-
Notifications
You must be signed in to change notification settings - Fork 1
/
social_distancing.py
255 lines (207 loc) · 9.09 KB
/
social_distancing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
from scipy.spatial import distance as dist
import numpy as np
import argparse
import imutils
import cv2
USE_GPU = False
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--input", type=str, default="",
help="path to input video file")
ap.add_argument("-o", "--output", type=str, default="",
help="path to output video file")
ap.add_argument("-d", "--display", type=int, default=1,
help="whether or not output frame should be displayed")
args = vars(ap.parse_args())
labelsPath = r"E:\Social Distancing\coco.names"
LABELS = open(labelsPath).read().strip().split("\n")
weightsPath = r"E:\Social Distancing\yolov3.weights"
configPath = r"E:\Social Distancing\yolov3.cfg"
MIN_CONF = 0.3
NMS_THRESH = 0.3
MIN_DISTANCE = 50
def calibrated_dist(p1, p2):
return ((p1[0] - p2[0]) ** 2 + 550 / ((p1[1] + p2[1]) / 2) * (p1[1] - p2[1]) ** 2) ** 0.5
def isclose(p1, p2):
c_d = calibrated_dist(p1, p2)
calib = (p1[1] + p2[1]) / 2
if 0 < c_d < 0.15 * calib:
return 1
elif 0 < c_d < 0.2 * calib:
return 2
else:
return 0
net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)
if USE_GPU:
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
ln = net.getLayerNames()
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
vs = cv2.VideoCapture(args["input"] if args["input"] else 0)
writer = None
while True:
# read the next frame from the file
(grabbed, frame) = vs.read()
# if the frame was not grabbed, then we have reached the end
# of the stream
if not grabbed:
break
# resize the frame and then detect people (and only people) in it
frame = imutils.resize(frame, width=700)
(H, W) = frame.shape[:2]
results = []
# construct a blob from the input frame and then perform a forward
# pass of the YOLO object detector, giving us our bounding boxes
# and associated probabilities
blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416),
swapRB=True, crop=False)
net.setInput(blob)
layerOutputs = net.forward(ln)
# initialize our lists of detected bounding boxes, centroids, and
# confidences, respectively
boxes = []
centroids = []
confidences = []
# loop over each of the layer outputs
for output in layerOutputs:
# loop over each of the detections
for detection in output:
# extract the class ID and confidence (i.e., probability)
# of the current object detection
scores = detection[5:]
classID = np.argmax(scores)
confidence = scores[classID]
# filter detections by (1) ensuring that the object
# detected was a person and (2) that the minimum
# confidence is met
if classID == 0 and confidence > MIN_CONF:
# scale the bounding box coordinates back relative to
# the size of the image, keeping in mind that YOLO
# actually returns the center (x, y)-coordinates of
# the bounding box followed by the boxes' width and
# height
box = detection[0:4] * np.array([W, H, W, H])
(centerX, centerY, width, height) = box.astype("int")
# use the center (x, y)-coordinates to derive the top
# and and left corner of the bounding box
x = int(centerX - (width / 2))
y = int(centerY - (height / 2))
# update our list of bounding box coordinates,
# centroids, and confidences
boxes.append([x, y, int(width), int(height)])
centroids.append((centerX, centerY))
confidences.append(float(confidence))
# apply non-maxima suppression to suppress weak, overlapping
# bounding boxes
idxs = cv2.dnn.NMSBoxes(boxes, confidences, MIN_CONF, NMS_THRESH)
# ensure at least one detection exists
if len(idxs) > 0:
status = list()
close_pair = list()
idf = idxs.flatten()
center = list()
s_close_pair = list()
for i in idf:
(x, y) = (boxes[i][0], boxes[i][1])
(w, h) = (boxes[i][2], boxes[i][3])
center.append([int(x + w / 2), int(y + h / 2)])
status.append(0)
for i in range(len(center)):
for j in range(len(center)):
g = isclose(center[i], center[j])
if g == 1:
close_pair.append([center[i], center[j]])
status[i] = 1
status[j] = 1
elif g == 2:
s_close_pair.append([center[i], center[j]])
if status[i] != 1:
status[i] = 2
if status[j] != 1:
status[j] = 2
# loop over the indexes we are keeping
for i in idxs.flatten():
# extract the bounding box coordinates
(x, y) = (boxes[i][0], boxes[i][1])
(w, h) = (boxes[i][2], boxes[i][3])
# update our results list to consist of the person
# prediction probability, bounding box coordinates,
# and the centroid
r = (confidences[i], (x, y, x + w, y + h), centroids[i])
results.append(r)
#results = detect_people(frame, net, ln,
# personIdx=LABELS.index("person"))
# initialize the set of indexes that violate the minimum social
# distance
violate = set()
# ensure there are *at least* two people detections (required in
# order to compute our pairwise distance maps)
if len(results) >= 2:
# extract all centroids from the results and compute the
# Euclidean distances between all pairs of the centroids
centroids = np.array([r[2] for r in results])
D = dist.cdist(centroids, centroids, metric="euclidean")
# loop over the upper triangular of the distance matrix
for i in range(0, D.shape[0]):
for j in range(i + 1, D.shape[1]):
# check to see if the distance between any two
# centroid pairs is less than the configured number
# of pixels
if D[i, j] < 70:
# update our violation set with the indexes of
# the centroid pairs
violate.add(i)
violate.add(j)
# loop over the results
for (i, (prob, bbox, centroid)) in enumerate(results):
# extract the bounding box and centroid coordinates, then
# initialize the color of the annotation
(startX, startY, endX, endY) = bbox
(cX, cY) = centroid
color = (0, 255, 0)
# if the index pair exists within the violation set, then
# update the color
if i in violate:
color = (0, 0, 255)
# draw (1) a bounding box around the person and (2) the
# centroid coordinates of the person,
cv2.rectangle(frame, (startX, startY), (endX, endY), color, 2)
cv2.circle(frame, (cX, cY), 5, color, 1)
total_p = len(center)
cv2.putText(frame, "Social Distancing Analyzer", (24, 45),
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 3)
safe = status.count(0)
safe_str = "SAFE COUNT: " + str(safe)
cv2.putText(frame, safe_str, (10, frame.shape[0] - 85),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 3)
tot_str = "TOTAL COUNT: " + str(total_p)
cv2.putText(frame, tot_str, (10, frame.shape[0] - 55),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), 3)
# draw the total number of social distancing violations on the
# output frame
text = "HIGH RISK COUNT: {}".format(len(violate))
cv2.putText(frame, text, (10, frame.shape[0] - 25),
cv2.FONT_HERSHEY_SIMPLEX, 0.85, (0, 0, 255), 3)
for h in close_pair:
cv2.line(frame, tuple(h[0]), tuple(h[1]), (0, 0, 255), 2)
for b in s_close_pair:
cv2.line(frame, tuple(b[0]), tuple(b[1]), (0, 255, 255), 2)
# check to see if the output frame should be displayed to our
# screen
if args["display"] > 0:
# show the output frame
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
# if an output video file path has been supplied and the video
# writer has not been initialized, do so now
if args["output"] != "" and writer is None:
# initialize our video writer
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
writer = cv2.VideoWriter(args["output"], fourcc, 25,
(frame.shape[1], frame.shape[0]), True)
# if the video writer is not None, write the frame to the output
# video file
if writer is not None:
writer.write(frame)