out = nb_filters_out
self.nb_filters_att = nb_filters_att
self.nb_rows = nb_rows
self.nb_cols = nb_cols
self.init = initializations.get(init)
self.inner_init = initializations.get(inner_init)
self.attentive_init = initializations.get(attentive_init)
self.activation = activations.get(activation)
self.inner_activation = activations.get(inner_activation)
self.initial_weights = weights
self.go_backwards = go_backwards
self.W_regularizer = W_regularizer
self.U_regularizer = U_regularizer
self.input_spec = [InputSpec(ndim=5)]
super(AttentiveConvLSTM, self).__init__(**kwargs)
def get_output_shape_for(self, input_shape):
return input_shape[:1] + (self.nb_filters_out,) + input_shape[3:]
def compute_mask(self, input, mask):
return None
def get_initial_states(self, x):
initial_state = K.sum(x, axis=1)
initial_state = K.conv2d(initial_state, K.zeros((self.nb_filters_out, self.nb_filters_in, 1, 1)), border_mode='same')
initial_states = [initial_state for _ in range(len(self.states))]
return initial_states
def build(self, input_shape):
self.input_spec = [InputSpec(shape=input_shape)]
self.states = [None, None]
self.trainable_weights = []
self.W_a = Convolution2D(self.nb_filters_att, self.nb_rows, self.nb_cols, border_mode='same', bias=True, init=self.init)
self.U_a = Convolution2D(self.nb_filters_att, self.nb_rows, self.nb_cols, border_mode='same', bias=True, init=self.init)
self.V_a = Convolution2D(1, self.nb_rows, self.nb_cols, border_mode='same', bias=False, init=self.attentive_init)
self.W_a.build((input_shape[0], self.nb_filters_att, input_shape[3], input_shape[4]))
self.U_a.build((input_shape[0], self.nb_filters_in, input_shape[3], input_shape[4]))
self.V_a.build((input_shape[0], self.nb_filters_att, input_shape[3], input_shape[4]))
self.W_a.built = True
self.U_a.built = True
self.V_a.built = True
self.W_i = Convolution2D(self.nb_filters_out, self.nb_rows, self.nb_cols, border_mode='same', bias=True, init=self.init)
self.U_i = Convolution2D(self.nb_filters_out, self.nb_rows, self.nb_cols, border_mode='same', bias=True, init=self.inner_init)
self.W_i.build((input_shape[0], self.nb_filters_in, input_shape[3], input_shape[4]))
self.U_i.build((input_shape[0], self.nb_filters_out, input_shape[3], input_shape[4]))
self.W_i.built = True
self.U_i.built = True
self.W_f = Convolution2D(self.nb_filters_out, self.nb_rows, self.nb_cols, border_mode='same', bias=True, init=self.init)
self.U_f = Convolution2D(self.nb_filters_out, self.nb_rows, self.nb_cols, border_mode='same', bias=True, init=self.inner_init)
self.W_f.build((input_shape[0], self.nb_filters_in, input_shape[3], input_shape[4]))
self.U_f.build((input_shape[0], self.nb_filters_out, input_shape[3], input_shape[4]))
self.W_f.built = True
self.U_f.built = True
self.W_c = Convolution2D(self.nb_filters_out, self.nb_rows, self.nb_cols, border_mode='same', bias=True, init=self.init)
self.U_c = Convolution2D(self.nb_filters_out, self.nb_rows, self.nb_cols, border_mode='same', bias=True, init=self.inner_init)
self.W_c.build((input_shape[0], self.nb_filters_in, input_shape[3], input_shape[4]))
self.U_c.build((input_shape[0], self.nb_filters_out, input_shape[3], input_shape[4]))
self.W_c.built = True
self.U_c.built = True
self.W_o = Convolution2D(self.nb_filters_out, self.nb_rows, self.nb_cols, border_mode='same', bias=True, init=self.init)
self.U_o = Convolution2D(self.nb_filters_out, self.nb_rows, self.nb_cols, border_mode='same', bias=True, init=self.inner_init)
self.W_o.build((input_shape[0], self.nb_filters_in, input_shape[3], input_shape[4]))
self.U_o.build((input_shape[0], self.nb_filters_out, input_shape[3], input_shape[4]))
self.W_o.built = True
self.U_o.built = True
self.trainable_weights = []
self.trainable_weights.extend(self.W_a.trainable_weights)
self.trainable_weights.extend(self.U_a.trainable_weights)
self.trainable_weights.extend(self.V_a.trainable_weights)
self.trainable_weights.extend(self.W_i.trainable_weights)
self.trainable_weights.extend(self.U_i.trainable_weights)
self.trainable_weights.extend(self.W_f.trainable_weights)
self.trainable_weights.extend(self.U_f.trainable_weights)
self.trainable_weights.extend(self.W_c.trainable_weights)
self.trainable_weights.extend(self.U_c.trainable_weights)
self.trainable_weights.extend(self.W_o.trainable_weights)
self.trainable_weights.extend(self.U_o.trainable_weights)
def preprocess_input(self, x):
return x
def step(self, x, states):
x_shape = K.shape(x)
h_tm1 = states[0]
c_tm1 = states[1]
e = self.V_a(K.tanh(self.W_a(h_tm1) + self.U_a(x)))
a = K.reshape(K.softmax(K.batch_flatten(e)), (x_shape[0], 1, x_shape[2], x_shape[3]))
x_tilde = x * K.repeat_elements(a, x_shape[1], 1)
x_i = self.W_i(x_tilde)
x_f = self.W_f(x_tilde)
x_c = self.W_c(x_tilde)
x_o = self.W_o(x_tilde)
i = self.inner_activation(x_i + self.U_i(h_tm1))
f = self.inner_activation(x_f + self.U_f(h_tm1))
c = f * c_tm1 + i * self.activation(x_c + self.U_c(h_tm1))
o = self.inner_activation(x_o + self.U_o(h_tm1))
h = o * self.activation(c)
return h, [h, c]
def get_constants(self, x):
return []
def call(self, x, mask=None):
input_shape = self.input_spec[0].shape
initial_states = self.get_initial_states(x)
constants = self.get_constants(x)
preprocessed_input = self.preprocess_input(x)
last_output, outputs, states = K.rnn(self.step, preprocessed_input,
initial_states,
go_backwards=False,
mask=mask,
constants=constants,
unroll=False,
input_length=input_shape[1])
if last_output.ndim == 3:
last_output = K.expand_dims(last_output, dim=0)
return last_output