-
Notifications
You must be signed in to change notification settings - Fork 0
/
MT_D_Base_Matrix.h
416 lines (355 loc) · 12 KB
/
MT_D_Base_Matrix.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
//
// MT_D_Base_Matrix.h
// mt-matrix-class
//
// Created by Liam on 06/04/2017.
// Copyright © 2017 Liam. All rights reserved.
//
#ifndef MT_D_Base_Matrix_h
#define MT_D_Base_Matrix_h
#include <iostream>
#include <fstream>
#include <vector>
#include <thread>
#include <mutex>
#include <atomic>
//Determine boundaries for the partition of a range such that for each partition the lower boundary is inclusive
//and the upper boundary is exclusive, i.e., [lower_bound, upper_bound).
std::vector<int> resourceAllocation(int range, int numOfThreads)
{
int base = range / numOfThreads;
int remainder = range - base * numOfThreads;
std::vector<int> resourceVector;
resourceVector.reserve(numOfThreads + 1);
int bound = 0;
resourceVector.push_back(bound);
for(int i = 0; i < numOfThreads; ++i)
{
if(i < remainder)
{
bound += base + 1;
}
else
{
bound += base;
}
resourceVector.push_back(bound);
}
return resourceVector;
}
template<typename T>
class MT_D_Base_Matrix;
template<typename T>
MT_D_Base_Matrix<T> operator+ (const MT_D_Base_Matrix<T> &a, const MT_D_Base_Matrix<T> &b);
template<typename T>
void paraAdd(MT_D_Base_Matrix<T> &temp, const MT_D_Base_Matrix<T> &a, const MT_D_Base_Matrix<T> &b, int lBound, int uBound);
template<typename T>
MT_D_Base_Matrix<T> operator- (const MT_D_Base_Matrix<T> &a, const MT_D_Base_Matrix<T> &b);
template<typename T>
void paraSub(MT_D_Base_Matrix<T> &temp, const MT_D_Base_Matrix<T> &a, const MT_D_Base_Matrix<T> &b, int lBound, int uBound);
template<typename T>
MT_D_Base_Matrix<T> operator* (const T k, const MT_D_Base_Matrix<T> &a);
template<typename T>
void scalarMulti(MT_D_Base_Matrix<T> &temp, const T k, const MT_D_Base_Matrix<T> &a, int lB, int uB);
template<typename T>
MT_D_Base_Matrix<T> operator* (const MT_D_Base_Matrix<T> &a, const T k);
template<typename T>
class MT_D_Base_Matrix
{
private:
std::vector<T>m_matrix;
int m_rows;
int m_cols;
int m_size;
std::mutex m_mutex;
unsigned int m_maxThreads;
unsigned int m_workerThreads;
std::vector<std::thread> m_threads;
void parallelTranspose(std::vector<T> &tempMatrix, int lBound, int uBound);
friend void paraAdd <T> (MT_D_Base_Matrix<T> &temp, const MT_D_Base_Matrix<T> &a, const MT_D_Base_Matrix<T> &b, int lBound, int uBound);
friend void paraSub <T> (MT_D_Base_Matrix<T> &temp, const MT_D_Base_Matrix<T> &a, const MT_D_Base_Matrix<T> &b, int lBound, int uBound);
friend void scalarMulti <T> (MT_D_Base_Matrix<T> &temp, const T k, const MT_D_Base_Matrix<T> &a, int lB, int uB);
public:
//Initialize as a zeros matrix.
MT_D_Base_Matrix(int rows, int cols) : m_rows{rows}, m_cols{cols}, m_size{rows * cols}, m_maxThreads{std::thread::hardware_concurrency()}, m_workerThreads{std::thread::hardware_concurrency() - 1}
{
m_matrix.resize(m_size);
for(auto &x : m_matrix)
{
x = 0;
}
m_threads.resize(m_maxThreads);
}
//Initialize matrix with a CSV file.
MT_D_Base_Matrix(std::string fileCSV, int rows, int cols) : m_rows{rows}, m_cols{cols}, m_size{rows * cols}, m_maxThreads{std::thread::hardware_concurrency()}, m_workerThreads{std::thread::hardware_concurrency() - 1}
{
std::ifstream inf(fileCSV);
if(!inf)
{
//std::cerr << "CSV file could not be opened for reading!" << std::endl;
}
m_matrix.resize(m_size);
m_threads.resize(m_workerThreads);
for(auto &x : m_matrix)
{
std::string temp;
std::getline(inf, temp, ',');
x = std::stoi(temp);
}
inf.close();
}
//Initialize with std::vector.
MT_D_Base_Matrix(std::vector<T> matrix, int rows, int cols) : m_matrix{matrix}, m_rows{rows}, m_cols{cols}, m_size{rows * cols}, m_maxThreads{std::thread::hardware_concurrency()}, m_workerThreads{std::thread::hardware_concurrency() - 1}
{
m_threads.resize(m_workerThreads);
}
//Copy constructor.
MT_D_Base_Matrix(const MT_D_Base_Matrix& C) : m_rows{C.m_rows}, m_cols{C.m_cols}, m_size{C.m_size}, m_matrix{C.m_matrix}, m_maxThreads{C.m_maxThreads}, m_workerThreads{C.m_workerThreads}
{
//std::cout << "Copy constructor" << '\n';
m_threads.resize(m_workerThreads);
}
//Destructor
~MT_D_Base_Matrix()
{
for(int i = 0; i != m_workerThreads ; ++i)
{
if(m_threads[i].joinable())
{
m_threads[i].join();
}
}
}
MT_D_Base_Matrix& operator= (const MT_D_Base_Matrix &matrix);
MT_D_Base_Matrix& operator= (std::initializer_list<T> list);
//Used to access elements of the matrix.
T& operator() (int row, int col);
MT_D_Base_Matrix& transpose();
int getRowDim() const;
int getColDim() const;
int getNST() const;
void print();
friend MT_D_Base_Matrix operator+ <T> (const MT_D_Base_Matrix &a, const MT_D_Base_Matrix &b);
friend MT_D_Base_Matrix operator- <T> (const MT_D_Base_Matrix &a, const MT_D_Base_Matrix &b);
friend MT_D_Base_Matrix operator* <T> (const T k, const MT_D_Base_Matrix &a);
friend MT_D_Base_Matrix operator* <T> (const MT_D_Base_Matrix &a, const T k);
friend MT_D_Base_Matrix operator* <T> (const MT_D_Base_Matrix &a, const MT_D_Base_Matrix &b);
};
template<typename T>
MT_D_Base_Matrix<T>& MT_D_Base_Matrix<T>::operator= (const MT_D_Base_Matrix<T> &A)
{
if (this == &A)
return *this;
std::cout << "Assignment operator called" << '\n';
// do the copy
m_rows = A.m_rows;
m_cols = A.m_cols;
m_matrix = A.m_matrix;
// return the existing object so we can chain this operator
return *this;
}
template<typename T>
MT_D_Base_Matrix<T>& MT_D_Base_Matrix<T>::operator= (std::initializer_list<T> list)
{
std::cout << "Assignment operator called (init_list)" << '\n';
m_matrix = list;
// return the existing object so we can chain this operator
return *this;
}
template<typename T>
T& MT_D_Base_Matrix<T>::operator() (int row, int col)
{
return m_matrix[(row * (m_cols - 1)) + row + col];
}
// lBound inclusive, uBound exclusive, i.e. the range [lBound, uBound)
template<typename T>
void MT_D_Base_Matrix<T>::parallelTranspose(std::vector<T> &tempMatrix, int lBound, int uBound)
{
for(int i = lBound; i != uBound; ++i)
{
int temp = m_matrix[(m_cols * i)%(m_matrix.size() - 1)];
std::lock_guard<std::mutex> guard(m_mutex);
tempMatrix[i] = temp;
}
}
template<typename T>
MT_D_Base_Matrix<T>& MT_D_Base_Matrix<T>::transpose()
{
std::vector<T> tempMatrix;
tempMatrix.resize(m_matrix.size());
std::vector<int> bound = resourceAllocation(static_cast<int>(m_matrix.size()), m_maxThreads);
for(int i = 0; i < m_workerThreads; ++i)
{
m_threads[i] = std::thread(&MT_D_Base_Matrix<T>::parallelTranspose, this, std::ref(tempMatrix), bound[i], bound[i + 1]);
}
parallelTranspose(tempMatrix, bound[m_workerThreads], bound[m_maxThreads]);
for(int i = 0; i < m_workerThreads; ++i)
{
m_threads[i].join();
}
//Accounts for the in parallelTranspose algorithm miss assigning the last element.
tempMatrix[tempMatrix.size() - 1] = m_matrix[tempMatrix.size() - 1];
m_matrix = tempMatrix;
int temp = m_cols;
m_cols = m_rows;
m_rows = temp;
return *this;
}
template<typename T>
int MT_D_Base_Matrix<T>::getRowDim() const
{
return m_rows;
}
template<typename T>
int MT_D_Base_Matrix<T>::getColDim() const
{
return m_cols;
}
template<typename T>
int MT_D_Base_Matrix<T>::getNST() const
{
return m_maxThreads;
}
template<typename T>
void MT_D_Base_Matrix<T>::print()
{
for(int i = 0; i < m_matrix.size(); ++i)
{
std::cout << m_matrix[i] << ", ";
int n = i + 1;
int check = n % (m_cols);
if(check == 0)
{
std::cout << '\n';
}
}
}
template<typename T>
MT_D_Base_Matrix<T> operator+
(const MT_D_Base_Matrix<T> &a, const MT_D_Base_Matrix<T> &b)
{
if((a.getColDim() != b.getColDim()) || (a.getRowDim() != b.getRowDim()))
{
exit(1);
}
MT_D_Base_Matrix<T> temp{a.getRowDim(), a.getColDim()};
int size = a.getRowDim() * a.getColDim();
if(size > 10)
{
std::vector<int> bound = resourceAllocation(static_cast<int>(temp.m_matrix.size()), temp.m_maxThreads);
for(int i = 0; i < temp.m_workerThreads; i++)
{
temp.m_threads[i] = std::thread(paraAdd<T>, std::ref(temp), std::ref(a), std::ref(b), bound[i], bound[i + 1]);
}
paraAdd(temp, a, b, bound[temp.m_workerThreads], bound[temp.m_maxThreads]);
for(int i = 0; i < temp.m_workerThreads; i++)
{
temp.m_threads[i].join();
}
}
else
{
for(int i = 0; i < size; ++i)
{
temp.m_matrix[i] = a.m_matrix[i] + b.m_matrix[i];
}
}
return temp;
}
template<typename T>
void paraAdd(MT_D_Base_Matrix<T> &temp, const MT_D_Base_Matrix<T> &a, const MT_D_Base_Matrix<T> &b, int lBound, int uBound)
{
for(int i = lBound; i < uBound; ++i)
{
T c = a.m_matrix[i] + b.m_matrix[i];
temp.m_mutex.lock();
temp.m_matrix[i] = c;
temp.m_mutex.unlock();
}
}
template<typename T>
MT_D_Base_Matrix<T> operator-
(const MT_D_Base_Matrix<T> &a, const MT_D_Base_Matrix<T> &b)
{
if((a.getColDim() != b.getColDim()) || (a.getRowDim() != b.getRowDim()))
{
exit(1);
}
MT_D_Base_Matrix<T> temp{a.getRowDim(), a.getColDim()};
int size = a.getRowDim() * a.getColDim();
if(size > 10)
{
std::vector<int> bound = resourceAllocation(static_cast<int>(temp.m_matrix.size()), temp.m_maxThreads);
for(int i = 0; i < temp.m_workerThreads; i++)
{
temp.m_threads[i] = std::thread(paraSub<T>, std::ref(temp), std::ref(a), std::ref(b), bound[i], bound[i + 1]);
}
paraSub(temp, a, b, bound[temp.m_workerThreads], bound[temp.m_maxThreads]);
for(int i = 0; i < temp.m_workerThreads; i++)
{
temp.m_threads[i].join();
}
}
else
{
for(int i = 0; i < size; ++i)
{
temp.m_matrix[i] = a.m_matrix[i] - b.m_matrix[i];
}
}
return temp;
}
template<typename T>
void paraSub(MT_D_Base_Matrix<T> &temp, const MT_D_Base_Matrix<T> &a, const MT_D_Base_Matrix<T> &b, int lBound, int uBound)
{
for(int i = lBound; i < uBound; ++i)
{
T c = a.m_matrix[i] - b.m_matrix[i];
temp.m_mutex.lock();
temp.m_matrix[i] = c;
temp.m_mutex.unlock();
}
}
template<typename T>
MT_D_Base_Matrix<T> operator* (const T k, const MT_D_Base_Matrix<T> &a)
{
MT_D_Base_Matrix<T> temp{a.getRowDim(), a.getColDim()};
int size = a.getRowDim() * a.getColDim();
if(size > 10)
{
std::vector<int> bound = resourceAllocation(static_cast<int>(temp.m_matrix.size()), temp.m_maxThreads);
for(int i = 0; i < temp.m_workerThreads; i++)
{
temp.m_threads[i] = std::thread(scalarMulti<T>, std::ref(temp), k, std::ref(a), bound[i], bound[i + 1]);
}
scalarMulti(temp, k, a, bound[temp.m_workerThreads], bound[temp.m_maxThreads]);
for(int i = 0; i < temp.m_workerThreads; i++)
{
temp.m_threads[i].join();
}
}
else
{
for(int i = 0; i < size; ++i)
{
temp.m_matrix[i] = k * a.m_matrix[i];
}
}
return temp;
}
template<typename T>
void scalarMulti(MT_D_Base_Matrix<T> &temp, const T k, const MT_D_Base_Matrix<T> &a, int lB, int uB)
{
for(int i = lB; i < uB; ++i)
{
T c = k * a.m_matrix[i];
temp.m_mutex.lock();
temp.m_matrix[i] = c;
temp.m_mutex.unlock();
}
};
template<typename T>
MT_D_Base_Matrix<T> operator* (const MT_D_Base_Matrix<T> &a, const T k)
{
return k * a;
}