forked from marcellacornia/sam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdcn_resnet.py
174 lines (130 loc) · 7.1 KB
/
dcn_resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
'''
This code is part of the Keras ResNet-50 model
'''
from __future__ import print_function
from __future__ import absolute_import
from keras.layers import merge, Input, Activation
from keras.layers import Convolution2D, MaxPooling2D, ZeroPadding2D
from keras.layers.convolutional import AtrousConvolution2D
from keras.layers import BatchNormalization
from keras. models import Model
from keras import backend as K
from keras.utils.data_utils import get_file
TH_WEIGHTS_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.2/resnet50_weights_th_dim_ordering_th_kernels_notop.h5'
def identity_block(input_tensor, kernel_size, filters, stage, block):
nb_filter1, nb_filter2, nb_filter3 = filters
bn_axis = 1
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
x = Convolution2D(nb_filter1, 1, 1, name=conv_name_base + '2a')(input_tensor)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)
x = Activation('relu')(x)
x = Convolution2D(nb_filter2, kernel_size, kernel_size,
border_mode='same', name=conv_name_base + '2b')(x)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)
x = Activation('relu')(x)
x = Convolution2D(nb_filter3, 1, 1, name=conv_name_base + '2c')(x)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)
x = merge([x, input_tensor], mode='sum')
x = Activation('relu')(x)
return x
def conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2)):
nb_filter1, nb_filter2, nb_filter3 = filters
bn_axis = 1
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
x = Convolution2D(nb_filter1, 1, 1, subsample=strides,
name=conv_name_base + '2a')(input_tensor)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)
x = Activation('relu')(x)
x = Convolution2D(nb_filter2, kernel_size, kernel_size, border_mode='same',
name=conv_name_base + '2b')(x)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)
x = Activation('relu')(x)
x = Convolution2D(nb_filter3, 1, 1, name=conv_name_base + '2c')(x)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)
shortcut = Convolution2D(nb_filter3, 1, 1, subsample=strides,
name=conv_name_base + '1')(input_tensor)
shortcut = BatchNormalization(axis=bn_axis, name=bn_name_base + '1')(shortcut)
x = merge([x, shortcut], mode='sum')
x = Activation('relu')(x)
return x
def conv_block_atrous(input_tensor, kernel_size, filters, stage, block, atrous_rate=(2, 2)):
nb_filter1, nb_filter2, nb_filter3 = filters
bn_axis = 1
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
x = Convolution2D(nb_filter1, 1, 1, name=conv_name_base + '2a')(input_tensor)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)
x = Activation('relu')(x)
x = AtrousConvolution2D(nb_filter2, kernel_size, kernel_size, border_mode='same',
atrous_rate=atrous_rate, name=conv_name_base + '2b')(x)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)
x = Activation('relu')(x)
x = Convolution2D(nb_filter3, 1, 1, name=conv_name_base + '2c')(x)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)
shortcut = Convolution2D(nb_filter3, 1, 1, name=conv_name_base + '1')(input_tensor)
shortcut = BatchNormalization(axis=bn_axis, name=bn_name_base + '1')(shortcut)
x = merge([x, shortcut], mode='sum')
x = Activation('relu')(x)
return x
def identity_block_atrous(input_tensor, kernel_size, filters, stage, block, atrous_rate=(2, 2)):
nb_filter1, nb_filter2, nb_filter3 = filters
bn_axis = 1
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
x = Convolution2D(nb_filter1, 1, 1, name=conv_name_base + '2a')(input_tensor)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)
x = Activation('relu')(x)
x = AtrousConvolution2D(nb_filter2, kernel_size, kernel_size, atrous_rate=atrous_rate,
border_mode='same', name=conv_name_base + '2b')(x)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)
x = Activation('relu')(x)
x = Convolution2D(nb_filter3, 1, 1, name=conv_name_base + '2c')(x)
x = BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)
x = merge([x, input_tensor], mode='sum')
x = Activation('relu')(x)
return x
def dcn_resnet(input_tensor=None):
input_shape = (3, None, None)
if input_tensor is None:
img_input = Input(shape=input_shape)
else:
if not K.is_keras_tensor(input_tensor):
img_input = Input(tensor=input_tensor)
else:
img_input = input_tensor
bn_axis = 1
# conv_1
x = ZeroPadding2D((3, 3))(img_input)
x = Convolution2D(64, 7, 7, subsample=(2, 2), name='conv1')(x)
x = BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
x = Activation('relu')(x)
x = MaxPooling2D((3, 3), strides=(2, 2), border_mode='same')(x)
# conv_2
x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')
# conv_3
x = conv_block(x, 3, [128, 128, 512], stage=3, block='a', strides=(2, 2))
x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')
# conv_4
x = conv_block_atrous(x, 3, [256, 256, 1024], stage=4, block='a', atrous_rate=(2, 2))
x = identity_block_atrous(x, 3, [256, 256, 1024], stage=4, block='b', atrous_rate=(2, 2))
x = identity_block_atrous(x, 3, [256, 256, 1024], stage=4, block='c', atrous_rate=(2, 2))
x = identity_block_atrous(x, 3, [256, 256, 1024], stage=4, block='d', atrous_rate=(2, 2))
x = identity_block_atrous(x, 3, [256, 256, 1024], stage=4, block='e', atrous_rate=(2, 2))
x = identity_block_atrous(x, 3, [256, 256, 1024], stage=4, block='f', atrous_rate=(2, 2))
# conv_5
x = conv_block_atrous(x, 3, [512, 512, 2048], stage=5, block='a', atrous_rate=(4, 4))
x = identity_block_atrous(x, 3, [512, 512, 2048], stage=5, block='b', atrous_rate=(4, 4))
x = identity_block_atrous(x, 3, [512, 512, 2048], stage=5, block='c', atrous_rate=(4, 4))
# Create model
model = Model(img_input, x)
# Load weights
weights_path = get_file('resnet50_weights_th_dim_ordering_th_kernels_notop.h5', TH_WEIGHTS_PATH_NO_TOP,
cache_subdir='models', md5_hash='f64f049c92468c9affcd44b0976cdafe')
model.load_weights(weights_path)
return model