diff --git a/pipeline/core/builder.py b/pipeline/core/builder.py index f73b3fb6..8841ad12 100644 --- a/pipeline/core/builder.py +++ b/pipeline/core/builder.py @@ -9,6 +9,7 @@ from tqdm import tqdm from pipeline.preprocessors import preprocess_markdown +from pipeline.tools.notebook.convert import convert_notebook logger = logging.getLogger(__name__) @@ -40,6 +41,7 @@ def __init__(self, src_dir: Path, build_dir: Path) -> None: self.copy_extensions: set[str] = { ".mdx", ".md", + ".ipynb", ".json", ".svg", ".png", @@ -51,6 +53,35 @@ def __init__(self, src_dir: Path, build_dir: Path) -> None: ".css", } + def _should_ignore_file(self, file_path: Path) -> bool: + """Check if a file should be ignored during build. + + This method filters out cached files, temporary files, and other + files that should not be included in the build process. + + Args: + file_path: Path to the file to check. + + Returns: + True if the file should be ignored, False otherwise. + """ + filename = file_path.name + + # Ignore files starting with .~ (cached/temporary files) + if filename.startswith(".~"): + return True + + # Ignore files starting with ~ (backup files) + if filename.startswith("~"): + return True + + # Ignore hidden files starting with . (except specific ones we want) + if filename.startswith(".") and filename not in {".gitkeep"}: + return True + + # Ignore common temporary file patterns + return bool(filename.endswith((".tmp", ".temp"))) + def build_all(self) -> None: """Build all documentation files from source to build directory. @@ -76,7 +107,8 @@ def build_all(self) -> None: # Collect all files to process all_files = [ - file_path for file_path in self.src_dir.rglob("*") if file_path.is_file() + file_path for file_path in self.src_dir.rglob("*") + if file_path.is_file() and not self._should_ignore_file(file_path) ] if not all_files: @@ -188,6 +220,34 @@ def _process_markdown_file(self, input_path: Path, output_path: Path) -> None: logger.exception("Failed to process markdown file %s", input_path) raise + def _process_notebook_file(self, input_path: Path, output_path: Path) -> None: + """Process a Jupyter notebook file and convert to markdown. + + This method converts a Jupyter notebook to markdown, applies preprocessing, + and writes the processed content to the output path as an .mdx file. + + Args: + input_path: Path to the source notebook file. + output_path: Path where the processed file should be written. + """ + try: + # Convert notebook to markdown + markdown_content = convert_notebook(input_path) + + # Apply markdown preprocessing + processed_content = self._process_markdown_content(markdown_content, input_path) + + # Convert .ipynb to .mdx + output_path = output_path.with_suffix(".mdx") + + # Write the processed content + with output_path.open("w", encoding="utf-8") as f: + f.write(processed_content) + + except Exception: + logger.exception("Failed to process notebook file %s", input_path) + raise + def build_file(self, file_path: Path) -> None: """Build a single file by copying it to the build directory. @@ -227,6 +287,10 @@ def build_file(self, file_path: Path) -> None: if file_path.suffix.lower() in {".md", ".mdx"}: self._process_markdown_file(file_path, output_path) logger.info("Processed markdown: %s", relative_path) + # Handle notebook files with conversion to markdown + elif file_path.suffix.lower() == ".ipynb": + self._process_notebook_file(file_path, output_path) + logger.info("Converted notebook: %s", relative_path) else: shutil.copy2(file_path, output_path) logger.info("Copied: %s", relative_path) @@ -269,6 +333,10 @@ def _build_file_with_progress(self, file_path: Path, pbar: tqdm) -> bool: if file_path.suffix.lower() in {".md", ".mdx"}: self._process_markdown_file(file_path, output_path) return True + # Handle notebook files with conversion to markdown + if file_path.suffix.lower() == ".ipynb": + self._process_notebook_file(file_path, output_path) + return True shutil.copy2(file_path, output_path) return True return False diff --git a/pipeline/core/watcher.py b/pipeline/core/watcher.py index 3da8f759..ca2633d6 100644 --- a/pipeline/core/watcher.py +++ b/pipeline/core/watcher.py @@ -67,7 +67,8 @@ def on_modified(self, event: FileSystemEvent) -> None: src_path = event.src_path file_path = Path(src_path) - if file_path.suffix.lower() in self.builder.copy_extensions: + if (file_path.suffix.lower() in self.builder.copy_extensions and + not self.builder._should_ignore_file(file_path)): logger.info("File changed: %s", file_path) # Put file change event in queue for async processing self.loop.call_soon_threadsafe(self.event_queue.put_nowait, file_path) diff --git a/src/docs.json b/src/docs.json index 5bd9c8bd..b3d35c74 100644 --- a/src/docs.json +++ b/src/docs.json @@ -52,6 +52,23 @@ }, "navigation": { "dropdowns": [ + { + "dropdown": "LangChain v1", + "icon": "/images/brand/langchain-pill.svg", + "description": "LangChain v1 documentation and guides", + "tabs": [ + { + "tab": "Prebuilts", + "pages": [ + "langchain_v1/stuff", + "langchain_v1/map_reduce", + "langchain_v1/recursive", + "langchain_v1/rag_agent", + "langchain_v1/data_analysis" + ] + } + ] + }, { "dropdown": "LangGraph Platform", "icon": "/images/brand/langgraph-platform-pill.svg", @@ -316,4 +333,4 @@ } ] } -} \ No newline at end of file +} diff --git a/src/langchain_v1/data_analysis.ipynb b/src/langchain_v1/data_analysis.ipynb new file mode 100644 index 00000000..1837d183 --- /dev/null +++ b/src/langchain_v1/data_analysis.ipynb @@ -0,0 +1,269 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "63e58898-44fa-49e5-abe4-c88b552ae014", + "metadata": {}, + "source": [ + "---\n", + "title: \"Data analysis\"\n", + "icon: \"chart-line\"\n", + "---\n", + "\n", + "**Data Analysis Agents** use language models to write and run Python code for exploring and visualizing data. This guide shows how to analyze a CSV file using a LangChain agent with code execution capabilities.\n", + "\n", + "## 1. Configure the sandbox" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4f847013-ae15-46a4-92d4-88890d6ee3c6", + "metadata": {}, + "outputs": [], + "source": [ + "# todo: move to langchain_daytona\n", + "from langchain.sandboxes import DaytonaSandboxManager\n", + "import csv\n", + "\n", + "filename = \"sales_data.csv\"\n", + "data = [\n", + " [\"Date\", \"Product\", \"Units Sold\", \"Revenue\"],\n", + " [\"2025-08-01\", \"Widget A\", 10, 250],\n", + " [\"2025-08-02\", \"Widget B\", 5, 125],\n", + " [\"2025-08-03\", \"Widget A\", 7, 175],\n", + " [\"2025-08-04\", \"Widget C\", 3, 90],\n", + " [\"2025-08-05\", \"Widget B\", 8, 200]\n", + "]\n", + "\n", + "with open(filename, mode=\"w\", newline=\"\") as file:\n", + " writer = csv.writer(file)\n", + " writer.writerows(data)\n", + "\n", + "\n", + "# TODO: Fix life cycle management for the sandbox\n", + "sandbox_manager = DaytonaSandboxManager()\n", + "sandbox = sandbox_manager.create()\n", + "print(sandbox.get_capabilities())" + ] + }, + { + "cell_type": "markdown", + "id": "1310eef7-a2e4-48a1-96cf-a00785909446", + "metadata": {}, + "source": [ + "## 2. Configure the agent\n", + "\n", + "We initialize a language model and create a DataAnalysisAgent, passing it:\n", + "* the sandbox\n", + "* the model\n", + "* available tools (run_code, exec)\n", + "* any files to attach" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "701e58bd-0570-48eb-9720-49b5113a4e0c", + "metadata": {}, + "outputs": [], + "source": [ + "import uuid\n", + "from langchain.agents.data_analysis import create_data_analysis_agent\n", + "from langchain.chat_models import init_chat_model\n", + "\n", + "thread_id = uuid.uuid4()\n", + "\n", + "\n", + "model = init_chat_model('anthropic:claude-3-7-sonnet-latest', max_tokens=32_000)\n", + "\n", + "data_analysis_agent = create_data_analysis_agent(\n", + " model,\n", + " sandbox,\n", + " tools=['run_code', 'exec'],\n", + " files=[{\n", + " \"source\": \"sales_data.csv\",\n", + " \"destination\": \"./data/sales_data.csv\",\n", + " }]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "42d7f12b-f6d8-4e24-baa3-c5bcb5f3b3fb", + "metadata": {}, + "source": [ + "## 3. Run the agent" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c8cfe63a-9ae7-4227-9810-3e36d0afde79", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "## Sales Data Analysis Summary\n", + "\n", + "I've created a comprehensive analysis of the sales data with a beautiful dashboard visualization. Here are the key findings:\n", + "\n", + "### Overall Summary Statistics:\n", + "- **Total Revenue**: $840\n", + "- **Total Units Sold**: 33\n", + "- **Average Price Per Unit**: $25.45\n", + "- **Best Selling Product**: Widget A (17 units)\n", + "- **Highest Revenue Product**: Widget A ($425)\n", + "\n", + "### Product-Specific Analysis:\n", + "\n", + "**Widget A**:\n", + "- Total Units Sold: 17 units\n", + "- Total Revenue: $425\n", + "- Average Price Per Unit: $25.00\n", + "- Sales Trend: Decreasing or Stable (from 10 to 7 units)\n", + "\n", + "**Widget B**:\n", + "- Total Units Sold: 13 units\n", + "- Total Revenue: $325\n", + "- Average Price Per Unit: $25.00\n", + "- Sales Trend: Increasing (from 5 to 8 units)\n", + "\n", + "**Widget C**:\n", + "- Total Units Sold: 3 units\n", + "- Total Revenue: $90\n", + "- Average Price Per Unit: $30.00\n", + "- Only appeared in sales on one day (2025-08-04)\n", + "\n", + "### Key Insights:\n", + "1. Widget A is the most popular product in terms of both units sold and revenue generated.\n", + "2. Widget C has the highest price per unit at $30.00, compared to $25.00 for Widgets A and B.\n", + "3. The data shows a strong positive correlation between units sold and revenue (as shown in the scatter plot).\n", + "4. Widget B is showing an upward sales trend, which might indicate growing popularity.\n", + "5. Sales are distributed throughout the 5-day period with different products having stronger performance on different days.\n", + "\n", + "The dashboard visualization includes:\n", + "- Bar charts showing units sold and revenue by product\n", + "- A time series of daily sales\n", + "- A pie chart showing the distribution of sales across products\n", + "- A horizontal bar chart showing average price per unit\n", + "- A scatter plot showing the correlation between units sold and revenue\n", + "\n", + "This comprehensive analysis provides a clear picture of the sales performance across different products and over time, highlighting key trends and patterns in the data.\n" + ] + } + ], + "source": [ + "response = data_analysis_agent.invoke(\n", + " {\n", + " \"messages\": [{\n", + " \"role\": \"user\",\n", + " \"content\": \"Make a beautiful plot of provided data using matplotlib and add some summarys stats while you're at it.\",\n", + " }]\n", + " },\n", + " config={\"configurable\": {\"thread_id\": thread_id}}\n", + ")\n", + "print(response['messages'][-1].content)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "672a4876-7e4f-40bb-9b12-22f854f178e8", + "metadata": {}, + "outputs": [], + "source": [ + "response = data_analysis_agent.invoke(\n", + " {\n", + " \"messages\": [{\n", + " \"role\": \"user\",\n", + " \"content\": \"Did you save the generated plot to a file? if not please do and put it in sales_analysis.png\",\n", + " }]\n", + " },\n", + " config={\"configurable\": {\"thread_id\": thread_id}}\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "42efc694-a341-41b0-ba13-2825eb4e5044", + "metadata": {}, + "outputs": [], + "source": [ + "f = sandbox.download_file('./sales_analysis.png')" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "d7730439-caf2-4619-9659-09de43f3ce69", + "metadata": {}, + "outputs": [], + "source": [ + "from IPython.display import Image" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "d895f0a7-769b-4f6c-8ac0-060c1be9578c", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAEsAAAA4QCAYAAADmR3Z/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAuIwAALiMBeKU/dgABAABJREFUeJzs3Wd4VOXWxvE7nRRKaKH3EpSqAem9SxMERKoIUlTgWODYKJYjoiDNQu9ViqB06SCdIBCa9JaEHiCQkDLvBy94VWZPMpk9kwT+v+viA1nPXs+ayezZO5q5cbNYLBYBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALuKe2gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADg6UIAFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFyKACwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4FAFYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcCkCsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBSBGABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADApQjAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgEsRgAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACXIgALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALkUAFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFyKACwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4FAFYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcCkCsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBSBGABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADApQjAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgEsRgAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACXIgALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALkUAFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFyKACwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4FAFYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcCkCsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBSBGABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADApQjAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgEsRgAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACXIgALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALkUAFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFyKACwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4FAFYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcCkCsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBSBGABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADApQjAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgEsRgAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACXIgALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALkUAFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFyKACwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4FAFYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcCkCsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBSBGABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADApQjAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgEsRgAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACXIgALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALkUAFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFyKACwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4FAFYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcCkCsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBSBGABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADApQjAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgEsRgAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACXIgALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALkUAFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFyKACwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4FAFYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcCkCsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBSBGABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADApQjAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgEsRgAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACXIgALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALkUAFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFyKACwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4FAFYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcCkCsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBSBGABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADApQjAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgEsRgAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACXIgALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALkUAFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFyKACwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4FAFYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcCkCsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBSBGABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADApQjAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgEsRgAUAAAAAAAAAAAAA6dz06dPl5uZm9c/06dNTezwAAJ4YmzZtMrzmDh06NLXHg2T4/aldu3ZqjwY8Fc6ePWt4Hnbr1i21x0tSt27dDOc/e/Zsao8HuNTQoUMNz4dNmzal9ngAAAAAAAAAAAAAnhCeqT0AAAAAAAAAAAAAgKdTTEyMDh06pLCwMJ05c0bh4eG6deuWYmJiZLFY5O/v/+hP9uzZVbhwYRUqVEiFCxdW3rx55ebmltoPAQAAAAAAAAAAAAAAAAAAAACQQgRgAQAAAAAAAAAAAHCZyMhILVy4UEuXLtWOHTsUExOToj6ZM2fWc889p5CQEIWEhKhGjRrKnTu3ydMC6cvBgwc1cODAFB3r5uYmT09P+fj4PPqTNWtW5cyZUzlz5lTevHlVsmRJ5c+fn/A5PLV+/vlnHThwwLDu6+urQYMGuW4gAHCBxo0bp/hYDw+Pf9xbZM6c+dG9Ra5cuVS8eHEVLVpUXl5eJk4MAAAAAAAAAAAAAACA9IQALAAAAAAAAAAAAABOd/LkSX3xxReaO3euHjx44HC/qKgobdy4URs3bnz0tbJly6px48Zq3LixatSoIU9P/nconi43btzQmjVrnLqHv7+/goODVaVKFdWoUYPwOTw1EhIS1LdvX4WHh9tcV7NmTVWpUsVFUwGA8zn73sLT01PFihVTxYoVVb16ddWoUUOlSpVy6p4AAAAAAAAAAAAAAABIO/iNbwAAAAAAAAAAAABOExcXp08//VQjRowwJfjKloMHD+rgwYMaMWKEQkNDVb58eafuBzyNoqOjtW/fPu3bt0/jx4+XJL3wwgtq166d2rVrp3z58qXyhGnTrVu3NHr0aKu18uXLq1WrVi6dB/ZbuXJlkuFXkjR16lQCsADADvHx8Tp27JiOHTumWbNmSZKKFCmitm3b6pVXXuGeHgAAAAAAAAAAAAAA4AlHABYAAAAAAAAAAAAAp4iIiFCrVq20a9eu1B4FgBPt2rVLu3bt0qBBg/Tyyy/rvffe0/PPP5/aY6Upt27d0rBhw6zWunbtSgBWOjB16tRkrVuwYIHGjBkjPz8/J08EAE+u06dP66uvvtJXX32latWq6b333lOLFi3k7u6e2qMBAAAAAAAAAAAAAADAZPxGCAAAAAAAAAAAAADTXbhwQdWrVyf8CniKxMfHa/78+QoJCVHbtm114cKF1B4JMMWVK1e0YsWKZK29c+eOfvrpJydPBABPj+3bt+ull15SSEiIduzYkdrjAAAAAAAAAAAAAAAAwGQEYAEAAAAAAAAAAAAw1Z07d9S0aVOdOnUqybUZM2bUq6++qm+//Va//fabTp8+ratXryomJkb37t3ThQsX9Mcff2j9+vUaOXKkOnTooGLFisnNzc0FjwRASi1atEilSpXS999/n9qjAA6bNWuW4uLikr1+6tSpTpwGAJ5OoaGhqlatmnr37q2YmJjUHgcAAAAAAAAAAAAAAAAm8UztAQAAAAAAAAAAAAA8Wfr166fDhw/bXFOsWDF9/vnnatmypTJkyGC4Ll++fMqXL58kqW7duo++HhkZqRUrVmjp0qVas2aNXcEkwNPqzJkzKlSokM01CQkJiomJUUxMjK5du6aIiAhduHBBhw8f1uHDh7V9+3bdunUrWftFR0frzTff1I4dOzRhwgT5+fk5/iCAVDBt2jS71m/dulWnTp1S0aJFnTQRAKQN06ZNU7du3WyuSUxMVGxsrGJiYhQVFaXw8HBdvnxZR44cUVhYmHbs2KHz588naz+LxaIJEyZoz549Wrx4cZL3NQAAAAAAAAAAAAAAAEj7CMACAAAAAAAAAAAAYJrff/9d06dPt7nmww8/1NChQ+Xl5ZXifYKCgtS9e3d1795d169f1+zZs/Xjjz/q2LFjKe4JQPLw8JC/v7/8/f2VLVs2lSxZ8h/1xMRE7du3Tz/99JNmz56t8PDwJHvOnj1bly5d0ooVK+Tr6+us0QGn2LVrl8LCwuw6xmKxaOrUqfriiy+cNBUAWywWS2qPgL9xd3eXr6+vfH19FRgY+Ci0qk2bNo/WnDx5UsuXL9f06dN16NChJHvu379f1atX1+bNmwkbBAAAAAAAAAAAAAAASOfcU3sAAAAAAAAAAAAAAE+OYcOG2ayPGzdOX3zxhUPhV/+WLVs29e/fX0ePHtXatWtVr149ubm5mdYfwP9zd3dXxYoVNWLECF24cEHTp09XsWLFkjxu48aNatGiheLi4lwwJWCeqVOnGtZat25tWJs5c6YSExOdMRIAPHGKFSumd955RwcPHtTmzZtVu3btJI+5dOmS6tSpo/Pnzzt/QAAAAAAAAAAAAAAAADgNAVgAAAAAAAAAAAAATHHu3DmtW7fOsN62bVu99dZbTp2hQYMG+u2331SuXDmn7gNA8vDwUNeuXRUWFqaPPvpInp6eNtf/9ttvGjRokIumAxx3//59zZ8/32rNzc1N3377rZ599lmr9YsXL2rNmjXOHA8Ankg1a9bUxo0bNXfuXGXLls3m2gsXLqhdu3YEbAIAAAAAAAAAAAAAAKRjBGABAAAAAAAAAAAAMMXy5ctlsVis1tzd3TVq1CgXTwTAFby9vfX5559rzZo1ypIli8213377rZYvX+6awQAHLVq0SLdv37Zaq1OnjgoUKKCuXbsaHj916lRnjQYAT7wOHTpo//79Kl26tM11u3bt0n//+18XTQUAAAAAAAAAAAAAAACzEYAFAAAAAAAAAAAAwBRbt241rNWoUUP58uVz4TQAXK1u3bravHmzMmfObHPd22+/rZiYGBdNBaScrQCrLl26SJI6duwoDw8Pq2uWL1+u69evO2U2AHgaFChQQNu2bVO5cuVsrhszZowOHTrkoqkAAAAAAAAAAAAAAABgJgKwAAAAAAAAAAAAAJji6NGjhrUqVaq4cBIAqaVs2bJavHix3N2Nfx3h/Pnz+uabb1w4FWC/06dPa/PmzVZr/v7+atOmjSQpT548ql+/vtV1Dx480Jw5c5w2IwA8DTJnzqyVK1cqd+7chmsSEhL0n//8x4VTAQAAAAAAAAAAAAAAwCyeqT0AAAAAAAAAAAAAgCfDxYsXDWt58uRx4STOcfXqVe3YsUNHjhzRsWPHdPz4cV29elW3b9/WnTt3FB8frwwZMihz5szKmzevChcurAoVKqh69eqqXLmyPDw8UvshOEVCQoJ27typ7du3a9++fTp9+rQuXryou3fv6v79+/Lx8VFAQIDy58+vYsWKqXLlyqpXr57KlCnj0jmvXbumLVu26MCBAzpw4IDOnDmj27dvP/r+eXl5yc/PT35+fgoMDFTBggVVqFAhFSlSRCEhIQoJCZGvr69LZ06v6tWrp3fffVdff/214ZpRo0bp3XffNfU5ffDggfbs2aODBw/q2LFjOnbsmM6fP//oexwdHS0fHx/5+fkpV65cyp8/v8qWLauKFSuqXr16CgwMNG2WtM5isSgsLEz79u179FydPn1at27devR8eXp6ytfXVzly5FDevHlVqlQpPf/886pXr54KFSqU2g/B6aZNmyaLxWK11rp1awUEBDz6e5cuXbRmzRrDPv369XPKjI4IDw/XL7/8oq1bt+rw4cO6dOmSbt++rcTERPn7+ytPnjwqUaKEqlatqubNmys4ONil80VFRWnHjh0KCwt79BqNjIx89L794MEDZciQQRkzZlSePHlUqFAhlS9fXlWqVFGNGjXk4+Pj0nnxl4SEBG3fvl379+/XgQMHdOTIEd24cePR9y0xMfHRtTYgIEB58+ZVoUKFVKhQIZUpU0aVK1dOV/eMsbGx2rJli0JDQ3XgwAEdO3bs0fvo7du35ebm9ujxZsyYUfnz53/0eMuXL6/KlSsrW7Zsqf0w0oU8efJo0qRJatasmeGa9evXa+fOnapcubJp+6bX6+WhQ4e0a9cuHThwQAcPHtSVK1d0+/ZtRUVFKTY2Vr6+vvLz85O/v7+CgoIevS6Dg4P1wgsvqGTJknJzc0uV2U+fPq3ly5dr586dOnz4sCIiIh6dTwEBAcqXL5+Cg4NVvXp1tWjRQgULFkyVOa25cuWKVq5cqc2bN+vIkSM6d+6c7ty5owcPHiggIEC5cuVSqVKlVKNGDTVr1kzFixdPtVljYmK0adMmbdu2TQcOHNDp06cVGRmp6OhoxcfHy9/fX1myZFHhwoUVHBysqlWrql69esqbN6/LZ01ISPjH++yxY8d09uxZRUVF6fbt24qOjpaXl5d8fX0VFBSkfPny6dlnn1VISIjq16+vXLlyuXzmpFgsFoWGhmrt2rUKDQ3V8ePHdfnyZUVHR+vBgwfKlCmTChQooObNm+vTTz+1u39iYqK2bt2q1atXa+/evTp+/Lhu3LihmJgYBQQEKEuWLCpRooTKlCmjxo0bq1atWvL29nbCIwUAAAAAAAAAAACA5HGzGP22HgAAAAAAAAAAAADYwcvLS/Hx8VZr33//vfr06ePiiRwTFxentWvXavXq1dq4caOOHDliGIaSlMDAQHXs2FFvvvmmU0JEpk+frtdee81qbdq0aerWrZvpe544cULjxo3TwoULdeXKFbuPDw4OVu/evdWzZ0/5+fmZPp/01weLly5dqhkzZmjVqlWKi4tLcS9PT0+VL19ezZs3V9u2bVWqVCkTJzXHpk2bVKdOHcP6mTNnXBbEEBMTo+LFi9sMxps0aZJ69Ojh0D5hYWFatmyZNm7cqO3bt+v+/fsp6uPh4aG6deuqT58+atWqlUOhD2fPnlXhwoVTfHxyDRkyREOHDk32+oiICC1dulQbNmzQpk2bdO3atRTvXaZMGb3xxht67bXX5O/vn+I+aVViYqIKFSqkCxcuWK2vW7dO9evXf/T3+/fvK1euXLp9+7bV9fv27dNzzz3nlFmNXqu1atXSpk2bHvv67t279eWXX2r58uVKTExM9j6VK1fWkCFD1Lhx45SOalNiYqI2b96slStXauPGjTpw4IASEhJS1Mvf318vv/yy3nrrLYWEhJg8qe332uSclxcuXNCUKVOs1gICAvTee+85OmKSFi9erEOHDlmt1alTR7Vq1bKr39GjRzVp0iTNnTtXkZGRDs1WoEAB1atXT23btlX9+vXl5eVldw97zwt77d69W5MnT9ZPP/2kW7duOdSrePHiatiwodq1a6fq1avL3d3d4fnMZuua6Kz7TCPt2rXTTz/9ZFjv2LGjZs+e7dAe6fV6ee3aNU2ZMkWzZs1SWFiYQ70CAwNVo0YNtWnTRi1btlTmzJntOt7WvVDXrl01ffr0x76+bt06ffnll9q4cWOy93Fzc1PDhg01dOhQU4PPunXrphkzZlitWbufPnDggP73v/9pyZIldl27ateurY8++ugf9xTOdujQIY0cOVJLlizRnTt37DrWzc1NNWrUUJ8+fdSuXTunvl+dOXNGS5cu1caNG7VlyxbDe6ykuLm5qXLlyurdu7c6dOiQomuKLfbeE0RHR2vChAn67rvvdPr06ST723vdiouL0w8//KDRo0frzJkzyT4ue/bseuutt9S/f39lyZLlH7WhQ4dq2LBhVo/buHGjateunex9AAAAAAAAAAAAAMAIAVgAAAAAAAAAAAAATOHn52cYPjNs2DANHjzYxROlzObNmzV79mwtXrxYN2/eNLW3h4eHunXrphEjRihr1qym9XVlANbly5f13nvvacGCBXaFpxgJCgrSyJEj1bFjRxOm+3+hoaHq06ePdu3aZWrfh3r27KmJEyc6pXdKpaUALEmaMGGCevfubVgPCQnRnj177O576dIlzZgxQ/PmzdPhw4cdGdGq8uXLa9y4capevXqKjk9LAVj37t3T3LlzNW/ePG3atMmUc/bvcuXKpc8//1yvv/66qX1T25o1awyDnvLly6dz5849FvrQo0cPw1CjN998U+PHjzd9Tin5QT937tzR+++/r4kTJ6Y4zFGS2rdvr8mTJysgICDFPf4uNDRUM2bM0MKFCxUeHm5Kz7976aWXNHr0aBUoUMC0no4GYMXHx6tAgQKGj3fXrl2qVKmSo2Maio2NVb58+QxDfUJDQ1W+fPlk9bp9+7aGDBmicePGpTiwzJbAwECdP3/e7tebswKwIiMj9f7772vWrFkp7mFL8eLFdeLECaf0dkRaCsA6cuSIypQpY3g98/b2VkREhAIDA+3qm56vl4mJiZo4caI+/PBD0392kf56TlevXm3zHvPf7AnAioyM1JtvvqnFixeneEY3Nze9/fbb+uabb0wJOEpuAFZMTIw++ugjjR492qHXzEsvvaSJEycqe/bsKe6RlIiICA0YMEALFy506D7goeDgYH3//fd2vS6ScuPGDc2aNUvz5s1zys9wRYsW1ciRI9WyZUvTetpzT7B8+XK99dZbhgGr1thz3dq9e7c6d+7s0HUkd+7c+vHHH9WiRYtHXyMACwAAAAAAAAAAAIArpL1/Mg4AAAAAAAAAAABAumTrA7s7duxw4SSOef311zV58mSnfIA8ISFBU6ZMUbly5bRz507T+zvbzJkzFRwcrHnz5pkWDBAZGalOnTrplVdeUXR0tCk9v/76a1WsWNFp4VeSdOXKFaf1flJ07dpVWbJkMazv3btXly9ftrvvtGnT9NFHHzkl/EqSDhw4oFq1aunTTz91Sn9X2r9/v3r27KkNGzaYHuYh/RWm0KNHD7300ku6e/eu6f1Ty9SpUw1rnTp1eiz8SpK6dOlieMzcuXMVGxtrymwpcebMGVWpUkUTJkxwOPRiwYIFqlatmq5fv27KbO+//77GjBnjlPArSVq6dKnKlSunX3/91Sn9U8LT01M9e/Y0rE+YMMGp+y9ZssQw/KpSpUrJDr/6448/VLp0aY0ePdop4VeSdPPmTcXHxzult702bNigUqVKOS38SuLeIjmeeeYZNWzY0LD+4MEDrVq1yu6+6fV6eePGDdWrV099+vRxys8u0l/PaVRUlFN6h4aGKiQkxKHwK0myWCwaO3asmjRpopiYGJOms+3GjRuqX7++Ro0a5fBr5uG16sCBA+YM9y+//vqrSpUqpQULFpgSfiVJx44dU926ddW/f3/T3qdXrlypAQMGOO1nuFOnTqlVq1bq06ePS68tFotFgwcPVsuWLe0Kv7LHpEmTVL16dYdDFMPDw9WqVSsNHz7cpMkAAAAAAAAAAAAAIHkIwAIAAAAAAAAAAABgihw5chjWNm3a5LRwi/To4sWLqlevntavX5/aoyRLYmKi3n77bXXt2lV37txxyh4LFixQ7dq1Hf7w/hdffKGBAwc6LYwDyZchQwZ16NDB5pq0FErzd4mJiRoyZIj69OmT2qOkCz///LPq1aun27dvp/YoDrtx44aWLVtmWDcKuqpRo4YKFy5stXbz5k0tXbrUlPnsdfr0aVWrVk1hYWGm9Tx48KCaNm2qBw8emNbTmW7duqVWrVpp9uzZqT3KI2+88YY8PDys1hYsWODUc8lWwFavXr2S1ePw4cOqU6eO04I80poNGzaoadOmTgsYgn1ee+01m/W0em8hmXu9vHPnjho0aKBNmzY5Plgq2LNnj2rVqqWLFy+a1nP9+vV69dVXTetnJDo6Wg0aNND27dtN63n58mXVrl3b9JDkMWPGqGXLlrp165apfR8aO3asGjdurHv37jmlvzP8+OOPeumllxQXF+eS/d577z199tlnTuv/zTff6I033jDt8VgsFn3wwQeEYAEAAAAAAAAAAABwKc/UHgAAAAAAAAAAAADAk6FMmTLav3+/1VpMTIwGDhyoWbNmuXgq5/Dy8lLOnDmVOXNmZc6cWX5+frp9+7aioqJ0/vx5xcTEJNnj3r17atOmjXbs2KFSpUq5YOqUSUxMVLdu3ZL9vfPw8FC+fPmUNWtWBQYG6u7du7py5YouXryo+Ph4m8fu3btXjRo10ubNm+Xr62v3rGvXrtUnn3ySrLVubm7KnTu3cufOLT8/P/n4+OjOnTuKiorSrVu3FBERYff+eFzLli31ww8/GNY3bNigN954wyl7Z8+eXVmyZFGWLFmUKVMmxcbG6tatW4qMjNS1a9eS1ePHH39UgQIF9MEHHzhlxrQiU6ZMypYt26P3NOmv0KAbN24kO+Bm9+7dat++vVasWCF39/T777HNmTNHsbGxVmshISGG79dubm7q0qWLhg0bZrU+depUvfLKK6bNmRzXrl1TgwYNDAMo3d3dlTt3buXIkUNZs2bVzZs3FRERkazAyt27d+vjjz/WiBEjzB77MR4eHo+uuVmyZJG/v7/u3r2rW7du6dKlS7p7926SPRISEtS9e3flz59ftWrVcvrMScmbN69atGhhNRgtOjpas2fPVt++fU3f9/jx49q8ebPVWubMmZP1Go2Ojlbr1q2THQaVMWNGFSpUSAEBAfL391dMTMyje6aIiAjD8y2tCA8PV7t27ZI9Z2BgoAoUKKCAgAD5+vrq3r17jx5veHh4kvdCSFrTpk3l5eVlGPayYcMGp+2dlq6XvXv3NvzZ6998fHxUsGBBBQYGys/PTxaLRVFRUbp9+7auXLnitIBbI3/++aeaNGliuK+np6dy58796L3/2rVrunz5crLu35YuXarvv//eKe+hD3Xp0sXmc589e3YVLVpUGTNmVExMjM6fP68LFy7IYrHY7BsVFaXmzZvr999/V/HixR2e87vvvtOAAQOStdbT01NFixZVUFCQvLy8dPPmTZ08eTJZYW3r169Xs2bNtGrVKvn4+Dg4ddICAwOVNWvWR+dhfHy8bt26pWvXriU7dPvXX3/VW2+9ZTMU0gw//PCDRo0aZVj39vZWrly5Hr3Wo6Ojdfbs2WT/LDp37lwNHDgwWWu9vb1VvHhx5ciRQ25ubrp+/bpOnDhh+N8uPvzwwzT93ykAAAAAAAAAAAAAPFkIwAIAAAAAAAAAAABginr16mnGjBmG9dmzZytXrlz68ssv5emZvv5XZaFChdS8eXOFhISoXLlyKlWqlLy9va2ujY+P16FDh7Rx40ZNnjxZR48eNewbFRWlzp07a9euXfLw8HDW+A557733kgy/CgwMVPfu3dWoUSNVqVJFAQEBj625ffu2NmzYoHnz5umnn34y/AD4nj171LNnT82ePduuOePj4/XWW2/Z/GB5jhw51L17dzVp0kSVKlWyGbJ1+/ZtHTp0SAcPHtT69eu1du1al4cDPAlq1qwpHx8fw+CQffv2mbKPn5+fGjdurBo1aqhcuXIqV66csmbNarj+/Pnz2r17t2bPnq0VK1bYDCT55JNP1KBBA4WEhCRrFl9fXzVq1OgfX7t//762bNlidX2ePHlUpkyZZPX+u2LFitl9jPRX6FG1atXUsGHDR89VgQIFDNffvHlT+/bt0+LFizV37lybQQirV6/WmDFj9J///CdFs6UFU6dONax17drV5rG2ArDWr1+v8+fP23yuzWSxWNS1a1edPn36sVqrVq3Url07NWzYUNmyZXusfuLECS1atEgjRoxQVFSU4R7ffvutunfvruDgYFNnDwoKUosWLVSpUiWVK1dOpUuXNny/TkxM1NGjR7Vt2zZNmTJFe/bsMewbFxenzp07KywsTBkzZjR15pTo27ev1QAsSZowYYJTwlsmTpxoWOvUqZP8/PyS7PHNN9/ozz//NKy7u7vrpZdeUuvWrVWnTh3lzp3bcG18fLxOnDihQ4cOaefOnfrll1906tSpJGdwpQ8//FDXr183rPv4+KhDhw5q0aKFatWqZfPaExsbq6NHj+rQoUPatm2bfv31V12+fNkZYz/RAgICVLlyZW3dutVqPTIyUpcuXVLevHkd2ictXy83b96suXPn2lxTuXJlderUSQ0aNFCxYsVshm2dO3dOhw4d0r59+7Ry5Urt2bMnybCmlIqNjVW7du0eO688PDz06quvqnXr1qpXr57V9+kDBw5o3rx5Gjt2rM3A4Y8++kjt27e3eo1z1KxZs7RkyZLHvp4zZ069+eabeuWVV1SiRInH6leuXNGyZcs0duxYHT582LD/tWvX9PLLL2v37t0OhUmtX79e/fv3T3Jdw4YN1bt3bzVo0OCxn+EsFov279+vWbNmafLkyYqOjjbss3HjRr311luaNGlSime2xtvbW3Xr1lWdOnUenYe5cuUyXH/lyhXt3r1b8+fP1+LFi22+TiZOnKgmTZqoVatWps780J9//qmvv/76sa/7+PioS5cuatmyperVq6cMGTI8tubixYtavHixQkNDDfsfOXJEPXr0SPJcbdmypXr16qW6des+9pqKi4vTtm3bNHnyZM2fP1+JiYmPahaLRW+88YbatWuX1EMFAAAAAAAAAAAAAMdZAAAAAAAAAAAAAMAE4eHhFk9PT4skm3+ef/55y8qVKy2JiYmpPbJVRYsWtUiy5MyZ0/LRRx9Z9u3b51C/ZcuWWfLmzWvzORk/frxDe0ybNs2w97Rp01Lcd/bs2TbnzpAhg2XEiBGWu3fv2tU3NDTU8vzzz9vsvXDhQrt6Llq0yGa/d99913Lv3j27ev5dbGysZc2aNZY2bdpYPDw8LC1btkxxL2fZuHGjzefgzJkzqTLXCy+8YDiTm5ub5datW3b1++yzzyySLB4eHpZ27dpZli5d6tD39ty5c5YXX3zR5nNXsWLFFPe3WCyWM2fOGPbu2rWrQ71t2bp166N9qlatapk4caLlypUrKe539+5dy/vvv2/x8PAwfDz+/v6WyMhIEx+F6+zbt8/wcXl5eVmuXbuWZI/q1asb9hg2bJjpMxvtZe16XLFiRcvOnTuT3TsyMtJSu3Ztm+dGt27dHJq/Xr16FkmWTJkyWfr372/ZunWrJSEhIcX9tm3bZilVqpTNmd977z2HZrb1XjtkyJBk90lMTLSUKFHCsNeOHTscmvPfYmJiLNmyZTPc79ChQ0n2iI2NtdmjQoUKlmPHjjk055EjRyyDBw+25MyZ0yLJcvPmTbt7GM1Xq1Ytu/pERETYvLetX7++5dKlS3bP93f79u2zDBgwwJIpUyZL5syZHerlLLbOJ0fuMx0xaNAgm3MtW7bMrn7p7XrZrFkzw77Zs2e3rFixIsWzWyx/vfZ/+OEHy7PPPmuRZFm6dKldx9u677F2TjVs2NBy9OjRZPc/ffq0pXTp0jZfA0OHDrXzUf+/rl27Gvb19vZ+7Gs9evSwREVFJat3QkKC5dtvv7Xa5+9/3n///RTPf+PGjUfvoUZ/8uTJY1mzZk2ye168eNHSuHFjmz0lWebPn5/iuWfNmvWoT+PGjS2zZ8+2++eEv7t27ZqlW7duNufNly+fJSYmJsV7JPXz17//NG/e3HLy5MkU7/dQfHy8pUKFCjb3yp8/v2Xz5s3J7hkaGmr1HsrWa3Xjxo0OPxYAAAAAAAAAAAAAsFgsFuN/1gsAAAAAAAAAAAAA7JArVy516dIlyXX79u1T06ZNVbJkSX388cfavXu3LBaLCyZMnqJFi+r777/XuXPn9Pnnn+u5555zqF+LFi0UFham6tWrG64ZPny44uLiHNrHbOHh4Xr77bcN68HBwdqzZ4/ef/99+fv729W7fPny2rJli9q0aWO4pl+/frp//36ye/7000+GtaFDh+qbb76Rr6+vXXP+nbe3txo2bKhFixbp1KlT6ty5c4p7PW3KlCljWLNYLDp+/Lhd/Xx9fdWnTx+dOHFCCxYsUKtWrRz63hYoUEC//vqrvvnmG8M1e/bs0apVq1K8R2pxd3fXiy++qC1btmj79u3q2bOncuTIkeJ+/v7+GjFihDZs2GB43kdHR2vkyJEp3iM1TZ061bDWtGlTZcuWLckeXbt2NaxNnz7dZde7+Pj4f/z9pZde0pYtW/TCCy8ku0fOnDm1YsUKVa1a1XDNvHnzFBUVleI5c+fOrS+//FLnz5/X6NGjVb16dbm7p/zXmapVq6bQ0FC9/PLLhmu+//57Xbt2LcV7mMXNzU29e/c2rE+YMMHU/RYtWqTr169brVWtWlWlS5dOsseGDRsMezz77LPatm2bSpYs6dCcpUqV0rBhw3T+/HlNmTJFPj4+DvVzxNKlSx87lx6qV6+eVq9erTx58ji0x3PPPadvv/1WFy9e1Ndff+1Qr6eJrXsLSTp27Jhd/dLT9fLOnTtavXq14b6bN29W06ZN7e77d0FBQerdu7cOHz6sNWvWqFixYg71+7t/n1NvvvmmVq1apeDg4GT3KFy4sDZs2KDixYsbrpkwYYISExNTPKeRBw8e/OPvI0eO1KRJk5QpU6ZkHe/u7q4BAwZo9erVNn+GGj16tE6cOJGiGQcNGqQrV64Y1p955hnt3btXDRs2THbPvHnzauXKlerbt6/NdQMGDEjxfYGXl5deffVV/fHHH1q1apU6duyozJkzp6iXJGXLlk3Tpk3T/Pnz5eHhYXXNxYsXbd7/mWnAgAFavny5ihYt6nCvSZMmKTQ01LBeunRp7d27VzVr1kx2z/Lly2vXrl2P/XeLf7/mAQAAAAAAAAAAAMAZCMACAAAAAAAAAAAAYJqPP/5YXl5eyVr7559/6osvvtALL7ygwMBANWzYUIMHD9avv/6qyMhIJ09qbM2aNerTp48yZMhgWs/MmTNrxYoVKleunNX6xYsX9euvv5q2nxkGDhyomzdvWq0VKlRIGzZsSFZYhhE/Pz/NmzdP1apVs1qPiIjQDz/8kOx+27Zts/r1woUL65NPPknRjEYKFixoM7wL/1SqVCmb9YsXL9rV791339X333+vIkWKODKW1b5Dhw41rP/444+m7ucKVatW1a+//qoaNWqY2rdmzZpavny5YZjA1KlT01yoX1JiY2M1d+5cw7qtYKu/a9u2reH148yZM9q0aVNKxnNIs2bNtGjRohRd1/z8/DRt2jR5e3tbrcfGxmrZsmUpnm3WrFn673//61DAxb/5+Pho7ty5hsEe9+7d06xZs0zbzxGvvfaaYYDfwoULHQoX+7eJEyca1nr16pWsHkbXWkkaP368/Pz87J7LiI+Pj7p37+5QwKGjjB6vm5ubJk6caPgemBIZM2ZUz549Tev3pDP73iI9XS937dplGMz23nvv6ZlnnrF7TlsaNmzo0D2/LX379tX48eNTFHyYI0cOm+9r4eHhNt+zzDBo0CC98847KTq2Tp06mjt3rtzc3KzW4+LiNHjwYLv7njhxQlOmTDGs58mTR+vWrVPu3Lnt7u3m5qbx48erbdu2hmsiIiI0evRou3tLUvv27TVnzhyVLVs2Rcfb6mvrOXHFPX7fvn317bffmtIrNjZWw4YNM6znypVLq1evVs6cOe3unTFjRv3yyy8qUaKEIyMCAAAAAAAAAAAAgN0IwAIAAAAAAAAAAABgmsKFC2vcuHF2HxcVFaV169bps88+U/PmzZUrVy4VKFBArVu31pdffqmNGzfq7t27TpjYdTJlyqQff/zR8EPOtoJXXC0sLMxwngwZMmjVqlUp+tD0v3l5eWnhwoXKkiWL1fq4ceNksViS7HPv3j1dunTJau3ll19O0YfqYZ48efLYrNsbUuFMH3/8sWHIw6pVq3Tr1i3XDpSG1a1b1zCs5dq1a1q7dq2LJ3LM0qVLDUP/smXLphdffDFZfTJnzqxWrVoZ1qdOnZqS8VIsT548mj59ukPvgyVKlFCPHj0M67/99luKezuLl5eXJkyYYBj6lVauuVmyZFGHDh2s1swM6jp27Ji2bNlitRYYGKh27dolq8+ff/5p9es5c+ZUrVq1UjxfWmX0eENCQkwPYYR90tO9hdnXS6PXpaRkn8tpQdmyZTVq1CiHetSuXVtNmzY1rDvz+vTMM8/o888/d6hHixYt1K1bN8P6okWLdPbsWbt6fvXVV0pMTDSsT5gwIcnzxxY3NzdNnjxZuXLlMlwzZswYRUdHp3gPZ+jatasaN25stXbw4EGFhYU5be+iRYvqm2++Ma3fnDlzFBERYVgfO3as8ubNm+L+WbJk0bRp01J8PAAAAAAAAAAAAACkBL/lCwAAAAAAAAAAAMBUvXr1Ur9+/Rzuc+HCBS1dulQffvih6tatq6xZs6pmzZr66quvdObMGRMmdb3KlSurSZMmVmvr16+3+WFlV/r2228NZ3n//fcVHBxs2l558uTR22+/bbV29uxZbdy4McketkKJChcunNLRYJKkwtKuXLniokmS5uHhocGDB1utxcXFadOmTa4dKI0bMmSIYbDSunXrXDyNY2wFU7Vv317e3t7J7tWlSxfD2uLFi3X79m27ZnPEiBEjlC1bNof7dO7c2bC2Y8cOh/s7Q6FChdS9e3ertf379+vGjRsunsi6Pn36GNYmTJhgyh62+nTp0sUwKOzfjELiChUqZBjwmZ4ZPV7uLVJfzpw55eHhYVhPS/cWkrnXS6PXpZS+Xpvff/+9fHx8HO6TWtenMWPGyNPT0+E+X375pTJlymS1lpCQYFcQ0d27d7VgwQLDerNmzdSsWTO7Z/y3TJkyacSIEYb1mzdvavHixQ7vY7ZPP/3UsObM+9bvvvtOvr6+pvWbMmWKYa1WrVpq27atw3tUrVpVHTt2dLgPAAAAAAAAAAAAACQXAVgAAAAAAAAAAAAATDd69GgNHjzY8IPeKREXF6etW7fqv//9r4oUKaI6depo8eLFslgspu3hCi1btrT69Zs3b+rIkSMunuZxtj44nTVrVv33v/81fc/+/fsbhsv88ssvSR5vKwAhNjY2xXPBHEYf6n/o/v37LpokeRo3bmz4ety2bZuLp0nbcuXKpRdeeMFqLT09V+fPn9f69esN6127drWrX8OGDZUrVy6rtfv372vevHl29UupvHnzql27dqb0qly5suFjOn36tGJiYkzZx2xG19zExET9/vvvLp7GupCQEFWsWNFq7fDhww7PGRMTo5kzZxrW33jjjWT3MrrePqnX2qft8aYn7u7u8vf3N6yntXsLM6+XT8J9b6VKlVStWjVTejVv3tzwZ86wsDBT9vi3WrVqqX79+qb0CgoKshkebc89w88//6zo6GjD+vDhw+2azZbOnTurTJkyhvXZs2ebtpdZQkJClCdPHqs1Z923lihRQo0aNTKt3/nz520Gu3322Wem7fXpp58+keGWAAAAAAAAAAAAANImArAAAAAAAAAAAAAAmM7NzU3Dhg3Txo0b9cwzzzhlj02bNunll19W2bJltXbtWqfs4Qy2Pux96NAhF05i3apVq3T37l2rtZdffll+fn6m75ktWzbD8I/ffvstWccbSU8hPE+qDBky2KynteCcjBkzqmzZslZraeEcTWuM3tOOHDmixMREF0+TMtOnTzecNTg4WJUqVbKrn4eHhzp16mRYnzp1ql39Uuq1116Tl5eXaf2MzovExESdOXPGtH3MlNavuQ/17dvXsDZx4kSHei9atEg3btywWqtRo4Zd92lG19sjR44Y7pGeGT3enTt3KiEhwcXT4N9s3V+ktXsLybzr5ZNw32tP8F5S/P39VaxYMau18PBwp4Shde7c2dR+tu4Z/vzzT50+fTpZfVavXm1YCwkJ0bPPPmv3bLbYCgjdsmVLmguic3NzU9WqVa3WnHVP8Nprr5nab82aNYYB4AULFlT16tVN26tIkSKGzxcAAAAAAAAAAAAAmI0ALAAAAAAAAAAAAABOU7NmTf3xxx+aMmWKgoODnbLH4cOH1ahRI3Xt2lXR0dFO2cNMQUFBhrXjx4+7cBLrVq1aZVhr37690/atXbu21a8fPXo0yQ9Pe3p6Kl++fFZrP//8s3bu3OnoeHCAj4+PzXpaDKkwOk/Twjma1hg9V/fv39f58+ddPI39LBaLpk+fbljv0qVLivraOm737t0KCwtLUV971KpVy9R+pUuXNqxFRkaaupdZ/P395e/vb7WWls7n9u3bK2vWrFZrCxcu1K1bt1Lce8KECYa1Xr162dWrcOHCVr8eFxenTz75xK5e6YHR442MjNSoUaNcPA3+zdb9RXq6t7D3emn0upSkwYMHKzY21u7ZXC09X598fHzUpk0bU3uWLFlSISEhhvWNGzcmq8+GDRsMa2aHdklSx44d5eHhYbUWGxubJgPZjM7DU6dOOSXYsHnz5qb2s/VaeOWVV+Tm5mbqfh07djS1HwAAAAAAAAAAAAAYIQALAAAAAAAAAAAAgFN5enqqe/fuOnLkiDZs2KBu3boZhjw4YubMmapSpYouX75sem8zZcuWzbAWHh7uwkmss/VB5YoVKzptX6MP8yckJOjIkSNJHl+nTh3D45s2bapffvnFofmQcnFxcTbr3t7eLpok+YzO04iICBdPkval9fe0pGzcuFFnzpyxWnN3d1enTp1S1LdMmTKqUKGCYX3q1Kkp6ptcHh4eqly5sqk9bX2vb9y4YepeZjKaOy29Pn19fdWtWzertfv372vmzJkp6nv06FHD63q2bNn08ssv29XP6ForSd9//70GDBige/fu2dUzLbP1eP/73/9q+PDhio+Pd+FE+Dtb9xfp6d5Csu/9qGrVqobhX6GhoWratGmaDqAMCgpSsWLFTO3pyutThQoVlCVLFlN7SlLdunUNa/v27Uvy+IiICJuvowYNGqRoLlty5cqlcuXKGdZDQ0NN39NRRq+VhIQEXblyxdS9/Pz8TA8Bt/VasPUaSilb10EAAAAAAAAAAAAAMJNnag8AAAAAAAAAAAAA4Ong5uamOnXqqE6dOoqPj9euXbv022+/adu2bdqzZ4+ioqIc3uPQoUOqV6+edu/erYwZM5ow9T9dvnxZO3bs0P79+3XixAmdPXtWV69e1c2bNxUbG6sHDx7IYrGkuP/Vq1dNnNZ+d+7c0cmTJ63WChQo4JTn9CFbH1y/cOGCnn/+eZvHt2nTRrNmzbJau3nzplq0aKGaNWuqT58+atmypXx9fR2aF8kXExNjs27m9+L+/fvas2ePdu/eraNHj+rkyZOKjIzU9evXde/ePcXGxiohISHF/WNjY3X79m1lypTJtJlTS2Jiog4ePKhdu3bp0KFDOnnypC5duqRr167pzp07io2NdTjYJbXf05LDVhBV7dq1lT9//hT37tq1q2H4w+zZszV8+HB5eXmluL8tOXPmVEBAgKk9bb3ukzrPU+LatWvauXOn9u7dqxMnTuj06dO6evWqbty4oZiYGMXGxqbra+6/9enTR99++63VxzRhwgT169fP7p4TJkwwrHXt2tUwRMdItWrVFBQUpMjISKv1MWPGaOHCherVq5e6deumggUL2tU/rXnxxReVIUMGq6/vxMREffDBB5oyZYr69OmjTp06KWfOnKkw5dPL1vuOmfcWae166evrqyZNmujnn3+2Wt+wYYOCg4PVuXNn9ezZUyEhIQ7NZrYiRYqY3tOV1ydbgU/O6nv48OEkj7e1xs/PTyVLlkzRXEmpUKGC9u/fb7V26NAh0/aJi4vTvn37tHv3bh05ckQnT55UeHi4rl27prt37+rBgwemnIe5c+c2aeK/vqceHh6m9YuNjdWpU6ds7me24sWLy9fXV/fv3ze9NwAAAAAAAAAAAAD8HQFYAAAAAAAAAAAAAFzO09NT1apVU7Vq1SRJFotFf/75p/bt26f9+/dr37592rdvn27fvm1372PHjqlLly5asmSJ3NzcHJ41MjJS06ZN04IFC3TgwAGH+9mS2h8sPX78uGGYyO3bt9W4cWOn7X3jxg3DWnh4eJLHt2jRQuXKldMff/xhuGbLli3asmWL/Pz81LBhQzVo0EC1a9dWqVKlTHmtwLro6Gib9QwZMjjUPz4+XsuXL9eMGTO0bt06p59H9+/fT9cBWDt37tSUKVO0fPlyXblyxal7pfZ7WlKioqK0ZMkSw3rXrl0d6v/qq6/qvffesxrIcOXKFf3666966aWXHNrDSGBgoOk9/f39DWtxcXGm7BEVFaVZs2Zp3rx52rlzpxITE03pa01ae30WK1ZM9evX17p16x6rHTlyRNu2bVP16tWT3S8mJkYzZ840rPfq1cvuGX18fDRw4EC9++67hmvCw8M1dOhQDR06VM8995xefPFF1a5dW1WqVEl34ZNBQUHq2bOnxo0bZ7jm5MmTevfdd/X++++ratWqatKkiWrXrq2KFSs6LeAOf7F1f+HovYWUtq+Xn3zyiWEA1sN+EydO1MSJE1WgQAE1b95cdevWVc2aNZU9e3YHp3VMer0+PVS+fHlT+yWn75kzZ5I8/uzZs4a1smXLyt3dPQVTJa1ChQqGtXPnzjnU22Kx6LffftPUqVO1atUqUwKzbTH7vsDsEMjz588bBvnmypVLQUFBpu4nSR4eHipTpox2795tem8AAAAAAAAAAAAA+DsCsAAAAAAAAAAAAACkOjc3N5UoUUIlSpRQhw4dJEkJCQkKDQ3V5s2btWTJEu3YscMwnOnffv75Z02ePFk9e/ZM8Uw3btzQsGHDNGHCBMXGxqa4jz1ctY+RCxcuGNZu3bqlNWvWuHCa/5dUgJL012to8uTJqlmzZpIfXr53755+/vnnR8EB2bJlU5UqVVS1alVVq1ZNlSpVMiU4AX9JKsAsa9asKe49e/ZsffLJJzY/9G+21D5PU2rnzp16//33tW3bNpftmdafq3nz5hm+X/j7+6tNmzYO9c+RI4eaNGmiX375xWp96tSp6SoAy1ZQYHKvz0bu37+vESNGaOTIkbpz545DvZIrLb4++/btazUAS5ImTpxoVwDWTz/9pJs3b1qt1alTRyVKlEjRjG+99ZaWLFmi7du3J7l2//792r9/vz777DN5e3urQoUKqlKliqpVq6bq1asrV65cKZrBlT799FOtXr1af/75p811iYmJ2rZt26P3WF9fX1WsWFFVq1Z9dH/hyPUO/3T9+nWbwUaOPNfp4Xr53HPP6f3339fXX3+d5Nrz58/ru+++03fffSc3NzeVLFny0euyevXqKlmyZErHTpH0dn36twIFCpja7yFbYUmRkZGyWCw2H+fly5cNa4UKFXJkNJuKFCliWLM1U1JWrVqlQYMG6dChQynuYS+z7wvMDsy19TOVs16X0l+vTQKwAAAAAAAAAAAAADibc/5ZJwAAAAAAAAAAAABwkIeHh0JCQvTuu+9q+/btOnPmjN599135+vom6/gvvvjC5gfjbfntt99UunRpjR071qUBGYmJiS7by5qkgopSS1KBVg+FhIRo9uzZdodXXb9+Xb/++qs+/PBD1apVS4GBgWrUqJHGjx+fZp+T9CSp5zB//vx297x+/bqaNGmizp07uzT8Skr989ReCQkJGjRokKpVq+bSMA8p7T9XU6dONay1bt1a/v7+Du/RtWtXw9rq1asVERHh8B7WeHqmn38TLzQ0VOXLl9fQoUNdFn4lpc3XZ/PmzZUvXz6rNVuBVtZMmDDBsNarVy+7Z3vI29tbS5YsUenSpe067sGDB9q1a5dGjx6ttm3bKnfu3CpdurTef/997dy5M8XzOFuWLFn0yy+/GH5fjNy/f19btmzR8OHD1aJFC+XIkUMVK1bU0KFDXRro8qRyxr1FerteDh8+XK+88opdx1gsFh07dkxTp05Vjx49FBwcrLx586p79+765Zdf9ODBA7vnsFd6uj5ZY3ao0UP+/v7y8PCwWouLi9Pt27dtHm/r+pA5c2aHZrPFVu8bN27Y3e/+/fvq2rWrmjZt6vL3SrPvC8x+3m09n856XUpSxowZndYbAAAAAAAAAAAAAB4iAAsAAAAAAAAAAABAulCwYEF98803On36tJo0aZLk+nPnzmnmzJl27zNnzhw1adLkqQw+io6OTu0RrEpISEj22tatW2vbtm0qUqRIiveLiYnR2rVr9fbbbyt//vxq1qyZ1q9fn+J+T7sTJ07YrNsbKnLp0iVVrlxZq1evdmSsp0JcXJxat26tESNGpMmwn9QUFhamPXv2GNZtBVfZo3nz5goMDLRai4+PT9F16kmyYcMG1ahRI8n3iaeFh4eH3njjDau1mJgYzZgxI1l9wsLCtH37dqu1HDly6KWXXkrxjJKUM2dO7dy5Ux06dHCoT1hYmL755htVqVJFJUuW1JgxY9LkvUjJkiW1b98+1a9fP8U9EhMTtXfvXg0bNkxly5bV888/r2nTpqU4rPVpZ/a9RXq8Xrq7u2vevHkaPny4vL29U9zn8uXLmjZtmlq0aKE8efLovffe08WLF02c9MmSWkFDMTExNo+1FRjszJlthTwlN8T4odu3b6tOnTpPzL2Rn5+fqf1S63vszN4AAAAAAAAAAAAA8FD6/ue0AAAAAAAAAAAAADx1cuXKpRUrVuidd97R6NGjba5dsmSJXn/99WT3Xr9+vbp166b4+Hi7ZgoMDFTOnDmVMWNG+fv7y9PTU56exv87ds2aNXb1d5XY2NjUHsEUzz//vI4eParvv/9ew4cPV2RkZIp7JSQkaMWKFVqxYoVq166tcePGqXTp0iZO++Q7dOiQzXrRokWT3evevXtq3LixTp48adcMvr6+CgoKUpYsWRQQECBvb295enrKzc3NcObLly/btUda1KtXLy1fvtyuY7y8vJQjRw5ly5ZNGTNmlI+Pj7y8vAyfq0uXLunw4cNmjOtSU6ZMMazlz59fderUMWUfb29vvfLKK/rhhx+s1qdNm6aBAweasld6c/jwYbVq1cruwKPMmTMrZ86cypQpkwICApK85m7evDnJ4JC0pGfPnvrss8+sBiNNnDhRAwYMSLLHxIkTDWuvvfaaQ2E5D/n7+2vu3Lnq27evPvzwQ23dutWhfidOnNCAAQP05Zdf6osvvrDr/s0VcubMqXXr1mn58uX65JNPdPDgQYf67d+/X927d9fnn3+uUaNGqWXLliZN+nRI6t6iWLFidvVLz9fLQYMGqX379ho8eLDmzZtn988xf3f9+nWNHDlS48ePV//+/TVkyBDTQ3zSO39/f6f2vnXrltXagwcPbB5rq+7smY0kNfPfJSYmqnXr1tq1a5dd+/v4+Dw6Dx/e49s6D0+ePKlTp07ZtUdaYSsw0ZnnqTNfPwAAAAAAAAAAAADwEAFYAAAAAAAAAAAAANIdNzc3jRw5UsePH9eqVasM123ZskXx8fE2gzEeioqKUpcuXZL80Hi+fPn04osvqmbNmipXrpyKFCkiX19fu+dPi9zd3VN7BNN4e3trwIABevPNN7Vq1SrNnDlTa9eu1Z07d1Lcc9OmTXr++ec1duxY9erVy8Rpn1wJCQkKDQ01rOfJk0e5cuVKdr+BAwcmGR7h4+OjRo0aqW7dugoJCVGJEiWUI0eOZO8hSd26ddOMGTPsOiatWbRokaZNm2ZzjZubm6pUqaJGjRqpUqVKevbZZ5U3b1673gumT5+u1157zdFxXSouLk6zZ8+2WW/atKlp+4WHhxvWjh07pt9//11Vq1Y1bb/0ICEhQZ06dUryPTl79uxq1qyZatasqQoVKqho0aLKmDGjXXsVKlRI586dc2Rcl8qVK5deeuklLVy48LHa0aNHtXXrVtWoUcPw+JiYGM2aNctqzc3NTW+88YZps0pS9erVtWXLFh05ckQzZszQokWLdPr06RT3i4yMVI8ePbRs2TLNmTPH7u+3s7Vo0UItWrTQrl27NHPmTP38888OBSaePn1arVq1Us+ePfXdd9/Jy8vLxGmfXHv37rVZf+6555Ld60m4XhYqVEgzZ87U119/rTlz5mjevHnav3+/EhMTU9QvNjZWI0aM0LJly7Rs2TKVLFnS5InTL3tDG83qnVRwoa36vXv3UjxTUhyZ+e9GjRql9evX21zj4eGhOnXqqH79+qpUqZKCg4OVK1cuu362Hjp0qIYNG5bs9WmJretDan2PAQAAAAAAAAAAAMAsBGABAAAAAAAAAAAASJfc3d01atQorV27VgkJCVbX3L17V/v371elSpWS7Ddy5EibAQYFCxbU2LFj1axZM4eCoh48eJDiY53NVpBXpUqVtGvXLhdOYw4vL69HYRUJCQnau3evNm3apC1btmj79u2Kioqyq9+DBw/Uu3dveXl5qXv37k6a+smxZ88em8+xPQEVJ06c0I8//mhY9/Dw0AcffKB3331XWbJksWfMx6Tl8zQ54uPjNWjQIJtr2rRpo+HDh6tYsWIO7ZUen6tffvlFV69eNaxHREQoIiLCZfNMnTr1qQvAmjFjhv744w/DerZs2TRy5Ei9+uqrDgcCpcfXaJ8+fawGYEnShAkTbAZgLVy4UDdv3rRaq1evnooWLWrKjP/2zDPP6KuvvtJXX32l8+fPa+PGjdq8ebO2bNmiU6dO2d3vl19+0UsvvaRVq1alyVCoF154QS+88IK+++47HT9+XJs2bdLmzZu1detWXbx40e5+kyZNUmxsbLoPX3SF+Ph4bd682bCeKVOmZF/bnrTrZVBQkN555x298847unXrljZv3vzoPDxw4IDhz0xGjh8/rrp162rXrl3Kly+fk6ZOX27fvu203rZCITNkyGDzWFs/x9n78449bD0fyQ2Jvnnzpj7//HOba3r37q3Bgwcrd+7cds33b+nxnuAhW8+nM1+XzuwNAAAAAAAAAAAAAA89Of98LwAAAAAAAAAAAICnTnBwsGrVqmVzTXJCCOLi4vTDDz8Y1mvWrKn9+/erRYsWDoVfSdKNGzccOt6ZbIUGpeW5k8vDw0MvvPCCBg0apBUrVujGjRv6448/9P3336t9+/bKnj17snv17t1be/fudeK0T4aVK1farFevXj3Zvb777jvD4IaAgAD99ttv+uyzzxwOv5LS/+v9l19+0enTpw3rX3/9tRYtWuRwmIeUPp+rKVOmpPYI/7Bw4UJFR0en9hguNWbMGMPaM888o/3796tr166mBB8ZhUGlZbVr19YzzzxjtbZo0SJdv37d8NgJEyYY1nr16uXwbMlRoEABde3aVVOnTtXJkycVHh6uRYsWqV+/fipdunSy+6xfv14DBw504qTmKFmypHr16qW5c+fqwoULOnv2rObMmaM33njDrsCxmTNn2jw38JctW7bYDAqqWrWq3NzcktXrSb5eZsmSRS1bttSoUaO0d+9e3bx5U2vXrtWQIUNUo0YNeXom799OvXz5slq2bKnExEQnT5w+OCsMKDo62vA+18vLS5kyZbJ5fGBgoGHNmQFGtsK1smbNmqwe06dPN+zj4eGh+fPn64cffnA4/EpKn/etD9l6PlMrmA0AAAAAAAAAAAAAzEIAFgAAAAAAAAAAAIB0rX79+jbr165dS7LHhg0bDNflyJFDCxcuTPYHeJOSlj90W6BAAcNaWp47pdzd3VW2bFn16dNH8+fPV2RkpLZv365+/fol+f2Oi4vToEGDXDRp+mSxWDRr1iyba5o3b57sfgsXLjSsjRkzRrVr1052r6Sk99e7reeqc+fOeu+990zbK709V5cvX9aaNWtSe4x/uHPnjn766afUHsNljh8/roMHD1qtZciQQQsXLrR5PbLHvXv3FBMTY0ovV+vTp4/Vr8fGxmrGjBlWa4cPH9bvv/9utRYUFKSWLVuaNp89cuXKpTZt2mjMmDE6dOiQzp8/r9GjR6t8+fJJHvvdd9/ZDChKiwoWLKhXX31VEyZM0MmTJ3Xs2DF98cUXyQpR+vTTT20GykCGr/+HzLq3eNKulxkzZlSDBg00dOhQbdmyRdevX9ecOXPUpEmTJAN+9+/frzlz5rho0rTt/PnzTul77tw5w1pQUFCSoW558uQxrJ09ezalYyXpzJkzhjVbM/2drfPwww8/VPv27e2ey0hqn4eOsBUA5qzXpWT7tQkAAAAAAAAAAAAAZiEACwAAAAAAAAAAAEC6VrhwYZv169evJ9lj8+bNhrX+/fsrKCjI7rmMpOUPkBYpUsSwduvWLd25c8eF07ieu7u7qlatqjFjxujChQv64osv5OPjY7h+w4YN+uOPP1w4YfqyZs0amx+4L1KkiJ555plk9Tpx4oQiIiKs1ooVK6bu3bunZERDzvwQuSsYvae5ubnpiy++MHWvtPyeZs2MGTOUkJCQ2mM8ZurUqak9gsvYuuZ26tRJzz77rGl7pbfX59916dJF/v7+VmsTJ0606+uS1L17d3l5eZkym6Py58+v/v37KzQ0VGvXrlXJkiUN18bFxWncuHEunM58JUuW1IcffqgTJ05o4cKFNkNMbty4oenTp7tuuHTm+vXrWrx4sc01zZo1S3a/p/l6mSlTJr366qtauXKljhw5oiZNmthcP2rUKBdNlrYdOHDA5X0LFSqU5PG21hw8eFCJiYn2D5UMoaGhhrXkzB0dHa29e/darWXMmFEffPBBSkezKq2dh/YoUKCAPDw8rNYiIiJ05coV0/dMTEzU4cOHTe8LAAAAAAAAAAAAAP9GABYAAAAAAAAAAACAdC1r1qw26+7uSf9vUVsf6mzbtq3dM9myfft2U/uZqXDhwobPZ2JiorZt2+biiVKPn5+fPvzwQy1btszwg8bSXyFPsG7o0KE26926dUt2L1eeoydPnlRkZKSpPV3pxo0bCg8Pt1qrXLmy8ufPb+p+v//+u6n9nG3atGmpPYJVW7du1cmTJ1N7DJfgmps8mTJlUseOHa3Wjh8//lhwz/379zVr1iyr693d3dWzZ0/TZzRDgwYN9Pvvv6tMmTKGa56Ua62bm5vatm2r33//XXnz5jVc96Q8XmcYMWKEoqOjDet169ZVgQIFktWL6+X/K1mypH799Vd17tzZcM0ff/yRru+PzOKs8FtbfW29PyZnTXR0tE6cOJGiuZJiKwArOXMfP35c8fHxVmvNmjWTr69vimf7t/v379ucN63z8fFR0aJFDevOCGc7ceKE7t27Z3pfAAAAAAAAAAAAAPg3ArAAAAAAAAAAAAAApGu3bt2yWc+YMWOSPS5cuGD1656enipWrFhKxjKU1sM4KleubFjbtGmT6wZJIxo1aqTevXsb1tNymEFqmj17tnbt2mVY9/b21htvvJHsfkbnqCSVKlXKrtmS4oxz1M3NzfSeRlz5XJ07d04XL140taczbd26VX/++adhfd++fbJYLE79U6FCBcP9p06d6oyHneak9/PZlfr27WtYmzBhwj/+vmDBAsN7ooYNG6pw4cJmjmaqrFmz2nz9Hz16NMn7vfSkUKFCGj16tGGdewvrTpw4oXHjxtlc89ZbbyW7H9fLf3J3d9f333+voKAgq3WLxaIdO3a4eKq0JzQ01CnvRxs3bjSsPf/880keHxQUpDx58hjWf/vttxTNZcvVq1dthi4999xzSfZw5Xm4e/duxcXFmdrT1Wy9Fmy9hlLKGT0BAAAAAAAAAAAAwBoCsAAAAAAAAAAAAACka5cvX7ZZz58/f5I97t69a/XrOXLkkLu7ef9b9cKFC9q2bZtp/ZyhWbNmhrUlS5YoMTHRhdOkDV26dDGsRUZGunCS9OHChQvq16+fzTWdO3c2DFiwxugclWRXn+SYO3euqf2kv8L0jNy/f9/UvdL7c+VMtgJ2SpUqlaygBkd17NjRsDZz5kwlJCQ4fYbU5qrXaHR0tJYtW2Zav9RQrlw5ValSxWptyZIlunbt2qO/T5w40bBPr169TJ/NbCEhITbDTp60623Lli2VKVMmq7WoqCjFxsa6eKK0LS4uTt26dbN5zSxRooRatGiR7J5cLx8XEBCg1q1bG9aftPMwJWJjY7V48WJTe544cUJ79uwxrNepUydZferWrWtYmz17tt1zJWXu3LmKj4+3WvPx8VHVqlWT7MF5aB9br4X58+fLYrGYut+cOXNM7QcAAAAAAAAAAAAARgjAAgAAAAAAAAAAAJCubdiwwWa9ZMmSSfbw9va2+vXo6OgUzWRk3Lhxhh8STitatWolDw8Pq7WTJ09qwYIFLp4o9QUHBxvWrl+/7sJJ0r7bt2/rxRdf1M2bNw3XBAQE6LPPPrOrr9E5Kpl7noaFhWnt2rWm9XsoQ4YMhrV79+6Zupernqu4uDiNHz/etH7OdvfuXf3000+GdVvBVGbq0KGDYbDipUuXtGbNGpfMkZpc9RqdMWOGzfei9KJv375Wvx4bG6vp06dLkg4dOqQdO3ZYXZcnTx6b4ZZpydN0vfXy8lLRokUN60/a43VUz549DV/jD40cOdLwHtYarpfWPU3nYUqZHSZlq1/x4sVVpEiRZPVp0qSJYW3Xrl06fvy43bPZMmPGDMNa7dq15evrm2QPV52H169f16xZs0zrl1oaNWokNzc3q7WzZ89q+/btpu115swZ/f7776b1AwAAAAAAAAAAAABbCMACAAAAAAAAAAAAkG7dvHnTZlhNjhw5VKJEiST75MiRw+rXb9++bdoHvS9fvqyJEyea0suZcufOrZYtWxrWP//8cz148MCFE6U+o7AayfaHtp82V65cUYMGDXTo0CGb6z755BPlzp3brt5G56j014ezzTJs2DDTev1dYGCg4evo4sWLpu7lqudq0qRJunz5smn9nG3BggU2gxReffVVl8yRJ08e1a5d27A+bdo0l8yRmlzxGo2OjtY333xjSq/U1rZtW2XPnt1qbdKkSZKkCRMmGB7/+uuvy9PT0ymzme1pu94+bY83JeLj49WjRw+bQTvSX8E/9ga9cb20jtdl0jZt2qSNGzea0uvq1asaO3asYb1Dhw7J7tWyZUsFBAQY1j/44AO7ZrNl/vz5Cg0NNax36tQpWX1cdR5+9dVXun//vmn9UkuBAgVUuXJlw/rgwYNN22vIkCGyWCym9QMAAAAAAAAAAAAAWwjAAgAAAAAAAAAAAGCKjz/+WAcOHHDpngMHDlRsbKxhvXHjxsnqkzNnTsPaypUr7Z7r3ywWi7p27aqoqCiHe7nCu+++a1g7cuSI+vbt68JpUt/x48cNa3ny5HHhJGnXli1b9MILL2j37t0219WvX1/vvfee3f1tnaMrVqywu581s2bN0k8//WRKr39zd3c3DP06efKkEhISTNvLVpDAhg0bTPnw//Hjx/X+++873MeVpk6dalirWrWqChcu7LJZOnbsaFhbvny5acGLaZUrzud+/fqZGpyRmnx8fNS9e3ertRMnTmjFihWaPXu21bq7u7t69OjhzPFM9TRdb+Pj43Xq1CmrtQwZMihr1qwunijtOXfunBo2bKgpU6bYXJc7d25Nnz7d7v5cL617ms5DR/Tr18+U+7cPP/zQ8GdEDw8PdevWLdm9/P39bQZmLV26VOvWrbN3xMfcvXvX5v18tmzZ1Lp162T1csU9webNmzVy5EhTeqUFtq7rGzdu1OLFix3eY8eOHYb3FgAAAAAAAAAAAADgDARgAQAAAAAAAAAAADDFb7/9pueee06vvPKKDh486PT9Fi5cqMmTJ9tc06VLl2T1qlSpkmFtxIgRDn+4eejQofrtt98c6uFKVatWVZs2bQzrU6ZM0YgRI5w6Q2JiYrI/9Lxnzx6bH9Z31LRp0wxr5cqVc9q+6cGFCxf0xhtvqHbt2jp79qzNtQUKFNCcOXPk7m7/ryqEhITIzc3Nam3jxo3auXOn3T3/7sCBA3rrrbcc6pGUkiVLWv363bt3tW3bNtP28ff317PPPmu1Fh0drbFjxzrU/+bNm2rfvr3u3bvnUB9XOn78uH7//XfDuq1AKmdo06aNfHx8rNYePHjwxAcO2Lrmjh8/Xrdv33ao/9SpU20GnqVHvXv3NnzvfO211wzDU5o0aaICBQqYMsP9+/e1ZMkSJSYmmtLv3/bu3avDhw9breXIkcPlwTvh4eFav3690/r//PPPunXrltVa6dKlU3StfFJER0frq6++UpkyZbRx40aba729vTVv3jybITpG0uv1cunSpbp7966pPR+6d++eFixYYFh/2u97/+7w4cMaMmSIQz1WrFhh83rVpk0buwM6Bw4cKA8PD8N6jx49dOXKFbt6/lufPn106dIlw/qAAQPk5+eXrF4lSpRQ5syZrdZOnz5t8/WYHOfOnVPnzp2ddu1KDR07dlSuXLkM62+//bbCw8NT3P/27dt6/fXXZbFYUtwDAAAAAAAAAAAAAOz19P6mDAAAAAAAAAAAAADTWSwWLViwQOXKlVPTpk21cuVKp3zY9Mcff1SHDh1srqlYsaLq16+frH6NGjUyrB0+fFgDBw60a76HLBaL3n33XX366acpOj41jRo1SlmyZDGsDxo0SN26ddP9+/dN3ffevXv6/vvvVaJEiWSH0mzfvl2lSpVSixYttGXLFlPnWbdunX744QfDepMmTUzdLz1ITEzUhg0b1LVrVxUrVkyTJk1K8gPSefPm1YYNG1IUUCFJOXPmVIUKFazWLBaLunXrpmvXrqWo99atW1W7dm2HQ3eS8sILLxjWPv30U1PfK229p3322WcpDgy7fPmyatasqT/++COlo6UKW+ESnp6eateunQunkTJnzqxmzZoZ1m2F7j0J6tevbxjOceXKFfXo0SPF58OYMWPUo0cPR8ZLkwoXLqzGjRtbrV29etXwuF69epk2Q2xsrNq0aaOSJUvqhx9+MPX6f+fOHXXr1s2wbvTYnSkyMlL169fXc889pzlz5ig+Pt603pcuXdLbb79tWH8a7y0kKSwsTIMGDVKhQoX03//+V3fu3LG53svLS4sWLVKtWrVSvGd6vF4OGzZMBQoU0IcffuhQyM2/WSwW9enTx/A9pUCBAoaBYU+rL774IsVBaVu3btUrr7xieL3z8vJK0c+QxYoVU8+ePQ3r58+fV6NGjWxeO4xYLBb95z//sRnUmSdPHvXr1y/ZPT09PVWvXj3Dev/+/XXy5Em75nzoyJEjqlatmi5cuJCi49MqHx8fDR482LAeHh6uJk2apOh7fPfuXbVo0UJHjx51ZEQAAAAAAAAAAAAAsBsBWAAAAAAAAAAAAACcYtWqVXrxxRdVuHBhffDBBwoNDXW45/79+1WnTh316dPHZjiGu7u7Ro4cmey+ZcqUUXBwsGF91KhR6tu3r11hD2FhYWrUqJFGjRr1j69nyJAh2T1SU4ECBTRhwgSba2bMmKHnnntOc+fOdSgYIi4uTmvWrFHPnj2VP39+vfnmmzp16pRdPSwWi3755RfVqlVLZcuW1eeff67jx4+neKb4+HiNHz9ezZo1M3ytlShRQnXq1EnxHunF9evXtWXLFn333Xdq3769goKCVK9ePc2cOVMPHjxI8viSJUtq48aNKlq0qENztG3b1rB2/Phx1a5dW4cPH052v+joaA0ePFgNGzZUVFTUP2rOOE9tBbhs2LBBdevW1bp16xQXF+fwXraeq+joaDVp0kRLly5Ndj+LxaKZM2cqJCTksec4rb+nJSQkaNasWYb1Ro0aKXv27C6c6C+dOnUyrP3xxx/at2+fC6dxrSxZstgMqPzpp5/08ssv68aNG8nuef78eXXo0EEDBgz4RyCfm5ubfHx8HJo3rejTp49d6/Ply6emTZuaPsfJkyfVt29f5cuXTz169NCaNWscet/av3+/XnjhBYWFhRmuMTPIy16hoaHq1KmTChQooP79+2vbtm0OBRauX79elSpVUkREhNW6p6enXn/99RT3Ty/u3bunffv2acaMGerdu7eKFSum0qVLa8SIEckKtMyUKZOWLl2q5s2bOzRHer1e3rx5U19++aUKFSqkli1bavbs2Q4FeYaHh+ull17SzJkzDdek5nmYlnh7e//j7/3791efPn2SDGx7KDExUePGjVODBg109+5dw3X9+/dXyZIlUzTjl19+qVy5chnWDxw4oJCQEG3atCnZPSMiItSyZUuNHj3a5rqxY8cqU6ZMye4r2T4PIyMjVadOHW3dujXZ/eLi4jR69GhVrVpVly5d+kctrd+3Jtcbb7yh8uXLG9b/+OMPVaxYUdu3b092z4MHD6py5cravHnzP77+79c8AAAAAAAAAAAAADiDZ2oPAAAAAAAAAAAAAODJdv78eQ0fPlzDhw9Xvnz5VK9ePdWsWVPly5fXs88+azOY4s6dOzp06JC2bt2q+fPn68CBA8nac+DAgapRo4Zdcw4dOlSvvPKKYf2HH37QqlWr9Pbbb+vll19WgQIFHltz9+5drV27VkuWLNH8+fOVkJDw2JqvvvpK/fv3t2u21NKuXTsdP35cgwcPNlxz7NgxdezYUR999JFeffVV1axZU9WqVVNAQIDhMTdu3NCBAwcUGhqqvXv3as2aNbp586Zpcx86dEiHDh3SJ598otKlS6tu3bp6/vnnFRISouDgYLm7W/+3ouLj4xUWFqaVK1dqypQpSYZwffXVV3JzczNtbmfr2rWrfH19ba5JTExUTEyMYmJidP36dUVEROjevXsp3rNNmzaaNm2aMmbMmOIeD7311lsaNWqUrl69arUeFhamkJAQde7cWa+//rpCQkLk6fnPX4uwWCzau3evli9frqlTp+ry5cuP9alYsaJKlCihOXPmODzz31WvXl2FCxfWmTNnrNY3b96szZs3y8vLS8WKFVPWrFnl7+9v+Brr1KmTYYhS5cqV1bhxY61evdpq/datW2rdurUaN26svn37qk6dOlbP2dOnT2v58uWaNWuW9u/f/1g9c+bMeueddzRkyBCjh53qVq5cqfDwcMO6rSAqZ2ratKkCAwMN3/umTp2q559/3sVTuc6wYcO0Zs0aw/rSpUu1fft29enTR6+++qpKlCjx2JrY2Fht2LBBy5Yt08yZM62GVA4YMEBLlizRuXPnTJ0/NTRt2lSFChXS2bNnk7W+R48e8vDwcNo8N27c0JQpUzRlyhQFBgaqcePGqlixop5//nk999xzNu8DwsPD9dtvv2nhwoX69ddfbe7TsmVLVatWzezx7RYeHq6xY8dq7Nixyp07txo1aqSQkBCFhISoXLlyhqEqFotF586d09q1azVnzhxt2bLF5j5vvvmmChYs6IyH4BQjR47U/Pnzba6xWCyKjY1VbGysoqKiFB4erlu3bqV4z9KlS2vx4sVW3xfsld6vlw8ePNDy5cu1fPlyeXt7q27duqpSpcqj+96goCDDY2/fvq3t27dr6dKlmjVrlmJiYgzX5s2bV/369TN19vTq448/fuxnox9//FFLly7VW2+9pVdeeUXFihV77LirV69q+fLlGjNmjA4dOmRzjzJlyujzzz9P8YxZsmTR3Llz1aBBA6s/j0p//Yxep04dNW3aVL1791a9evXk5+f3jzUWi0V//PGHZs2apYkTJ9oM7JL+Cklr06aN3fO2a9dOn3/+uWEQ4sWLF1W7dm29/PLL6tWrl6pVq2b1vyGEhYVp+fLlmj59uk6cOPFYvWDBgmrdurW+/fZbu2dMazw8PDRnzhw9//zzhufuuXPnVKNGDbVq1Uq9e/dWrVq1Hnve4uPjtX37dk2ePFnz5s177PWSM2dOtWvXTuPHj3faYwEAAAAAAAAAAAAAiQAsAAAAAAAAAAAAAC508eJFzZgxQzNmzJAkubm5KSgoSHnz5pW/v798fHx079493b59Wzdv3tSlS5dksVjs2qN9+/b63//+Z/ds7dq10+jRo7Vz507DNWfPntW7776rd999V7lz51a+fPmUKVMmRUVFKTIyUhEREYqLizM8vnnz5nr77bfTTQCWJH3yySeKjo7WV199ZXPd2bNn9b///U//+9//5OHhoZw5cypr1qzKmjWrPD09devWrUd/zAy7Ssrhw4d1+PDhR3/38fFR9uzZFRgYqMDAQHl7eys6Olo3btzQmTNnbH7//u61115Tq1atnDS1cyQVumGm/Pnza+TIkWrbtq1pPQMCAvTpp5+qT58+hmtiY2M1efJkTZ48WX5+fipWrJgCAwOVmJioyMhIhYeH686dO4bHBwYGas6cOfriiy9Mm/shd3d3ffzxx3r99ddtrouLi9PRo0eT7Fe5cmWb9eHDh2vDhg168OCB4ZrVq1dr9erV8vDwUPHixZUtWzZ5e3vr6tWrioiI0LVr1wyPdXNz06RJkxQdHZ3krKlp6tSphrWAgAC1aNHChdP8P29vb7388suaNGmS1fq8efM0cuRIw1Cd9O6FF15Q+/bttWDBAsM1V65c0bBhwzRs2DBlz55dBQsWVObMmRUdHf3ofI6NjTU8PiQkRF9++aWWLFnijIfgcu7u7urVq5c++OCDJNd6eHioR48eLpjqLzdv3tS8efM0b948SX/NmjVrVgUGBipr1qzKmDGjYmJidOfOHZ09e1ZRUVHJ6ps7d25NmDDBmaOnSHh4uKZPn67p06dL+uv5zpYt26PH7O/vr3v37unOnTs6ffp0st8nS5cunaJ72NT07/ssZ/Lz89OHH36o9957z2aArr2elOvlgwcPHs35UObMmR+9LgMDAxUfH6+7d+/q8uXLNsMh/87Dw0OzZs2yGWr3NOncubNCQ0O1dOnSf3w9MjJSn3zyiT755BPlzJlTRYsWVUBAgGJiYnThwgWdO3cuWT/XZs+eXYsXL3b4NV6nTh2NHz/e5n2z9FdQ6MqVK+Xl5aWiRYsqKChIXl5eioqK0p9//pnssLp69epp7NixKZrV3d1dI0aMULNmzQyfo8TERC1cuFALFy6Ut7e3ihcvrqxZs8rd3V1XrlxRRESEzZ8xfXx8NGfOHK1bty5FM6ZFzzzzjCZPnmwzzNVisWjp0qVaunSpfHx8VLx4ceXIkUNubm66fv26Tpw4YTVAVPrrvWvixIkKDQ111kMAAAAAAAAAAAAAgEcIwAIAAAAAAAAAAACQaiwWiyIiIhQREWFKv759+2rs2LFyc3Oz+1g3NzctXrxYlSpV0qVLl5JcHx4enuwPjktSlSpVNH/+/BTNltqGDx+ufPny6Z133klWQFRCQoLdz4+rxMbG6tKlS8n6Hhtp3rx5mgzkSAvy5s2rfv366c0335S/v7/p/Xv37q09e/bYDDV66N69ezp48GCye/v6+urXX39V8eLFHRnRptdee01LlizRihUrnLbHQ+XKldOkSZPUtWvXJNcmJCTo2LFjdvV/GHD2MAAmLbpy5YrN5/qll16Sn5+fCyf6p44dOxoGYN28eVNLly5Vhw4dXDyV60yePFlHjx5N1nl67do1mwEz/1asWDGtWLHC1JCctOD111/XkCFDbAb1SFKzZs2UN29eF031uMTERLu/Z/+WPXt2rVmzRkFBQSZO5hwJCQm6cuWKrly5kuIeRYsW1apVq1L1PSmt8vPz02uvvaZBgwYpf/78pvd/kq+XUVFRioqK0pkzZ1J0vIeHh6ZPn646deqYPFn6NmvWLNWoUcMwGCil7weZMmXSL7/8Ytq9aO/evRUXF6cBAwYoMTHR5tq4uDgdO3bM7te3JNWvX1/Lli2Tt7d3SkdV06ZNNXToUA0ZMiTJtQ8ePFBYWFiye7u7u2vOnDmqVq3aExWAJf11L3n58mUNHDgwybWxsbF2BRZ+8cUXatmyJQFYAAAAAAAAAAAAAFzCPbUHAAAAAAAAAAAAAPBkKFGiRKqFO2XPnl0LFy7Ud999Jw8PjxT3yZMnj1asWKE8efKYON1fgUlr1qxJ16EGb731ln7//XeVLFnSZXv6+vq6bK/kcHd313/+8x8tWbJEXl5eqT1OmuHp6alGjRpp1qxZOnPmjAYOHOiU8KuHfvzxR7Vq1crUnrly5dKGDRtUtWpVU/v+m5ubmxYuXKi2bds6dZ+HunTpouHDh8vd3bxfD/Hy8tLEiRP1n//8x7SezjJr1iyboX0dO3Z04TSPq1mzps0wl+QEvaVnAQEB+vXXXxUcHGxq38qVK2vbtm3KmTOnqX3Tghw5cujll19Ocl2vXr1cMI3zVKhQQbt27VKZMmVSexSXqF+/vnbu3Kl8+fKl9ihpynPPPacRI0bowoULGj9+vFPCrx562q+X1uTMmVMrV65Up06dUnuUNMff31/r1q1TlSpVTOuZJ08ebdq0SZUrVzatpyS9/fbbWrZsmbJkyWJq34f69etnWnjf4MGD9eabb5ow1f/LmDGjli1bpjZt2pjaNy15//339eOPP8rT07x/D/nzzz/XBx98YFo/AAAAAAAAAAAAAEgKAVgAAAAAAAAAAAAATDFz5kxdvnxZP/74oxo3bixvb2+n7xkYGKiPP/5Yp06dMi1Qply5cgoNDVXdunUd7hUQEKCvv/5aP//8szJmzGjCdKkrJCREhw4d0ujRo50WLOLm5qbatWtr2rRp+vPPP5N1TPXq1dWqVSsFBAQ4ZSZJqlq1qnbv3q1Ro0aZ+uHi9KpYsWLq3r27ZsyYocjISK1evVqdOnVySTCYl5eXlixZouHDhzsUePdQq1attHfvXtMDB4z4+flp4cKFWr58udMDtyRp0KBBWrlypbJly+Zwr7Jly2rLli3q2bOnCZM537Rp0wxrQUFBql+/vguneZybm5s6dOhgWN+wYYPOnz/vwolcL3/+/NqzZ49eeeUVh3t5eXlp0KBB2rhxo4KCgkyYLm3q27evzXrBggXVqFEj0/f18/PTW2+9pcKFC5ve+6Fs2bLp+++/1969e1WkSBGn7ZMc+fLl0+uvv67cuXM7bY/8+fNr/vz5WrdunbJnz+60fdKLnDlzqnXr1ho9erROnjypffv26f3331fWrFldsn96uV6+/vrrCgkJcVrwsKenpwYMGKATJ06oYcOGTtnjSZAtWzatX79e/fr1czg4rWXLljpw4IAqVKhg0nT/1KxZMx09elTt27c37XUTHBys9evXa8yYMab+bDR+/HjNmDHDlECtmjVravfu3WrWrJkJk6VtvXr10tatW1W8eHGH+gQFBWnJkiX66KOPTJoMAAAAAAAAAAAAAJKH38oFAAAAAAAAAAAAYJpcuXKpV69e6tWrl+7cuaOtW7dq27Zt2rZtm/bs2aOYmBiH9/D19VWDBg3Upk0btW3bVr6+viZM/k85c+bUunXrtHTpUn311Vfas2ePXccHBgbq9ddf14ABA5Q3b97H6kYfrM+cOXOK5nUlLy8v9e/fX71799aCBQs0c+ZMbd68WfHx8SnuGRgYqDp16qh+/fpq2rSpChYsaNfxISEhWrp0qWJjY7V582atXr1a27dv14EDB/TgwYMUzxUQEKCXXnpJnTp1UoMGDZwWNJBWeHh4yMfHR97e3sqQIYOyZs2qnDlzKigoSHnz5lXJkiUVHBysZ555JtWDOtzc3DRo0CC1atVKX331lebMmWPX99rd3V1NmjTRO++8YzXsLmPGjIbnqRmhW5LUvHlzNW/eXOfOndO6deu0e/dunThxQhcuXND169d17949xcXFmbJXo0aNdPz4cY0bN07jx4/X9evX7Tq+fPny6tevnzp37vxYyEGGDBkMn6sMGTKkeGZH7dq1S2FhYYb19u3bm/a9dETHjh01YsQIq7XExERNmzZNQ4YMcfFUrhUQEKB58+bp9ddf1/Dhw7V+/Xq7jvfz81OnTp307rvvqkSJEo/Vs2bNqrt371r9enpUrVo1FS9e3DAksmfPng6HsVjj7e2tcePGady4cTpy5IhWrlypzZs3a+fOnbp27ZpDvatWrapOnTqpQ4cOypIlizkDOyh79uyaPHmyLBaL9u/fr5UrV2rLli3avXu3bt++neK+Hh4eqlevnjp27Oi0+9i0xN3dXd7e3vLx8ZGPj48yZcqkoKAg5cyZU7lz51bx4sUVHBysUqVK2X3/5wzp4Xr59ttv6+2331ZERIRWrlyp9evXa8eOHTpz5oxds/5bsWLF1LFjR3Xt2tWpQXdPEl9fX40ZM0adO3fW//73Py1btkyJiYnJPr5mzZr6+OOP1aBBAydO+ZdcuXJp/vz5+uijjzRq1CgtXrxYd+7csauHm5ubqlevrjfffFNt27Z1yrVGkrp06aK6detq5MiRmjRpkqKjo+06vkaNGhowYIBat279WM3Pz8/wPHRFkK8zVa5cWWFhYfrhhx/07bff6uzZs8k+NmvWrOrTp4/eeeeddHt/BAAAAAAAAAAAACB9c7NYLJbUHgIAAAAAAAAAAADAk+/Bgwc6dOiQjh8/rj///FN//vmnTp06pZs3b+rOnTu6c+eOoqOj5eHhIW9vb2XKlEk5cuRQ7ty5VaxYMZUsWVKVKlVShQoV5O3t7dLZDxw4oA0bNmjz5s06deqUrl+/rhs3bkj6K7gjR44cKlGihEqXLq369eurevXqLp8xNd28eVNbtmzRnj17dPjwYZ07d06XL19WdHS07t+//+j7mTFjRmXOnFmFCxdWcHCwgoODVbp0aZUtW9YpH6COiYnRvn37dODAAZ06dUqnTp3SmTNndPPmTd29e1fR0dFyd3dXpkyZlClTJgUGBqpkyZIqX768KlSooCpVqsjPz8/0uWC+K1eu6LffftOmTZu0f/9+Xbt2TdevX9f9+/fl7++vTJkyqUiRIgoODlb16tXVsGFDBQUFpfbYqeLevXvatGmTNm3apB07digiIkLXr1/X7du3lSFDBgUEBCh//vyP3nMbNmyo4ODg1B4bT5Hjx49r/fr12rx5s44ePfrompuQkKCAgABlzZpVxYsX1zPPPKO6deuqdu3a8vf3T+2xXeb69evKmzevYmNjH6t5enrq/Pnzyp07t0tnOnHihPbs2aMTJ048ut5GRkbq7t27unv3rh48eKCAgABlzpxZmTJlUoECBVSuXDmVL19elStXVoECBVw6ryMSExMVFhamvXv36uTJk48e79WrVx893oSEBGXMmFGZMmV6dN9Tvnx5lS9fXlWrVlXOnDlT+2EgGdLb9TIyMlI7d+7U0aNHH70uL168qDt37uju3bu6d++e/Pz8Ht33BgUFqWzZsipfvrxCQkJUtmzZVJv9SREREaEVK1Zo69atCgsL0/nz53Xnzh09ePBA/v7+yp07t0qVKqXq1aurWbNmKlmyZKrNev/+fW3cuFHbtm3TH3/8oVOnTunKlSuKjo5WQkKCfH19FRgYqEKFCik4OFhVq1ZV/fr1lS9fPpfOeevWLW3YsEGbNm3S7t27deXKFd24cUN3796Vr6+vMmXKpIIFC6pkyZKqUqWKGjVqlCbC9FJbYmLio2DovXv36sSJE7px44ZiY2Pl5+enLFmyqESJEipbtqwaNmyoOnXqyMfHJ7XHBgAAAAAAAAAAAPAUIwALAAAAAAAAAAAAAAAAANKBb7/9Vu+8847VWuvWrbV48WIXTwQAAAAAAAAAAAAAAAAAKWf+P6ELAAAAAAAAAAAAAAAAADDd5MmTDWu9evVy4SQAAAAAAAAAAAAAAAAA4Dg3i8ViSe0hAAAAAAAAAAAAAAAAAADGtmzZolq1almtFSlSRCdPnpSbm5uLpwIAAAAAAAAAAAAAAACAlHNP7QEAAAAAAAAAAAAAAAAAALb98MMPhrWePXsSfgUAAAAAAAAAAAAAAAAg3XGzWCyW1B4CAAAAAAAAAAAAAAAAAGDd2bNnVbx4ccXHxz9W8/b21oULF5QzZ85UmAwAAAAAAAAAAAAAAAAAUs49tQcAAAAAAAAAAAAAAAAAABj74osvrIZfSVL79u0JvwIAAAAAAAAAAAAAAACQLrlZLBZLag8BAAAAAAAAAAAAAAAAAHjcnj17VLlyZSUmJlqth4aGqnz58q4dCgAAAAAAAAAAAAAAAABM4J7aAwAAAAAAAAAAAAAAAAAAHnf16lV17NjRMPyqWbNmhF8BAAAAAAAAAAAAAAAASLcIwAIAAAAAAAAAAAAAAACANCQuLk4LFixQSEiI/vzzT6tr3N3d9dlnn7l4MgAAAAAAAAAAAAAAAAAwj2dqDwAAAAAAAAAAAAAAAAAAT6ORI0dq3bp1j/6ekJCgmzdv6siRI7p//77NY7t166by5cs7eUIAAAAAAAAAAAAAAAAAcB4CsAAAAAAAAAAAAAAAAAAgFRw6dEhr1qyx+7jcuXNrxIgRTpgIAAAAAAAAAAAAAAAAAFzHPbUHAAAAAAAAAAAAAAAAAAAkj5eXl+bOnats2bKl9igAAAAAAAAAAAAAAAAA4BACsAAAAAAAAAAAAAAAAAAgHfD19dW8efNUu3bt1B4FAAAAAAAAAAAAAAAAABxGABYAAAAAAAAAAAAAAAAApHF169bVgQMH1KZNm9QeBQAAAAAAAAAAAAAAAABM4ZnaAwAAAAAAAAAAAAAAAAAA/p+/v78CAwNVokQJValSRe3bt1eZMmVSeywAAAAAAAAAAAAAAAAAMJWbxWKxpPYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeHq4p/YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/8fefUdLVV6P496X3hGQqkiJFSWAWEBpdlFRFGxYwC7G8jFGk2CPaIKmmNhiiUqwIDawiwVEEaUrRUFUUJSiNGlS5/dHfvgV51yYuWW4wPOsddcK+5z3PXvmnDkzy7OzX7YvGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAAAAAAAAAAAAAAAAAAAACQUxpgAQAAAAAAAAAAAAAAAAAAAAAAkFMaYAEAAAAAAAAAAAAAAAAAAAAAAJBTGmABAAAARWL48OGRl5eX9gewtenUqVPaveymm27a0mlBidSrV6+0z0uvXr22dFoAAAAAAAAAadQ3bTvUdrClNW7cOO0afPTRR7doTiWlhuPRRx9Ny6Nx48Y5zwO2Bn6bAAAA/E+ZLZ0AAAAAAAAAAAAAAAAAALB1mD17dkyePDkWLlwYixcvjh9++CHKly8flStXjqpVq0bDhg2jSZMm0aBBA81cAAAAANgkDbAAAAAoFkuWLIm77rprS6fxkx122CEuvfTSLZ0GOTJr1qwYMGBAVmPy8vKiUqVKUb169ahWrVo0aNAgWrRoEZUrVy6mLAG2bwX5rZCXlxcVK1aMHXbYIapXrx4NGjSIli1bRsWKFYspSwAAAAAAAGBbpb6JLalx48Yxa9asjWKNGjWKmTNnFulxZs6cGU2aNEmL9+zZMx599NEiPRbbtrVr18aLL74YAwYMiFGjRsXcuXMzGlehQoX49a9/Hfvtt1/sv//+0alTp2jcuHHxJgvbiQEDBqR9l2xO2bJlo3r16lG9evWoVatW/PrXv4569eoVU4YAAACQGQ2wAAAAKBaLFi2K66+/fkun8ZNGjRptsQKxO++8MxYvXrxRrGvXrtGyZcstks/24MsvvyyS669UqVKx++67x2GHHRbnnntu7LvvvkWQHQARRfdboUyZMrHPPvvEUUcdFRdeeGE0bdq0CLKDLWf48OExfPjwjWKNGzeOXr16bZF8AAAAAAAAtlXqm/4f9U1sbzyXzdz69evj7rvvjn79+sW3336b9fgff/wxRo8eHaNHj/4ptscee8TRRx8dt99+e5QrV64o04Xtyn/+85945513Cj3PzjvvHAcddFCce+65ceSRR0ZeXl4RZAdbxuLFi+POO+9Mi//f//1f7LDDDjnPBwAAyIwGWAAAAFDM7rzzzrQVlho3bqxAbCuwfv36+PTTT+PTTz+Ne+65J1q3bh3//ve/Y7/99tvSqQHw/1u7dm1MnDgxJk6cGLfffnsce+yxcffdd0ejRo22dGpQIMOHD4+bb755o1jHjh0VWgMAAAAAAFBs1DexvfFcNjMzZsyIXr16xciRI4t03mnTpsW0adPipptu0gALSoDZs2fHoEGDYtCgQdG0adPo169fdO/efUunBQWyePHitO/4iIhevXppgAUAACVYqS2dAAAAAMDWYty4cdGmTZsStfonAP9PKpWKl156KX7961/H448/vqXTAQAAAAAAAADYKk2fPj3at29f5M2vgJLtiy++iJNPPjnOPvvsWL58+ZZOBwAAgO1EmS2dAAAAAMDWZN26ddG3b9+IiLjlllu2cDYAJPnhhx/irLPOioiIM844YwtnAwAAAAAAAACw9fjmm2/i0EMPjblz5yZur1y5cnTp0iWOOOKI+PWvfx0NGzaMqlWrRpkyZWLhwoWxcOHCmDFjRowePTrGjBkT7777bqxcuTLHrwIojAEDBsT3338fL7zwQpQp4/+GDAAAQPEqtaUTAAAAYNvUuHHjSKVSBf5L0rFjxwLPN3PmzNy+AZRIN9544yavkx9++CFmzpwZL7zwQlx55ZVRs2bNfOfq27dvPPPMMznMHmD70LNnz03eq5cuXRpffvllPPfcc3HRRRdFxYoVE+dJpVJxzjnnWIkUAAAAAAAASKS+CbZew4cPT/sM3XTTTVs6rW3Gb3/72/jmm2/S4mXLlo1rrrkmvv3223jyySfj3HPPjf322y/q1q0blSpVinLlykW9evWiWbNmcfzxx0ffvn3j9ddfj++++y6eeuqpOOWUU6J8+fJb4BXB9mVTvzdWr14dc+bMiZEjR8af//zn2HXXXfOd59VXX40rrrgih5kDAACwvdIACwAAAOD/V7Vq1WjUqFF06dIl/v73v8fXX38dF110Ub77//GPf4y1a9fmMEMAqlSpEo0bN44TTzwx/v3vf8esWbPiuOOOS9x3zZo1ceWVV+Y4QwAAAAAAAACArdOIESNi0KBBafFKlSrFiy++GP369Ytq1aplNWflypXjlFNOiaeeeiq++uqruPnmm6NevXpFlTKQhbJly0a9evXioIMOij/84Q8xbdq0+Ne//hXlypVL3P/f//53TJo0KcdZAgAAsL3RAAsAAAAgH5UqVYp///vfcc011yRunzFjRgwcODDHWQHwc7Vr144XXnghevTokbh9zJgxMXjw4NwmBQAAAAAAAACwFXr44YcT43//+9/jqKOOKvT8derUiRtuuCFmzZqVdSMtoOiVKlUqLrvsshg8eHCUKpX+fzdev359XH/99VsgMwAAALYnGmABAAAAbMaf//znaNasWeK2V155JcfZAPBLeXl58dBDD0WjRo0Stz/11FM5zggAAAAAAAAAYOuybt26eOmll9LijRs3jgsvvLBIj1WuXLnEZjvAltG5c+f43e9+l7jtlVdeiWXLluU4IwAAALYn/isRAAAAwGaUKlUqfvvb3yZue/PNNyOVSuU4IwB+qWLFinH11VcnbnvrrbfcqwEAAAAAAAAANmH69OmxYMGCtPgJJ5wQeXl5WyAjIJeuvvrqqFixYlp8zZo1MXz48NwnBAAAwHajzJZOAAAAAHJp8uTJ8dJLL8X7778f06dPjzlz5sTy5cujbNmyUb169WjcuHG0bNkyDjnkkDjuuOOicuXKWR9jwIABMWvWrJ/+vWTJkrR9XnzxxZg9e3ZG81122WVRvXr1jPb9/vvvY/jw4TFu3Lj49NNPfypIWbp0aaxduzZq1KgRNWvWjPr160fbtm2jffv20b59+6hUqVJmL247dsQRRyTGv/vuu1i0aFHUrFmz0MeYOHFivPbaa/HBBx/E9OnT49tvv43ly5dHqVKlonr16tGoUaNo1apVHHroodGlS5cCXZ9bo6VLl8Yrr7wS77zzTnz00Ucxc+bMWLx4caxatSoqVqwYdevWjd133z0OOuigOOGEE6J58+Y5y23OnDnxzDPPxJtvvhmTJ0+O+fPnx6pVq6JWrVpRp06daN26dXTu3DmOOeaY7eZ8bVCSz1tRWb58eQwZMiReffXV+Pjjj+Prr7+OpUuXRrly5aJu3bqxzz77xBFHHBGnn3567LjjjlnNvXbt2rjtttti/fr1G8XbtWsXhx9+eJG9hieeeCKmT5++Uax27drxm9/8psiOkUtdu3aNSy+9NC3+3XffxYwZM2K33XYr1PyTJ0+OF154IUaOHBnTpk2L+fPnx4oVK6JatWqx++67x9133x377bdfRnPNnTs3Bg8eHO+++25MnTo1vvrqq1i2bFmkUqmoWrVqNGzYMJo1axbt27ePrl27Rv369QuV++ZyefLJJ+ONN96IKVOmxHfffRdr166NqlWr/vTb6Ljjjotjjz02ypUrV2x5bC0mTpwYQ4cOjQ8//DBmzJgR33zzTSxbtizWr18fVatWjRo1asTuu+8ezZo1i3bt2sWhhx4a1apVy3e+jz/+OF544YWf/j1ixIi0fWbNmhV9+/bNKL8OHTpEhw4dsn9hAAAAAAAAlAjqm9Q3ba1WrFgRQ4YMiVdeeSUmTpwYX3/9dSxfvjyqV68etWvXjj322CM6d+4cXbp0iQYNGuQ0ty35XHbOnDkxZMiQGDduXEycODHmzp0bP/zwQyxfvjzKly8flSpV+qk2rHHjxtG8efNo06ZNtGrVKsqXL5/ZCywic+fOTYw3adIkp3lkKxf3zVzZ3mo43n///Rg8eHB8+OGHMX369Fi8eHGsW7cudthhh9htt92iffv20b1794zrcX7u2WefjUmTJm0Uq1KlSvzud78rqvRj6tSpMWjQoLT4BRdcEDvttFORHSdXdtxxxzj44IPjzTffTNs2atSoOO644wo1/6JFi+KFF16It956KyZPnhxfffVVLF26NEqXLh0NGzaMXr16xR//+MeM5lq9enUMHTo03nrrrRg3blx88cUXsWjRop/qE+vUqRO77rprtGnTJjp37hxt2rQpVO6bsnbt2njhhRfixRdfjHHjxsWsWbNi+fLlUalSpahTp040a9YsDjvssOjevftWeV0Ute+//z5efvnleP/992PSpEnx1VdfxeLFi+PHH3+MSpUqRbVq1WKXXXaJZs2axb777htHHnlk7Lrrrpuc8+ff34sXL07c5+67744ddthhs/ntsMMOiTWIAABAMUsBAABACRQRaX8dO3Ys8HwvvfRSav/990+cN7+/ypUrp6688srU/PnzszpWx44dszrO5v6+/PLLTR5v2rRpqZtuuinVokWLVF5eXtbz16xZM3XTTTelFi5cWOD3N5VKpYYNG5Y4/5aQXy433nhjoeatUKFC4rzTpk0r8Jzr1q1L9e/fP7XPPvtkdd6qVKmSuuaaa1KLFi3K+Fhz5sxJlS5dOm2uvn37Fjj/X1q9enWqdu3aacfo2bNn1nN9/vnnqfPPPz9VsWLFrN6bAw88MDV06NACv4ZMruWFCxemLr744lS5cuUyyqlu3bqpBx54ILVu3boC5XTjjTcW6T1xg6Rchw0bVqg5t9R5K0pJ9/Gf3z/Wrl2buv3221O1atXK6LWVL18+deWVV6aWLFmSVR5HHXVU2lx77713kb3OH374IVW5cuW0Y1x99dVFdoxN+fLLLxPfr4LcL35u5513Tpz33XffTdz/kUceSdu3UaNGG+3z4Ycfpjp06LDZc/38889vNr9JkyalunXrlng/zu+vVKlSqRNPPDH18ccfF+q9+aUFCxakLrnkklTZsmUzymOnnXZKPfjggxvN0bNnzwKfw/yugc399tmcwuSUnx9//DF17733pvbYY4+s7m0RkSpTpkzqyCOPTD399NOp1atXp82ddA0W5q+wv3cAAAAAAADITNKzGvVNydQ3pWvUqNFmn1UXhaJ4Np80/uf1JWvXrk397W9/S+24444Znc/y5cunrrnmmqzrKH5uc7Udv7QlnstOmDAhdcwxx2RVH/DzvypVqqR69OiReueddwr8PmVr4MCBibncd999OcshG7m8b/5S0mf4kUceKfB8W7qGoyhlUovz3nvvpfbbb7+Mz1v79u1TY8eOzSqPJ598MnGuMWPGFNlrPeuss9Lmb9CgQWrNmjVFdoxNye/7vDCuu+66xDnPO++8fMds7nti0aJFqcsvvzxVqVKlTZ7nE044YbP5LV26NPWnP/0p49q9DX+77757qn///qn169cX6v35pf/+97/51qv98q9s2bKp8847L7VgwYKfxhf2t0m234eZKK7fS++9917q+OOPL9D34q677pq69dZbU99++23i3NnOt6m/4vg9BgAAbF6pAAAAgG3YokWL4sQTT4zjjjsuxowZk9XY5cuXxz/+8Y/Yc889E1doKgmuuOKK2GOPPeKmm26Kjz76KFKpVNZzLFy4MG666abYdddd4+233y6GLLcdNWvWTIwvWLCgQPNNmjQpDjjggOjZs2dMnjw5q7HLli2L22+/PZo1a5a42laSevXqxVFHHZUW/+9//5vVsTfllVdeie+++y4t3qtXr4znWLduXdxyyy3RrFmzeOihh2LlypVZ5fDhhx/GkUceGT179owVK1ZkNTYTo0aNimbNmsW///3vWL16dUZj5s2bFxdeeGGcfvrpsWbNmiLPqSQo6eetqCxYsCA6dOgQ11xzTcaf/VWrVsU//vGPaNWqVUycODHjY1188cVpsSlTpsT777+f8Ryb8sQTT8Ty5cs3iuXl5cUFF1xQJPNvKbVr106Mf//99wWa7+abb462bdsmrv6ajfXr18cNN9wQrVq1imeffTbWrVuX1djnn38+9t1337juuuti/fr1hcolImL06NHRsmXLuPfeezO+L33zzTdxwQUXRNeuXbP+jG/Nhg0bFvvss09ccsklMW3atKzHr127NoYOHRonn3xyPPHEE8WQIQAAAAAAAFsz9U2bp76p5Jo7d260a9currrqqoyfy69atSpuv/32OOigg2LOnDnFnOGWcd1118V+++0Xr7zySlb1AT+3bNmyeOKJJ+Jf//pXEWeXvzJlyiTGv/nmm5zlkIlt7b65vdVw3HbbbdGhQ4cYO3ZsxmPefffdaNOmTfztb3/LeMxJJ50UderUSYs/8MADGc+xKYsXL45nnnkmLX7OOefk+1naGhR17dWHH34YzZo1i3/961+Frgt85513Yp999okbbrgh67rd6dOnR8+ePaNDhw4xa9asQuUR8b97Sbdu3eLss8+O2bNnZzRmzZo18Z///Cf23nvvGDduXKFz2Fp8//33ceqpp0a7du3ihRdeKND34owZM+Laa6+NHj16FEOGAABASaABFgAAANusWbNmxQEHHBCDBw8u1DwLFy6MU089NW655ZaiSawIzZs3r8jmWrhwYRx11FHx0EMPFdmc25r8Hr6XLVs267meeeaZaNOmTaEfYs+ZMyeOPvroePTRRzPaP6kR1fTp02PUqFGFymOD/v37p8WaNGkSHTt2zGj8Dz/8EEcffXTccMMNsWrVqkLl8t///jc6duwYixYtKtQ8P/fWW2/FoYceGnPnzi3Q+EGDBm2TD+BL+nkrKkuWLIlOnToVuAHVF198EZ06dYoPPvggo/27dOkSO++8c1r8wQcfLNDxfympmKtTp06x2267Fcn8W0qFChUS4wUp9rv88svjpptuKnTDqVWrVsUJJ5wQt9xyS6xdu7bA86xduzZuvfXWOP744wv1WRsxYkQcdthh8fXXXxdo/JAhQ+K4447bZhv6/Vy/fv3i8MMPjxkzZhTJfAUp5gcAAAAAAGDbpb4pO+qbSpbZs2dH27ZtM66D+KUpU6ZE+/btY8mSJUWc2ZZ1ySWXxK233lrgxldb0o477pgYf/3113OcSf62tfvm9lbDccMNN8S1115boFqctWvXxu9+97v4wx/+kNH+5cqVi3PPPTct/uSTT8ayZcuyPv4vDRgwIK0eqVSpUnH++ecXeu4tqShrr0aOHBmHHHJIkTQ77N+/fxx++OGFbl713nvvxQEHHBDjx48v8BzLli2LI444Ip577rkCjZ87d24ccsghWS2mubWaMGFCtGrVqsgaDqq9AgCAbdfW20oaAAAANmHhwoVx6KGHxhdffJHvPvvuu2/8+te/jgYNGsTy5ctj9uzZ8fbbb+fbdOWGG26ISpUqxVVXXVVcaReZWrVqRcuWLWOXXXaJHXbYIapVqxYrV66MRYsWxeTJk2PixImJD6PXrl0bvXv3jn322SfatGmzBTIvuX788cd8i61q1qyZ1VwDBw6MM888M98ip4oVK0abNm1it912i1q1akUqlYp58+bFqFGj4tNPP03bf926dXHeeedF3bp1o3Pnzps89vHHHx81a9aMhQsXbhTv379/tG3bNqvX8UsLFiyIl19+OS1+9tlnR15e3mbHL1u2LI488sj48MMP892nSZMm0bZt26hTp05Uq1YtFi5cGF9++WUMHz48li9fnrb/2LFj4/jjj4/hw4dH6dKls3tBvzBlypTo2rVr/PjjjxvF99hjjzjwwAOjTp06Ub58+Zg/f36MHDkypk6dmjjPM888E0888cQ20wirpJ+3onTWWWfF5MmTN4qVL18+DjnkkGjSpEnUqlUr5s+fH9OnT49333038TO+ZMmS6NKlS4wZMyYaN268yeOVLl06zj///Ljppps2ig8aNCj++c9/RrVq1Qr8WsaPH59YxHPhhRcWeM6S4pf3tw2yvVc/8MADcdddd6XFmzdvHq1atYq6detGhQoV4vvvv48JEybE6NGj853rtNNOi5deeinf7Y0aNYqDDz44dtppp8jLy4tvvvkmRo0ale/vmJdffjlOOeWUGDx4cEb315/77LPP4oQTTsi3kG/DNd20adOoWbNmzJs3L6ZNmxbvvffeRsWHb7/9dvzud7/L6thbmz59+sSf//znTe7TrFmzaNGiRdSpUyeqV68eS5YsiQULFsSkSZNiypQphWp4BgAAAAAAwLZNfZP6pq3Z8uXL4+ijj46ZM2duFK9Tp0507NgxGjRoENWrV//p+enIkSMT6yg+//zzuPrqqxMX8doaPfHEE3Hfffflu71p06bRokWLaNSoUVSpUiVKlSoVS5YsiUWLFsWnn34aU6ZMSaylyZVdd901MT5mzJh44YUX4vjjj89xRhvb1u6b21sNx3PPPZfYcOzXv/51tGrVKnbaaadYsWLFT+csvxqgfv36RcOGDeM3v/nNZo954YUXxu23377R+7Vs2bIYOHBgoRtVJS1ieMQRR2y2JqykK6raqzlz5sRll12W9l1eq1at6NSpUzRo0CBq1qwZy5cvj+nTp8c777yT71zPPfdcnHvuufk2TqtYsWIceuih0bhx46hRo0a+n5UN5s+fH0cccUSMGjUqdt9996xeVyqVitNPP32Ti87+/Jpevnx5fP311zFs2LCN7kNLly6N448/PrE+bVsxZsyYOOKIIzbZ6LJGjRrRrl27qF+/ftSpUydWr179U33p2LFjt7kmmQAAwCakAAAAoASKiLS/jh07Zjz+lFNOSZwjIlInn3xyatq0aYnjVq1alXr88cdTdevWTRxbtmzZ1Lhx47J6LY0aNUqb55FHHslqjvyceuqpqYhIlSlTJnX44Yen7rvvvtRXX3212XErVqxIPfLII6nddtst8XU2btw4tWzZsqxyGTZsWOJcW0J+udx4440FnvPtt99OnLNy5cqpdevWZTzPBx98kCpfvnziXPvss0/qscceS61atSrf8VOnTk2deOKJiePr1q2bmj9//mZzuOSSS9LG7rDDDqkff/wx49eR5K677kqbNy8vL/X5559vduz69etTXbt2TXxd5cuXT1188cWp6dOn5zv+xx9/TP373/9O1alTJ3GOm2++OePXkd/106xZs41eV48ePfK9l6RSqdSYMWNSrVu3TpyrTp06Wb3fN954Y6HuiflJym3YsGEZjy9J560odezYcZPnf8Pru+2221KLFi1KnGPOnDmpK6+8MlWqVKnE13bEEUdklMvs2bNTZcqUSRt/zz33FOo1XnTRRWlz7rjjjpu8/xS1L7/8MvG96dmzZ4HnXLVqVapixYqJ844dOzZxzCOPPJK2b/Xq1VNVqlT56d+lSpVKnX/++amZM2fme+yZM2emvvjii7T4Pffck5hPRKRatmyZGj58eGr9+vWJc7777rv53kciIvWvf/0rq/dn/fr1qQ4dOuT7md3UNf3NN9+kLr/88lReXt5G98K99tqrwOcwv2vgyy+/zOp1/VLPnj0LfV098MAD+b7vFStWTF177bWbzXPFihWpwYMHp0499dSfrstMfgMW1z0fAAAAAACAopX0LEl9Uzr1TcmS3vNGjRoV+XGK4tl80vhf1lG0adMmNWzYsHyff3/zzTep0047LXGuvLy8rK/ZpNqObGrDiuO57OrVq1P169fP9/2eOnXqZudYt25daty4cakbbrghtffee6ciItWtW7dC5ZWt3XffPfE1VK1aNfXiiy/mNJdf2pbumyWthqMoJdXi1KpVK61GrHPnzqnJkycnzrF69erUwIEDU/Xq1cu3dmPGjBkZ5XP00Uenjd9///0L9RpHjRqVmNezzz5bqHmzlXQvLOz32nnnnZc456WXXprvmKT9d9ppp43+3aJFi9TQoUPzrbddtWpVauTIkWnx2bNnp2rUqJF4jMqVK6fuvPPO1A8//JA45zfffJO64oorNvqs/PzvwAMPTK1duzar9+ehhx7K9z60qWt6w33ol5+DDff6gp7Dwn4fJimK30tff/11vvfciEgdeeSRqXfeeWeT7//69etTEydOTP3hD39INW7cOOPv6uKqSQMAAIpXqQAAAIBtzJNPPhmDBg1Ki5cqVSoefvjhGDRoUL4r9pQrVy569OgRkydPjrZt26ZtX7NmTZx11lnx448/FnneBVG1atW48sor48svv4w33ngjLr744mjYsOFmx1WsWDF69eoVH330UZxzzjlp22fOnBn9+/cvjpS3Wk888URivE2bNlGqVGb/iWXFihXRo0ePWLVqVdq23/3udzFhwoQ444wzoly5cvnOsddee8Vzzz0X99xzT9px582bFxdffPFm8+jVq1dabPHixTFkyJDNv4hNSLpm2rdvH02bNt3s2Pvvvz8GDx6cFm/atGm8//77cd9998Vuu+2W7/jy5cvHRRddFBMnToxWrVqlbb/llltiwoQJm81jU6ZOnRoR//v8DB48OB5//PFNrv613377xTvvvBPt2rVL2zZ//vzE17u12RrOW1HZcP4j/rda6ZgxY+KPf/xj7LDDDon716tXL/7+97/H0KFDo2LFimnb33jjjXjsscc2e9yddtopunTpkhZPWkEwU8uXL0+8p/Xs2XOT95+twYcffpi4AnCpUqUyuhdtsGTJkp9W16xcuXIMHTo0HnzwwWjUqFG+Yxo1ahRNmjTZKDZjxoy45pprEve/8MILY/To0dGxY8fIy8tL3Kddu3bxwQcfxCWXXJK4/fe//31MmzYtk5cUEREPP/xwjBgxIi2eyTXdoEGD+Oc//xmvvPJKlC9fPiIiUqlUfPLJJxkff2sxffr0uOKKKxK3tWnTJqZPnx59+/bd7IqdFStWjBNOOCEGDhwYM2fOjKuvvjqqVKlSDBkDAAAAAACwtVHfpL5pa/fzOoo+ffrEqFGjolOnTvk+/27QoEE8+eSTceWVV6ZtS6VShaqDKCmGDRsWc+bMSYvfc8898eijj8Zee+212TlKlSoV++67b9x8880xefLkGDp0aLRv37440s3XKaeckhhfunRpdOnSJTp37hyvvPJKrFmzJqd5bWv3ze2thmPBggUxf/78n/7dr1+/eOWVV2LvvfdO3L9s2bJx6qmnxuTJk6NNmzZp21euXJlRrWRERO/evdNiY8aMiY8++ijD7NMl3bPq1asXxx9/fIHnLCmGDx+eGN91112zmuebb7756X9fcsklMW7cuDjiiCPyrbctV65cHHTQQWnx8847LxYtWpQWb9q0aXz88cdxxRVXRNWqVRPnbNCgQdx555351vB9+OGHcdttt2X6kuK7777LtxZsc9f0z+9D++2330/xKVOmZHz8rUUqlYpevXrFvHnz0rZVrlw5nn/++Xj99dejQ4cOUbp06XznycvLixYtWsSf//znmDFjRjz22GPRrFmz4kwdAADYgjTAAgAAYJuybt26+P3vf5+47Z///GdiMVSSHXfcMV566aXEopOpU6fGf/7zn0LlWVTuv//++Pvf/x4777xzgcZXrFgx/vOf/0T37t3Ttt1zzz2FTW+bMWnSpHwL5nr06JHxPH/+85/jiy++SIvfdtttcccdd0SZMmUynuuSSy6Jv/3tb2nx559/frOFLPvvv3/iQ/ZHH3004+P/0tSpU2Ps2LFp8aRmW7+0cOHC+MMf/pAW32WXXWLkyJGx7777ZpxH/fr14+23305rSrJ27dro169fxvPkJy8vL55//vmMC1UqV64cAwYMSCye2NqLMLem81aUKlWqFC+//HI0b948o/0PO+ywePLJJxMLPK+55pqMigGTirUmTpyY+JnLxMCBA2Pp0qVp8QsuuKBA85Uk9957b2K8VatWUaNGjaznK1WqVLz44otx2GGHFSifG264IZYvX54WP/nkk+O+++6LsmXLbnaOMmXKxN133x2nn3562raVK1fGddddl1Euq1evjj/+8Y9p8Wyv6aOPPjoef/zxfIuWtwWXX355YiO1ww47LN58880C/e6qU6dO3H777Ym/uQAAAAAAANi+qG/Kjvqmkq1Pnz5x6623Zrz/7bffnvh8euDAgbF69eqiTC3n3njjjbRY+/bt8130KhNHHHFEvgs4FZcrr7wy32YyERGvvfZaHHvssVG7du3o3r17/P3vf49Ro0YVa/Oobe2+ub3XcPz+97/Pt4nQL9WqVSteeumlxOZmb775Zrz88subnePYY49NbLxY0MZ7P/zwQzz11FNp8V69emVVA1oSvf766/H5558nbito/dQ555wT99xzzyYbHeVn6NCh8frrr6fF69SpE0OHDs14QcTDDz88Bg0alJjDbbfdFgsWLMhonr59+8bChQvT4tlc07Vr145XXnklfvWrX2W0/9boqaeeirfeeistXr169Xjrrbeia9euWc9ZunTpOOOMM/KtDwQAALZ+GmABAACwTXnhhRfi66+/TosfddRRcemll2Y1V82aNeORRx5JLA4oKcVT+a2ElI28vLy46667okqVKhvFp06dGuPHjy/0/Fu7GTNmRJcuXRKb1DRq1CjjBlgLFy6MO++8My3erVu3xGKWTPzf//1fHH744RvFUqlU/Otf/9rs2J49e6bFhg4dGnPnzi1QLknNnCpXrhwnn3zyZsf+7W9/iyVLlmwUK126dAwZMiTq1auXdS477LBDDBgwIC3+7LPPxuzZs7Oe7+f+7//+L4466qisxjRu3DjOPvvstPjIkSMjlUoVKp8taWs6b0WpT58+G63AlokTTjgh8RqYM2dOvPjii5sdf8QRRyQWvDzwwANZ5bFBUvFWhw4dYo899ijQfCXF8OHD4+mnn07cduSRRxZozt/85jdxyCGHFGjsvHnz4tlnn02L16lTJx588MGsvsPz8vLi/vvvT/xsDR48eKMVE/Pz/PPPx3fffZcWL8g13a1btzjjjDOyGrO1GDVqVGLhXL169WLQoEFRuXLlLZAVAAAAAAAA2xL1TdlT31Qy7b///nHzzTdnNaZMmTLRp0+ftPjixYtj0qRJRZXaFpH0uT722GO3QCaFU7Nmzbj77rs3u9+SJUvi2WefjauuuioOOuigqFatWrRu3Tp69+4dAwYMiK+++qrIctrW7pvbcw3HXnvtFX379s1qTK1ateL+++9P3JZf/OdKly4d559/flr88ccfT1wgbXOeeOKJtAXx8vLytvrFB1esWBFXX3114rYGDRrEPvvsk/WcO+20U2LdbKby+0zeeeedWTeQOu644+Kiiy5Ki//444/x0EMPbXb8jz/+mFjfWJBrunbt2hldu1ujVCoVN910U+K2e++9Nw488MDcJgQAAGw1NMACAABgm5L0sLNUqVIFfoB64IEHxplnnpkW/+STT+Ltt98u0JwlUb169aJLly5p8Q8++GALZFMyLFq0KO64447Yd999Y9asWWnbS5UqFffee29UqFAho/kGDBgQy5Yt2yhWrly5uOOOOwqV5/XXX594rKSGXT935plnpq1mtW7dunjssceyziG/cSeddFJa4eEvrVmzJrF44Nxzz42WLVtmncsG7dq1S2tas3bt2sQChExVrFgxrr322gKNPe2009JiP/zwQ76rpZV0W9N5K0o77bRTXHXVVQUa++c//znxfpHJSoJ5eXmJxTdPPvlk2n1lcz7++OP48MMP0+IXXnhhVvOUNKNHj46TTz451q1bl7atQoUKBVpNtVy5cnHjjTcWOKcHH3wwcXXavn37RvXq1bOer2rVqomr5q5duzajgqikz2xhrul+/fpF+fLlCzS2JLvvvvsS4/fcc0/UrFkzx9kAAAAAAACwLVLfVDDqm0qem266KcqUKZP1uOOPPz4qVqyYFp8wYUJRpLXFLFy4MC1Wo0aNLZBJ4Z199tlZNzdbs2ZNjB8/Pv7973/H2WefHY0aNYrGjRvH5ZdfXuhGddvafXN7ruHo169fge4bnTp1iuOPPz4t/sorr2S0cNz555+fdtzFixfHoEGDss4lqd7rsMMOi6ZNm2Y9V0mxdOnSOOWUU/JtRHjllVcWaN4//OEPUa1atQKNnTVrVrz00ktp8YMOOihOP/30As15yy23xA477JAWv++++2L9+vWbHPvss8/GokWL0uIFvaYPO+ywOO6447IeV9INGzYspk2blhbv0qVLxgsOAwAA2ycNsAAAANhmLFu2LIYPH54WP+SQQ2LPPfcs8Ly9e/dOjL/44osFnrMk+mXTmYhIbJKyNRsxYkT07ds3378//OEPcdFFF0WbNm2iXr16cc0118TSpUvT5snLy4u///3vccwxx2R87CeeeCItdsIJJ0STJk0K9Zo6dOgQjRs33ii2fPnyzRaE1a9fP4488si0eP/+/bPO4c0334xvv/02Ld6rV6+Mxs6fPz8t/n//939Z5/FLPXv2TIu9++67BZ7v5JNPjlq1ahVo7H777Ze4auCUKVMKnM+WtDWdt6J05plnZtz07pfq16+fuKrn0KFDM2pidc4556QVqi1btiwGDhyYVR5JBVg1a9aM7t27ZzVPSTFv3rzo06dPtG/fPr7//vvEfXr37h0777xz1nOfcMIJBf7MRyT/TqhatWpiAWWmevTokdg8a3O/SX744YfEAs3CXNMNGjTYKleq3ZTVq1fH888/nxbfdddd48QTT9wCGQEAAAAAALCtUd9UONtDfdPWonHjxtG5c+cCja1UqVLss88+afGttY5mg6SFAqdOnboFMikaN9xwQzzzzDMFWuRrg1mzZsVdd90VrVu3jlatWsWrr76a9Rzb2n1ze67hyK9+KlMXXHBBWmzdunUxZMiQzY5t0KBBYgOtTBYv/Llx48YlNnTbWhcfXLduXQwcODBat24dL7/8cuI+DRo0iEsvvTTrucuXLx9nnHFGgXN75ZVXEptS5ffZzUTNmjXjlFNOSYvPmjUr3+ZfGyTVFBX2mt5ar5tNeeqppxLj11xzTY4zAQAAtjbZtxYGAACAEmrMmDGxbt26tHhhHqBGRLRt2zZ+9atfxeeff75RfFtbPbB+/fppsa29qOiXhg0bFsOGDSvUHLVq1Yr7778/unXrlvGY77//PsaOHZsWL6qGMx06dIiZM2duFHv//ffjgAMO2OS4Xr16pRUVTZ48OcaPHx/77rtvxsdPaprVqFGjxKLDX3rttdfSYnvttVc0a9Ys4+Pnp0OHDmmxDz74IFKpVGIzqs059NBDC5xLlSpVomHDhvHVV19tFE9a+XFrsDWdt6J06qmnFmp8jx494tlnn90otn79+hg3blx07Nhxk2N33HHH6NatW1ozvQceeCDOP//8jI6/cuXKeOyxx9LiZ599dolaBfLjjz+Ovn375rt9+fLlsWDBghg/fnxMnDgx8bt/g/322y9uueWWAuVRmOKkVatWxcSJE9PiJ554YuIqtpmqUKFCdOvWLR5++OGN4pMmTYoVK1ZEpUqVEseNHTs2sSCsKK7p5557rlBzlCQjR45MbEh34YUXbvH7DwAAAAAAANsG9U2Fsz3UN20tOnXqVKjnqHvttVeMGTNmo9jWWkezQaNGjdJijzzySFx++eXRtGnTLZBR4XXr1i0OOeSQ6NevX9x9992xYsWKAs81ceLEOOaYY+Koo46K/v37R926dTMat63dN7fnGo6TTz45SpUqVeDxRx11VNSsWTPtXvHLe0l+Lr744rT3aOTIkTF16tSM694eeOCBtFidOnWia9euGY3PlU3VXq1duzYWLlwYn3/+eYwcOTKWLFmS777ly5ePJ598skDN2dq2bRs1atTIetwGSZ/FSpUqFfq9PvPMMxPP4wcffBAtWrTId9zo0aPTYoW9po8++uioUaNGLFq0qMBzlDRJtaXNmjWLdu3abYFsAACArYkGWAAAAGwz8is8SGqmkq0OHTqkFTpMmDAhVq9eHeXKlSv0/MVhxYoVMXny5Jg1a1YsXbo0li5dGsuXL08snoiI+PLLL9Ni29JD1cJq3Lhx9OzZM6688sqsV7X78MMPE9/3gw46qEhy22233dJiSauM/dIJJ5yQ+PC8f//+GTfA+uGHH2Lw4MFp8bPPPjujIrf3338/LVZU70uTJk2iTJkysXbt2p9iixYtii+//LJARWX7779/ofKpUaNGWgOsTRWPlGRb03krKpUrV46WLVsWao783qPRo0dvtgFWxP+KsH7ZAGvMmDHx0UcfbbL4ZoOnn346Fi9enBZPWh1xS5owYUJMmDCh0PPsvvvu8fLLL0flypULND6bRoC/NH78+Fi9enVavCh+k3Ts2DGtAda6detizJgx+V5HSYV+RXFNH3zwwYUaX9IkFapFRBx++OE5zgQAAAAAAIBtlfqmjalv2noVRR3NL22tdTQbdOrUKe68886NYj/88EO0a9cu7rzzzujevXuhGqVsKTVr1ox+/fpFnz594plnnonHH3883n333Y1qe7Lx+uuvx/777x8vvPBCRnUL29p9c3uu4ShsjmXLlo39998/Xn/99Y3i+dV7/NLhhx8eu+66a8yYMWOj+IMPPhj/+Mc/Njt++fLl8eSTT6bFe/XqFWXLls0oh1y5/vrrCz1H2bJlY8CAAQX+rBWm9ioi+bO/7777RpUqVQo1b5s2baJ8+fKxatWqtONddNFFiWPmzZsXX3/9dVq8KK7pAw44IO2a3lrNnz8/rUY2Qu0VAACQGQ2wAAAA2GZMnjw5LVatWrUiaZiSVFywatWq+Oyzz2Lvvfcu9PxFZcyYMfH444/Hq6++GjNmzMi3GCxTSY1StletWrWKM888M+vmVxERH3/8cVqsSpUqsfPOOxdFalGrVq202HfffbfZceXLl4/TTjst7rvvvo3iTzzxRPz1r3/NqChj0KBBsXLlyrR4z549Nzt2/fr1iZ/bPffcc7NjM1WzZs2YP3/+RrHvvvuuQPeFOnXqFCqXatWqpcWWLl1aqDm3hK3tvBWV5s2bF2rl0oiIevXqRZ06ddJe20cffZTR+Pbt28fee++dtnrtgw8+GHffffdmxz/44INpsYMPPjjjFQy3Juedd1784x//iKpVqxZ4jsJc00mfkYjk3xPZym+OyZMn59sAK+l7qDiv6a1V0srQFStWjObNm2+BbAAAAAAAANgWqW9S37StUEeTrnPnzrHzzjvH7NmzN4rPmTMnTj311GjUqFGcdtppcfzxx8cBBxwQZcpsXf+3vurVq8d5550X5513XixbtixGjhwZI0aMiA8++CAmTJiQVTO6r7/+Oo488sgYN25cNGzYcJP7bmv3ze25hiOTBf4ymeOXzYI+/fTTjJqW5eXlxUUXXRRXX331RvEBAwbEX/7ylyhfvvwmxw8cODDtPpWXlxfnn39+Fq9g69CsWbMYMGBAoZpY7bXXXgUeu3r16vjss8/S4kVRe1W2bNlo1qxZ2gKN+dV7RSR/biOK75reWuX3Hh5wwAE5zgQAANgabX1t4wEAACAfCxcuTIvttttuhS4MiMi/CUbSMbeEDz74IFq3bh0HHHBA/POf/4zp06cXujgsYutfVa8oPf/88/HrX/86nnvuuazHzpo1Ky22bNmyyMvLK5K/Sy65JG3+TAuKevXqlRb7/vvv4+WXX85ofP/+/dNi7dq1i1/96lebHTt//vz48ccf0+JXX311kb03SQU9BV35c4cddijQuA2SVnBct25doebcEra281ZUdtttt2KbZ8GCBRmPv/jii9Nijz/+eGIjup/75JNP4r333kuLX3jhhRkfu6QrV65cnHrqqfHuu+/GQw89VKjmV5UrVy7Uyoz5/T7YY489CjznBgX5TZJ0jRXnNb21Slqpcffdd9/qio4BAAAAAAAoudQ3qW/aVqijSVeuXLn461//mu/2WbNmRb9+/eLggw+OGjVqROfOneOWW26Jd955J1avXp3DTAuvSpUqcdRRR8Wtt94ab731VixcuDC++OKLGDRoUFx66aUZLTr23XffRffu3Td7H9jW7pvbcw3HrrvuWug5kl7j+vXrM64tO+ecc9IaXS1YsCCeffbZzY594IEH0mKdOnUq8e97Nlq2bBn33XdfjBs3rlDNryIK9z2xaNGiSKVSafGiqL2KSP7sZ1t7FVF81/TWKqn2KiJKVCNWAACg5NIACwAAgG1G0mp+1atXL5K583sQu6UbskRE/OEPf4iDDjooxo8fX+Rzb+1FRb904403RiqVSvxbtmxZzJo1K15++eW45JJLEq+dlStXximnnBLPP/98VsedO3duUb2EjGV6bR5wwAHRrFmztHhSY6tf+vzzzxMb6iQ11UqyJd6XiIJ/bjVA+Z+t7bwVlaSVR4tqnmxWoz3rrLOicuXKaeMHDRq0yXEPPvhgWqxGjRpx8sknZ3zskqJChQpRr1692GOPPeKQQw6Jq6++OgYNGhSzZ8+OgQMHRrt27Qp9jML+fkg6p6VLl44qVaoUat6I/xXMVqxYMS2+qc9IUj7FeU1vrb7//vu0WGGLtgEAAAAAAODn1Depb9pWqKNJduqpp8att9662eZMy5Yti9deey1uuOGG6NSpU+ywww5x5JFHxkMPPbTVNnVr0qRJnHzyyXHXXXfFJ598EhMmTIgLL7xwkwuQjR49Op5++ulNzrut3Te31xqOypUrR+nSpQs9T36vMdP6q1q1akX37t3T4km1VT/38ccfx+jRo9PiW+Pig2XKlImaNWtGkyZNonXr1nHOOefEvffeGxMnTowJEybExRdfHBUqVCj0cQrzOc3vfBbnZz/b2qvivqa3Rkm1VxHqrwAAgMxogAUAAMA2I+nhY3EXBmzpArErrrgi+vXrl7jSEdmpXLly7LLLLnHMMcfEPffcEzNmzIiTTjopbb9169bFmWeeGZMnT8547hUrVhRlqhlZtWpVxvv27NkzLfbyyy/n+zB6g//+979psUqVKsUpp5yS0XG3xPsSkd17Q7rt9bwV1fdJUhFONg2wqlevHqeffnpafFNFWKtWrUr8vJ555pmJjZS2tJ49e+bbrDCVSsXKlStjzpw58emnn8bbb78dt99+e5x88slRu3btIsthU8WXmUj6fVC1atVCzflzSdfjlmqAVVSFZSXBypUr02IKsAAAAAAAAChK6pvYlPXr1+dszs01aKLg+vTpE0OGDInGjRtnPGblypXxxhtvxAUXXBD16tWLK664IubNm1d8SeZAy5Yt4/77749JkyZFy5Yt892vX79+m5xnW7tvbq81HMX9GrOpv+rdu3dabPjw4fHZZ5/lO+aBBx5Ii+24446JNaYlwaZqr9asWRMLFiyIL774IsaOHRsPP/xw9O7dO1q0aFGkORSm/iq/z2BxfvaXLFmS72+V7fVzm62k2qsI9VcAAEBmNMACAABgm1ZUhTolseDnmWeeiX/961+J20qVKhUdOnSIPn36xNNPPx0ffPBBfP3117Fw4cJYsWJFrF+/Pu2h9rBhw3L8Ckq2HXfcMZ5++uk444wz0ratWLEievToEatXr85orpK+0uRZZ52VthLVmjVr4sknn8x3TCqVSmyoc+KJJ2bc5KWkvy8kc962vIsvvjgtNnLkyJg6dWri/s8991wsWLAgLb41rkC4NSvK3xIl8XfJtsp7DQAAAAAAQHFT37R91jeVKVMmLbZ8+fIiP86yZcsyPj5Fp0uXLjFt2rR44IEH4sADD8xq7I8//hj/+te/Yvfdd49nn322mDLMnT322CNGjBiRb3OdCRMmxJw5c7Kac1u+b1L8Dj744GjevHlaPL8FCFeuXBmPP/54Wrxnz55Rrly5Is+P/Pnsb5283wAAQCb810oAAAC2GUkrxPzwww9FMveSJUsS4zVq1CiS+bP1448/xlVXXZW4rUePHtG3b99o0qRJVnNm2sxpe1KqVKl46KGH4pNPPonx48dvtG3SpEnRr1+/uP766zc7T4UKFdJi1apVi6uvvrrIcv2lbFZMql+/fhxxxBHx2muvbRTv379/XHbZZYljRowYETNnzkyL9+rVK+PjJr0vERFdu3aN1q1bZzxPtvbdd99im3t7sL2et+L8Psl2hbPWrVvHfvvtF2PHjt0o/uCDD8Y//vGPtP2TViBs27Zt7LPPPlkdl8wlndOlS5cW2fxJ19GmfpMkrRRY3L+RtkYVK1ZMi2WzQigAAAAAAABsjvqm/1HflFx/kV+zqsLIb8786j8oOuXKlYsLLrggLrjggvjqq6/izTffjGHDhsWIESPiq6++2uz4H374Ibp37x4PPfRQnHfeeTnIuPhUrVo1HnnkkWjdunWkUqm07cOGDYsePXokjt3W7pvbaw1Hcb/GbOuvLrroorj00ks3ivXv3z9uvfXWKFu27EbxQYMGJdaPXHDBBVkdk8zldz6L8zqqXr16vo2attfPbbaSaq8i/ld/lfQeAgAA/JwGWAAAAGwzkooOiqppQUkrEHv99dcTi2Cuueaa6NevX4HmXLhwYWHT2iZVqFAhHn744dhvv/1i7dq1G237y1/+Er169YqGDRtuco6k6ySVSsV1111XpLkWRq9evdIaYI0bNy4mT56c2CSnf//+abGGDRvGoYcemvEx8/v8tG/fPn77299mPA8F88vrOVPb63krqoKVpHmyLcCKiOjdu3daceOAAQPiL3/5S5QvX/6n2GeffRbDhw9PG68Aq3glfU7Wrl0by5YtiypVqhRq7jVr1sTKlSszOuYGxVkMWlTzFKWC3t923HHHtNiiRYsKmw4AAAAAAAD8RH2T+qYNks7L6tWrY9WqVRs99y+s/J7pbqnrYnu1yy67xLnnnhvnnntuRER89dVX8c4778Tw4cPj5Zdfjnnz5uU7tnfv3tGmTZvYe++9c5VusWjVqlW0a9cu3n333bRtX3zxRb7jtrX75vZWw7HB8uXLY926dVG6dOlCzZPfa8y2/uqss86K3//+97F8+fKfYvPnz48hQ4ZE9+7dN9r3wQcfTBvfoUOH2GOPPbI6JpnL7zNYnJ/9bGuvivua3pKKsvYq4n/1V40aNSpMSgAAwHag1JZOAAAAAIpKzZo102IzZswokrmnTZuWGN9ShUAvvvhiWmzXXXeNvn37FnjO77//vjApbdNatGgRv/nNb9LiK1asiJtvvnmz43fZZZe02NKlS2PNmjVFkl9R6Nq1a+JD+qRGVytWrIhnnnkmLX722WdHqVKZ/+emhg0bJq6YtWDBgozn2F4kva/r168v1JwFLQrdXs/bZ599Vmzz1KpVK+t5TjvttLTP7IIFC+LZZ5/dKJZUgFW9evU49dRTsz4mmUv6TRJRNNdRQX6TJF1jxXlNZyq/74wtdX9L+r7+7LPPClzUBQAAAAAAAL+kvkl90wYNGjRIjBfV9bBBfs908zs+ubHLLrvEWWedFf/5z39izpw5MXz48OjWrVvivmvWrMmoRm1r0LFjx8T4pj7b29p9s6TWcORCUZy3pNeYl5eX9TmrVq1a9OjRIy3+wAMPbPTvqVOnxsiRI9P2u/DCC7M6HtnJ73wW1TWe9NnPtvYqoviu6WyUpNrSpNqriP99jgAAADZHAywAAAC2GUkrnC1ZsiS+/PLLQs89ceLEtFi5cuVit912K/TcBTF27Ni02Omnnx5ly5Yt8Jzjx48vTErbvGuvvTaqVq2aFu/fv/9mH0A3a9YsMf7pp58WSW5FoXz58nHaaaelxR9//PFYt27dRrHnnnsuli5dmrZvz549sz5m06ZN0+Il6X0pKZKuvWXLlhVqzu+++65A47bX8zZp0qRIpVKFmmPevHkxf/78tPivf/3rrOeqVKlSnHXWWWnxnze8WrNmTWITuzPOOCMqVaqU9THJXH6rrib9nshWfnPss88++Y5p3rx5Wqworum5c+cmXtOZSrq3RWy5+1vSe7hixYqYPHlyofIBAAAAAACADdQ3qW/aYNddd02MT5kypUiPk998u+++e5Eeh4LLy8uLjh07xjPPPBOvvPJKVKhQIW2fl156KVatWrUFsita+TVeW758eb5jtrX7Zkmt4ciFjz76qNBzfPzxx2mxPffcM8qVK5f1XBdffHFa7M0339zo2kpafLBmzZrRvXv3rI9H5vL7HBZF7dXatWsTvxuzrb2KKJprurBzlKTa0vzew9GjRxcmHQAAYDuhARYAAADbjLZt2ybGR4wYUei5k+bYd999o3z58psdm7S6TlE0UfmlTT18zcT7779fqPHbutq1a8f//d//pcXXrl0bt9xyyybHtmnTJjE+fPjwIsis6PTq1SstNmfOnBg6dOhGsaSGOgcddFCBCn+S3psRI0YU+jOyralWrVparKCrbG1QmKKC7fG8LV++vNAFNEmrAUZE7L///gWaL6kIa/jw4T815Rs8eHBiYZsVCItf69atEwvrius3SenSpTd5HR1wwAFpseK8pjOVdG+LKNz9bdWqVTFp0qQCjT3wwAMT42+++WaB8ymI4vjtCAAAAAAAQMmgvkl90wYtW7ZMjI8bN65Ij5PffC1atCjS42xtSupz2c6dO8e1116bFl+5cuU20QBuzZo1ifFNLeRWUu+bBVVSazhyobA5rlmzJrHmraC1V/vuu2/a+UilUvGf//wnIv5Xg/Lf//43bdzZZ59drNcI/5P02R83blysWLGiUPOOHj06fvzxx4yOt0H9+vVj5513TosX1zWdjZJUW1q7du1o0qRJWrwk1F5FlIzveQAAIH8aYAEAALDN2H///aN06dJp8SeeeKJQ844ePfqnZiI/l19To1+qUqVKWmzlypWFymnBggVpsRo1ahR4vjFjxsS0adMKk9J24corr0x8WPzEE0/E9OnT8x236667JjaHeu6554o0v8I68MADY6+99kqL/7zh1ezZs+Ptt99O2yepeVYmjjnmmLTY999/XyQFStuSmjVrpsW++uqrTa5+uDmFacC2vZ63p556qlDjk76PSpUqFfvtt1+B5mvWrFl06NAhLb5h5cGkFQgPOOCA7b6INRfKly+fWKz83HPPJRZQZWrVqlXxzDPPpMWbN28elStXznfcfvvtF3l5eWnx4rims1G6dOnE79VPPvmkwHO+//77BV71tm3bton5PPDAAzktgCqO344AAAAAAACUDOqb1Ddt0KFDh8TnuM8++2yRHWPmzJkxduzYtPg+++wTtWrVKrLjbI1K8nPZHj16JMaTmsptbWbPnp0YT2oss0FJvW8WVEmt4ciFZ555JtavX1/g8a+//npiY5+kpmKZSlqA8JFHHom1a9fGs88+m3g8iw/mRtJncfny5TFkyJBCzfvYY49lfLyfS7rOCntNv/baa7Fo0aICj49Iri0tTO1VKpWKd955p8Djjz766LTYlClTctqkL+k7PqLkfM8DAADJNMACAABgm1GlSpXo1KlTWvytt96KGTNmFHje++67LzHepUuXjMZXrVo1LVbY1XWSmlwkFY1l6p///Gdh0tlu1KhRIy6//PK0+Lp16+JPf/rTJscmFSYNHz48Ro0aVWT5FYWePXumxYYMGRJLliyJiIgBAwakPbCvWLFinHrqqQU6XpcuXRI/I7feemuB5ttW7b333mmxVCoVY8aMKdB833//fQwaNKjA+Wyv5+2xxx4rcPOiOXPmxMsvv5wWP/zwwxPfy0wlFWH1798/pk2blrhymgKs3En6nfDDDz/Ek08+WeA5Bw4cmFj0tLnfJNWrV49DDjkkLV6Ya/rbb79NvKazlXR/+/DDDws837333lvgsWXLlo1u3bqlxT/77LNCF89lozh+OwIAAAAAAFAyqG9S37RB3bp1ExfM+vzzzwv1zPTn8muIk7Tw2famJD+Xza8ZVEEXgypJXnvttcR4Uu3ABiX1vllQJbmGo7gVNs+HHnooLVa6dOk44YQTCjznaaedFjvssMNGsQ15PvDAA2n7t2vXLnGRUYreMcccE6VKpf/fn++///4Cz7l48eIYOHBgWrxRo0bRvHnzTY7t2rVrWqyw13TSApfZSrp/Tpo0KVasWFGg+V555ZWYNWtWgfM57bTTEuN33HFHgefMVn71mCXlex4AAEimARYAAADblN/85jdpsXXr1sWVV15ZoPnGjh0b//3vf9Pie+21Vxx66KEZzVGvXr20WGFXI6xdu3Za7L333ivQXG+99dZWsfpXSfHb3/42qlWrlhZ/8sknN3leL7rooihfvnxa/NJLLy1RqwqdddZZaUUDP/74408P/fv37582pmvXronvSSaqVq0avXr1Sou/8cYbhV7Vbluy2267Jb7HBX2PbrvttgIXTEVsv+ftm2++ib/97W8FGtunT5/E9/yCCy4oVE7dunVL+06YP39+nHrqqZFKpTaKV61aNd8CE4reBRdcEOXKlUuLX3vttbFs2bKs51u2bFn06dMnLV6mTJm46KKLNjv+/PPPT4sV5pr+/e9/XyTFta1bt06LDRkypEBzjx8/Pp5//vlC5dO7d+/E+CWXXFLoFRczlfTbcdasWYW6bwMAAAAAAFByqG/K3rZa35S0UF1ExDXXXFPouefNm5dvs4mkmo/tTUl+Ljtv3rzEeIMGDYr92HPnzo1JkyYVy9xvvfVW4tzlypWLdu3abXJsSbxvFkZJreHIhd///vexdu3arMe98847iYuXHX300fk2jctExYoVE+/FN954Y7zzzjtp8cLWepG5Ro0axXHHHZcWf+edd+LZZ58t0Jw33HBDYv1P7969E5tt/Vz37t3TmqVFFPyafvvtt+PFF1/MetwvJdVerVy5skBzr127Nm6++eZC5dOhQ4fEplxDhgxJbD5WHMqWLRs1a9ZMixf2ty0AAFC8NMACAABgm3L88cdHw4YN0+IvvfRS1ivlLF68OHr16hXr169P25ZUUJGfFi1apMXeeOONWL16dVb5/Ny+++6bFnvssceyXiXxq6++il69eqU1SSF/NWrUiMsvvzwtvn79+vjTn/6U77j69evHZZddlhYfP3589OzZs0APwJOsWbMmJk6cWODxDRo0iCOOOCIt3r9///jwww8THwAXtiiuT58+UaVKlbT4OeecEx988EGh5v65zz77LBYvXlxk8+VSXl5eYqHXf//736xX23rttdfizjvvLHRO2+t5u+2222LcuHFZjXnhhRcSm8fVrVu3UCsQRvyvCPDcc89Ni3/00UdpsR49eiSusEvxqFu3bnTr1i0tPmfOnOjdu3dW372pVCp69+4d3377bdq2rl27xk477bTZOU466aTYcccd0+IFuaafe+65ePzxx7Mak58OHTqkxRYvXhz/+te/sppn6dKl0aNHj1i3bl2h8tl///0Ti+fmzJkTp512WoFXR8xG0m/HtWvXxtChQ4v92AAAAAAAABQ/9U3qmzbo2bNn4nPcESNGFKq2Y+3atXHRRRcl1lscc8wxsddeexV47m1FcTyXHTx4cJFcp4MGDUqL5eXlxW677VbouTdn9uzZ0aJFizjllFNi6tSpRTbv3Llz820cdOyxx2528cWSeN8sjJJaw5ELn3zySVx33XVZjVmwYEFceOGFidvyi2fj4osvTosl1V7VqFEjTj755EIfj8zl95m87LLL4quvvspqrtdeey3uvffetHiFChUSm9L9UsWKFePMM89Mixfkmv7uu++K5NqNiGjevHliY67bbrst6zqqG264IcaMGVPonPJronXJJZfE2LFjCz1/JpK+519++eWcHBsAACgYDbAAAADYppQuXTr69euXuK13797x5JNPZjTPwoULo0uXLjFlypS0bc2aNYvzzjsv45wOPPDAtNi8efPi0ksvLfCqW0ceeWRabMmSJXH66adnXHj2ySefRPv27WP27NkFymF79tvf/jax6GbgwIHxySef5DvuhhtuiKZNm6bFn3766ejUqVOhzsWiRYvir3/9azRt2jT+8pe/FHieiOSGVqNGjYrrr78+Lb7zzjvH4YcfXqjj1atXL/Fzu3LlyujUqVP8+9//LtT87733Xpx44omx5557xty5cws115aUtNLcihUr4qyzzsq4IcvgwYPjpJNOKpJiu+31vK1YsSKOOeaYmDx5ckb7v/3223Haaaclvuf9+vWLsmXLFjqniy66KPLy8ja7X1EVzZC5P/3pT1GpUqW0+GOPPRZXXHFFRkVG69atiyuuuCIee+yxtG0VK1aMvn37ZpRL+fLl49Zbb02LZ3tNv/7663HGGWcUWXH58ccfHzVq1EiL33zzzRk305s7d2507NixyFbpu/POOxPP29ChQ+PII49MbES2OfPmzYtrrrkmnnnmmc3uu8suuySuNnzVVVfF9OnTsz42AAAAAAAAJYv6JvVNG1SpUiVuvPHGxG1XXnll/PnPf8762eyyZcuiW7duMWTIkLRtZcqUidtuu61AuW5riuO57Iknnhh77bVXPPTQQ7F8+fICzTFmzJjEa+Lggw9OzLc4pFKpePrpp6N58+Zx4oknxgsvvBBr1qwp8Hzjx4+Pdu3axZdffpm4/Q9/+MNm5yiJ983CKKk1HLnSr1+/uOOOOzLad8M5S/pcHnLIIXH88ccXOp8999wzOnbsuNn9zjzzzKhYsWKhj0fmjjzyyMTfE3PmzIkjjzwy4yZYw4YNi+7duyfWavXp0ydq1aqV0TzXXXddYp1TNtf0999/H8cee2x8/vnnGe2/OeXKlYvTTz89Lf7xxx/H73//+4znufbaa+PPf/5zkeTUrVu3OProo9PiixYtikMPPTReeumlrOdct25dPPbYY3HJJZdktH/Sb9vBgwfHww8/nPWxAQCA3NAACwAAgG3O6aefnrjK0rp166JHjx5x5pln5vvgcPXq1TFw4MDYe++947333kvbXrZs2RgwYEBUqFAh43wOO+ywqF+/flr8wQcfjPr168dJJ50UV199ddx8883Rt2/ftL8lS5akjT3llFMSVwB74403ok2bNjFy5Mh885k7d2788Y9/jJYtW2708He//fbL+DVt72rUqBGXXXZZWnz9+vXxpz/9Kd9xVatWjYEDByY21Rg5cmTssccecemll2a8et6XX34ZDz30UHTu3Dnq1q0bV199dZEU/HXt2jVxRag33ngjLXbWWWdFqVKF/09Ml1xySZxyyilp8VWrVkXv3r2jVatW8cQTT8SyZcs2O9fy5ctjxIgRcdVVV0Xjxo2jffv2MXjw4MRV+7YmJ5xwQtStWzct/u6770anTp02ufrf9OnT44wzzoiTTjopVq5cGRH/K9oqrO3pvP38/Zo/f37st99+8Ze//CVxtdSI/xUCX3XVVXHEEUf89J7/3KGHHprY1KwgmjRpEkcdddQm92ndunXi6roUr1133TXf4qa77rprs9/Z77//frRt2zbuuuuuxO39+vWLPfbYI+N8Lrjggjj44IPT4j+/ppN+d0T8r3DsiiuuiM6dO8ePP/4YEf9bYbawKwOXL18+zj777LT48uXL46ijjor77rsv30Zhy5Yti3/84x+x9957x4QJEyIiolSpUlm9J0l+9atfxT333JO4beTIkbHbbrvFDTfcELNmzdrkPCtXrowhQ4bEaaedFo0bN4477rgjo/thRCSuGDljxozYa6+9on379vGb3/wmbrjhhsTfjiNGjMjoGAAAAAAAAGw56pvUN21wySWXRKdOnRK39enTJ1q2bBnPPffcZhdH++677+Kf//xn/OpXv4oXXnghcZ/rrrsuWrRoUdiUtxnF8Vx22rRpccEFF0SdOnXi1FNPjWeeeSbmzZu32VzmzZsXN9xwQ3To0CGxedbll1+e/QsspPXr18fgwYPjhBNOiJ122imuuOKKeP311zNaqG/9+vUxfPjw6NmzZ+y///753s8uvPDCOOCAAzLKp6TdNwurJNZwFKdatWpFnTp1fvr3NddcE8cee2xiM7KIiDVr1sSgQYNin332iVGjRqVtr1ChQtx///1Fll/v3r03u4/FB7eMhx9+OLHp1LRp06J58+Zx77335tt0cM6cOfHb3/42Dj/88MR9DjjggOjTp0/GudStWzffZnwbrun86n9Xr14dTz75ZOyzzz4xZsyYn+J77713xsfPzwUXXJC4gObf/va3OPPMM2POnDmJ41KpVAwbNizatm27UYPMoqgt/c9//pP423Lp0qXRpUuX6Ny5c7z33nubXEAylUrFRx99FH369Ilf/epXcdZZZ2VcX530HZ9KpeK8886Lpk2bxllnnRV//OMf45Zbbkn7jr/77rszf6EAAECRyUttbS2+AQAA2C4kPYjr2LFjDB8+PKPxCxYsiAMOOCC++OKLfPfZf//9o3nz5lG/fv1YsWJFfP311/H222/HwoUL8x3z17/+Na666qqMcvjluKuvvjrrcRH/a3LUuHHjtPidd94ZV155Zb7j9thjj2jbtm3Ur18/8vLyYt68eTFlypT48MMP01b82meffeKOO+6Izp07p82T6X86GD58eBxyyCEFHl+U8svlxhtvjJtuuqlIjrFw4cJo0qRJ/PDDDxvFS5UqFZMmTdrkA+BXXnklunXr9lPxSZI6der8dP5q1qwZpUuXjsWLF8fixYvjq6++io8++ijfxjunnnpqDBw4sECva4OLL744owKRTz/9tNCNRjZYtWpVHH/88TF06NB89ylTpky0atUqmjVrFjVr1oxq1arFihUrYvHixbFgwYKYMmVKfPbZZ/k2Tfrkk09izz333GQexXUtd+rUKd55552NYtlekwMHDkxcrWuD5s2bR9u2baNOnTqxatWqmD9/fnzwwQcxbdq0jfarXLlyfPDBB9G8efO0OYYNG5ZvYWWSknLeilJ+52r8+PHx4osvbhQvX758HHroodG0adOoWbNmzJ8/P6ZPnx4jRozItzijVq1aMXr06GjatGmR5TxkyJDo2rVrvtvvv//+EleENXPmzGjSpElavGfPnvHoo4/mLI9HH300zjnnnI1ijRo1ipkzZxbZMU488cQYPHhwvtubNGkSBx10UOy0006Rl5cX3377bbz//vubXOmvS5cuMWTIkMTfTJsybdq0OPDAA/Mtkky6pj/99NN499130z6jl19+eSxZsiT69++/UTzbc7ho0aJo1qxZzJ07N3F7rVq14vDDD4+GDRtGhQoV4vvvv4/p06fHe++9l7Yy9I033hgzZ84sdE4REddff3307dt3k/vsvffe0bJly6hdu3ZUr149lixZEgsWLIhJkybF5MmTY+3atRvt/8gjj0SvXr02e+yZM2dG8+bNM26Y9XNF+XsHAAAAAACA/Klv+n/UNxXOggUL4qCDDorp06fnu0+5cuWiTZs20bRp06hVq1ZUqVLlp7qLSZMmxccff7zJ19G9e/cYNGhQ1s+YI5Kv9WzrS37ppptuiptvvnmjWDafn6Kowynq57Kbem8bNmwYLVu2jLp160aNGjWicuXKsWLFipg7d25Mnjw5Jk6cmG/dTNeuXeP555/POseCGDt2bOy///6b3Kd06dKxxx57xB577BENGzaMatWqRZkyZWLZsmWxZMmS+PTTT2PSpEn51rZtcNBBB8Wbb74ZFStWzDi/knTfbNy4cdrCWZnWBGxQEms4ikJ+tTh/+9vfonv37mn7t2jRIvbdd9+oX79+rFy5MmbPnh1vv/12LFiwIN9j/POf/yzSxnBr1qyJnXfeOebPn5+4vW3btvH+++8X2fGKStK9MCL332vF8T3xc88991ycfPLJ+d4nK1WqFIceemg0btw4atSoEfPnz49p06bFiBEj8h1Ts2bNGDVqVOy+++5Z5ZJKpeK4446LV155Jd99WrZsGa1atYoGDRps8j7UsGHDuOuuuxLr/rI9h5uq+S1Tpky0a9cu9tlnn6hZs2b88MMP8e2338Y777yT1qSxWbNmcfvtt8dxxx1X6JzGjRsXhx12WL73uIj/nYf27dtH/fr1o3bt2rF69epYuHBhfPnllzF27Ni075Jsfiscd9xx8fLLL2eVc0TR1w4CAACZKbOlEwAAAIDiUKtWrXjrrbfi8MMPz7d5xJgxYzZaRWdzbrrppgIVh0VE/Pa3v43hw4cX6EFafq644op4991347nnnkvcPm3atLSmN0l23nnneOWVVzbZZIN0NWvWjMsuuyxuvfXWjeLr16+Pm2++OZ566ql8xx5zzDExdOjQ6N69e74FE/Pnz48hQ4YUac7Z6NWr12YbYLVp06bIml9F/K9g58UXX4wLL7wwrRBng7Vr12b92d2WnHbaaTF48OB8r69JkybFpEmTNjlH+fLl4/nnn4999tmnSHLans7bgAED4uCDD95o5cFVq1bFq6++mvEcVatWjRdeeKFIm19F/K9YY+edd47Zs2enbatSpUr06NGjSI9HdgYOHBjdunXL93fAl19+GV9++WXG83Xu3LnAhcl77LFHPP/883Hcccclrsqa6TV96KGHxl//+te44IILss7hl2rUqBEPPvhgdO3aNbFx3IIFCzb5vbrBueeeGzfddFNWxaSbcsstt0TFihXj+uuvz7cYbsqUKfmuRloYjRs3jvvvvz/OPvvsTa50CAAAAAAAwNZLfZP6pg1q1aoV77zzThxzzDExYcKExH1Wr14dI0aMiBEjRmQ9f8+ePeOhhx4q0DPmbVkun8t+/fXX8fXXX2c9rlOnTvHf//63GDIquHXr1sXUqVNj6tSpBZ7j2GOPjSeffDKr5lcRJe++WVglsYajOHXr1i2uv/76uOWWWzaKf/TRR/HRRx9lPM9VV11VpM2vIiLKli0b5557bvzlL39J3F7SFh7c3px00knx0EMPxYUXXpi2GF1ExIoVK+Kll17KeL7atWvHq6++mnXzq4j/NfsaOHBgHHHEEfHhhx8m7jNx4sSYOHHiJufZUEe4uWaBmbr99tvj7bffjs8++yxt29q1a2P48OGbbRy1yy67xGuvvVZkv7dat24db731Vhx//PHx7bffJu6zcOHCYquVfvjhh+OAAw5Ia1YIAACUTKW2dAIAAABQXBo3bhyjR4+OE044oVDz1KxZMwYOHBg33nhjgecoVapUDBkyJG6++eaoWrVqofLZIC8vLwYMGBCnnHJKgedo3bp1fPDBB9GwYcMiyWl789vf/jaqVauWFn/66adj8uTJmxzbvn37+Pjjj+Pkk08u0pxq1KgRBx98cKHnadOmTey5556b3KeoGoz8XLly5eLRRx+NJ554IurVq1ekc7dt2zZq1qxZpHNuCY899licfvrpBRpbu3btePPNN+OII44o0py2l/NWvXr1GD58eBx00EEFGt+4ceNCjd+U0qVL51vEdtppp0WVKlWK/Jhkrnz58jFkyJC49tpro0yZgq9LUbp06fjjH/8YL774YlSoUKHA8xxyyCHx1ltvxU477VSg8SeccEK89NJLUbZs2QLn8EvHHXdcPP3001GuXLmsx+bl5cUf//jHeOihh4osnw369OkTr776ajRq1KhI5itVKvPHMj169Ihhw4ZFs2bNiuTYAAAAAAAAlDzqmzZve6lvqlevXowaNSp+97vfFdmz2B133DEeeeSRePTRRwv1rHpbVlKfy5YqVSouueSSePXVV4vs85iJXXbZJc4+++xiq9WpW7duPPbYY/HSSy8V+HWVpPtmUSiJNRzF6U9/+lP07ds3q/qJDcqUKRP9+vWLv/71r8WQWcRFF12UmFf16tUL9T1G0TjnnHPijTfeKPTvgYMOOihGjx4drVu3LvAcVatWjTfffLPA96F69erFsGHDomXLlgXO4ZeqVasWI0aMiObNmxdofOvWrWPUqFFF/nurdevWMX78+ELfszfI5t5Rp06dGD9+fPTo0SNKly5dJMcHAACKjwZYAAAAbNNq1qwZgwcPjhdeeCH233//rMZWrlw5rrjiivjkk0/i1FNPLXQupUuXjhtuuCHmzp0bjz32WPTu3TsOOuig2HnnnaN69eoFerhWqVKleOqpp+L++++PnXfeOeNxderUidtvvz0++OCDAhdO8L/r67LLLkuLp1KpuPnmmzc7vm7dujFo0KAYNWpUnHzyyQUuQqlZs2Z07949Bg0aFHPmzEnMqSB69uyZ77YKFSoUyeciP6effnp89tln8de//jWaNm1aoDny8vKiVatWcd1118X06dPj/fffjzp16hRxprlXpkyZePzxx+Phhx+OBg0aZDymV69eMWXKlGjXrl2x5bY9nLcdd9wxRowYEf369cu42K98+fJx+eWXx4QJE2Lfffctttx+9atfJcatQFgylC5dOvr27Rvjxo2Lk046KatinFKlSkXXrl1j3LhxcdtttxVJQU6bNm3io48+iosvvjjj758GDRrEgw8+GIMHD856FdZMnHjiiTFmzJg4/PDDMx7TsmXLePvtt+O2224rttWKjzzyyJg6dWrccccdBSryKleuXHTp0iVeeumlOPPMM7Ma2759+5gyZUqMHDkyrr322jj22GPjV7/6Vey4445Rvnz5rHMBAAAAAACg5FHflGx7rG8qX7583HHHHTF16tTo3bt34sJ8mdhll12ib9++MWPGjGJZ4G5bU1TPZWfNmhV33313dO7cOSpXrlygXMqVK/fTs/N77rmnUItjFUSdOnWif//+MW/evHjzzTfjiiuuiFatWhW6TqFNmzZx9913x/Tp0+OMM84odJ4l6b5ZFEpiDUdxuvbaa2PEiBGx3377ZTzm4IMPjvfffz+uueaaYsurbt26iZ/dM844IypVqlRsxyVznTp1iilTpsRNN90UtWrVymrs7rvvHo888ki8++670bhx40LnUqVKlRg8eHA88sgjGf9OKVu2bJx33nkxefLkQjXgyk+9evXi/fffjz59+mR8X9hhhx2ib9++MWrUqIzrUbNVt27dGDx4cAwdOjQOO+ywAtV47b333vG3v/0tnnnmmazG1axZMx5//PH4+uuv45///GecddZZ0aJFi6hfv35UqVKl2OrNAACA7OWlUqnUlk4CAAAAcmXSpEnx4osvxvvvvx/Tp0+PuXPnxooVK6JMmTJRvXr1aNy4cbRo0SIOPfTQ6NKlS4ELUbaE1atXx+DBg+PNN9+MDz74IObNmxeLFi2K0qVLR/Xq1aNp06bRsmXLOPLII6Nz585pxTkrVqyIr776Km3ePffcM1cvYbu3ZMmSeO2112LkyJHx8ccfx6xZs+L777+PlStXRtmyZaNq1apRrVq1aNiwYey5556x1157Rdu2baN169YFWhFtazJ+/Ph48803Y8yYMfHZZ5/F7NmzY9myZbF27dqoXLlyVK1aNWrVqhW777577LnnntGiRYvo1KlT7Ljjjls69WK1YsWKePXVV+PVV1+NsWPHxrx582LBggVRtmzZqF27duy9995x6KGHximnnLJFVkLd1s/b8uXLY/DgwfHaa6/FRx99FF999VUsW7YsypYtG3Xr1o3mzZvH4YcfHj169IjatWsXez6HH354vPXWWxvFWrZsGRMmTCj2YxfE4sWL484770yLt2zZMrp27ZrzfHJtzpw58fzzz8e7774bU6dOja+//jqWLl0aEf9bJXDnnXeOZs2aRfv27ePEE08stgKjDbk88cQT8eabb8aUKVNi/vz5sW7duqhatWo0btw4WrVqFcccc0x06dIlypUrV2x5/NyYMWPi5Zdfjrfffju+/vrr+O67/4+9e4+yuqz3B/6ZcRwGGIZBEBIZLoFyyZAksUS5BJodIzAFL5SXUH9qJnkBsyyE9Jh60PSoGYriybukoOI5FSVqYIjXUlBBBwYGERAGucwwCPP7o+WuzXCZwZnv5vJ6rcVafJ79PM/ns1drsVquZ733iqisrIymTZtGp06d4qijjoqTTjop+vbtm8g8n6mqqoq//vWv8ac//SnmzJkTCxYsiI8++ig2bNgQ+++/f+Tn58cBBxwQnTt3jq5du8axxx4b/fv336P+PyUAAAAAAACZ5X2T902f2bhxYzz//PPxwgsvxBtvvBHFxcWxbNmyWL9+fWzatCkaNGgQTZo0idatW8chhxwSPXv2jAEDBkTPnj0FOmTYp59+Gm+++Wa89NJL8fbbb8f7778fxcXFsXr16li3bl1s3rw5CgoKUm/BevToET179oxBgwbV+AfZkrR27dp46aWX4u9//3vMnz8/5s+fn3rn8Mknn0RlZWXk5+dHQUFBNGnSJIqKiuLwww+PHj16xNe+9rXo0KFDvc63N/27uTu+4ahPM2fOjClTpsTs2bPjvffei7Kysti8eXMUFhbGIYccEr17946hQ4dGr1696n2WBx54IL7//e9XW3/jjTfi8MMPr/f+u2LSpEmxcOHCauvXXHNN4rMkrbKyMv7whz/E9OnT49VXX43i4uJYtWpVVFZWRsOGDaNly5apN0bf+ta34uijj663WTZt2hRTp06Np59+Ol599dUoKSmJ9evXR6NGjaJly5bxpS99Kfr37x9Dhw6tVRjo57Fs2bJ4+umn4//+7/9i7ty5sWLFiigrK4tGjRrFwQcfHIcffnh861vfiu9+97vRpEmTRGb6TElJSerf7H9/N7dly5bIz89P/XvXtWvX6NmzZxx//PF1EloGAADs3gRgAQAAAADs4YqLi6Njx46x9X/uvfPOO+PCCy/M0FQAAAAAAAAAAAC7v/79+8eMGTPS1nr16hWzZ8/OzEAAAACwD8nO9AAAAAAAAHw+EyZMqBZ+1bhx4xg+fHiGJgIAAAAAAAAAANj9vfvuu9XCryIizj///OSHAQAAgH2QACwAAAAAgD1YeXl53HvvvdXWhw8fHgUFBRmYCAAAAAAAAAAAYM9wxx13VFtr1qxZnH766RmYBgAAAPY9ArAAAAAAAPZgEyZMiOXLl1dbv/jiizMwDQAAAAAAAAAAwJ5h2bJlcc8991RbP+ecc6JRo0YZmAgAAAD2PVlVVVVVmR4CAAAAAIDa++ijj6Jr166xevXqtPUBAwbE9OnTMzQVAAAAAAAAAADA7u+MM86Ihx9+OG0tJycn3nvvvejQoUOGpgIAAIB9S3amBwAAAAAAoPZKS0tj0KBB1cKvIiLGjRuXgYkAAAAAAAAAAAB2f5s3b46f//zn1cKvIiLOOecc4VcAAACQoKyqqqqqTA8BAAAAAMC2LVq0KH73u9+l6g0bNsTbb78df/jDH2Ljxo3V9g8aNCieeuqpJEcEAAAAAAAAAADYLd1+++1RVlYWERGffvpplJaWxh/+8IdYvHhxtb2NGzeOefPmRVFRUcJTAgAAwL5LABYAAAAAwG5sxowZ0b9//xrtLSgoiLfffjvatGlTz1MBAAAAAAAAAADs/tq3bx+LFi2q0d7bbrstfvSjH9XzRAAAAMC/y870AAAAAAAAfH45OTnxwAMPCL8CAAAAAAAAAACopdNOOy0uvvjiTI8BAAAA+xwBWAAAAAAAe7iDDjoonnrqqRg0aFCmRwEAAAAAAAAAANhjZGdnx2WXXRa/+93vIisrK9PjAAAAwD4nJ9MDAAAAAABQO3l5edGiRYvo0aNHDBo0KIYPHx6NGzfO9FgAAAAAAAAAAAC7tf322y8KCwujU6dO0bdv3xgxYkQceuihmR4LAAAA9llZVVVVVZkeAgAAAAAAAAAAAAAAAAAAAAAAgH1HdqYHAAAAAAAAAAAAAAAAAAAAAAAAYN8iAAsAAAAAAAAAAAAAAAAAAAAAAIBECcACAAAAAAAAAAAAAAAAAAAAAAAgUQKwAAAAAAAAAAAAAAAAAAAAAAAASJQALAAAAAAAAAAAAAAAAAAAAAAAABIlAAsAAAAAAAAAAAAAAAAAAAAAAIBECcACAAAAAAAAAAAAAAAAAAAAAAAgUQKwAAAAAAAAAAAAAAAAAAAAAAAASJQALAAAAAAAAAAAAAAAAAAAAAAAABIlAAsAAAAAAAAAAAAAAAAAAAAAAIBE5WR6ANgblJWVxfPPP5+qi4qKokGDBhmcCAAAAAAAAABg37Zx48ZYvHhxqu7bt28UFhZmbiDYi3gvBQAAAAAAAACw+9iT30oJwII68Pzzz8eQIUMyPQYAAAAAAAAAANsxZcqUGDx4cKbHgL2C91IAAAAAAAAAALuvPemtVHamBwAAAAAAAAAAAAAAAAAAAAAAAGDfIgALAAAAAAAAAAAAAAAAAAAAAACAROVkegDYGxQVFaXVU6ZMiU6dOmVoGgAAAAAAAAAAFixYEEOGDEnVW7/vAHad91IAAAAAAAAAALuPPfmtlAAsqAMNGjRIqzt16hRf+tKXMjQNAAAAAAAAAABb2/p9B7DrvJcCAAAAAAAAANh97UlvpbIzPQAAAAAAAAAAAAAAAAAAAAAAAAD7FgFYAAAAAAAAAAAAAAAAAAAAAAAAJEoAFgAAAAAAAAAAAAAAAAAAAAAAAIkSgAUAAAAAAAAAAAAAAAAAAAAAAECiBGABAAAAAAAAAAAAAAAAAAAAAACQKAFYAAAAAAAAAAAAAAAAAAAAAAAAJEoAFgAAAAAAAAAAAAAAAAAAAAAAAIkSgAUAAAAAAAAAAAAAAAAAAAAAAECiBGABAAAAAAAAAAAAAAAAAAAAAACQKAFYAAAAAAAAAAAAAAAAAAAAAAAAJEoAFgAAAAAAAAAAAAAAAAAAAAAAAIkSgAUAAAAAAAAAAAAAAAAAAAAAAECiBGABAAAAAAAAAAAAAAAAAAAAAACQKAFYAAAAAAAAAAAAAAAAAAAAAAAAJEoAFgAAAAAAAAAAAAAAAAAAAAAAAIkSgAUAAAAAAAAAAAAAAAAAAAAAAECiBGABAAAAAAAAAAAAAAAAAAAAAACQKAFYAAAAAAAAAAAAAAAAAAAAAAAAJEoAFgAAAAAAAAAAAAAAAAAAAAAAAIkSgAUAAAAAAAAAAAAAAAAAAAAAAECiBGABAAAAAAAAAAAAAAAAAAAAAACQKAFYAAAAAAAAAAAAAAAAAAAAAAAAJEoAFgAAAAAAAAAAAAAAAAAAAAAAAIkSgAUAAAAAAAAAAAAAAAAAAAAAAECiBGABAAAAAAAAAAAAAAAAAAAAAACQKAFYAAAAAAAAAAAAAAAAAAAAAAAAJEoAFgAAAAAAAAAAAAAAAAAAAAAAAIkSgAUAAAAAAAAAAAAAAAAAAAAAAECiBGABAAAAAAAAAAAAAAAAAAAAAACQKAFYAAAAAAAAAAAAAAAAAAAAAAAAJEoAFgAAAAAAAAAAAAAAAAAAAAAAAIkSgAUAAAAAAAAAAAAAAAAAAAAAAECiBGABAAAAAAAAAAAAAAAAAAAAAACQKAFYAAAAAAAAAAAAAAAAAAAAAAAAJEoAFgAAAAAAAAAAAAAAAAAAAAAAAIkSgAUAAAAAAAAAAAAAAAAAAAAAAECiBGABAAAAAAAAAAAAAAAAAAAAAACQKAFYAAAAAAAAAAAAAAAAAAAAAAAAJEoAFgAAAAAAAAAAAAAAAAAAAAAAAIkSgAUAAAAAAAAAAAAAAAAAAAAAAECiBGABAAAAAAAAAAAAAAAAAAAAAACQKAFYAAAAAAAAAAAAAAAAAAAAAAAAJEoAFgAAAAAAAAAAAAAAAAAAAAAAAIkSgAUAAAAAAAAAAAAAAAAAAAAAAECiBGABAAAAAAAAAAAAAAAAAAAAAACQKAFYAAAAAAAAAAAAAAAAAAAAAAAAJEoAFgAAAAAAAAAAAAAAAAAAAAAAAIkSgAUAAAAAAAAAAAAAAAAAAAAAAECiBGABAAAAAAAAAAAAAAAAAAAAAACQKAFYAAAAAAAAAAAAAAAAAAAAAAAAJEoAFgAAAAAAAAAAAAAAAAAAAAAAAIkSgAUAAAAAAAAAAAAAAAAAAAAAAECiBGABAAAAAAAAAAAAAAAAAAAAAACQKAFYAAAAAAAAAAAAAAAAAAAAAAAAJEoAFgAAAAAAAAAAAAAAAAAAAAAAAIkSgAUAAAAAAAAAAAAAAAAAAAAAAECiBGABAAAAAAAAAAAAAAAAAAAAAACQqJxMDwDsO3qO+p9MjwAAkLhXbzoz0yMAAAAAAAAAGeC9FACwL/JeCgAAAAAAqI3sTA8AAAAAAAAAAAAAAAAAAAAAAADAvkUAFgAAAAAAAAAAAAAAAAAAAAAAAIkSgAUAAAAAAAAAAAAAAAAAAAAAAECiBGABAAAAAAAAAAAAAAAAAAAAAACQKAFYAAAAAAAAAAAAAAAAAAAAAAAAJEoAFgAAAAAAAAAAAAAAAAAAAAAAAIkSgAUAAAAAAAAAAAAAAAAAAAAAAECiBGABAAAAAAAAAAAAAAAAAAAAAACQKAFYAAAAAAAAAAAAAAAAAAAAAAAAJEoAFgAAAAAAAAAAAAAAAAAAAAAAAIkSgAUAAAAAAAAAAAAAAAAAAAAAAECiBGABAAAAAAAAAAAAAAAAAAAAAACQKAFYAAAAAAAAAAAAAAAAAAAAAAAAJEoAFgAAAAAAAAAAAAAAAAAAAAAAAIkSgAUAAAAAAAAAAAAAAAAAAAAAAECiBGABAAAAAAAAAAAAAAAAAAAAAACQKAFYAAAAAAAAAAAAAAAAAAAAAAAAJEoAFgAAAAAAAAAAAAAAAAAAAAAAAIkSgAUAAAAAAAAAAAAAAAAAAAAAAECiBGABAAAAAAAAAAAAAAAAAAAAAACQKAFYAAAAAAAAAAAAAAAAAAAAAAAAJEoAFgAAAAAAAAAAAAAAAAAAAAAAAIkSgAUAAAAAAAAAAAAAAAAAAAAAAECiBGABAAAAAAAAAAAAAAAAAAAAAACQKAFYAAAAAAAAAAAAAAAAAAAAAAAAJEoAFgAAAAAAAAAAAAAAAAAAAAAAAIkSgAUAAAAAAAAAAAAAAAAAAAAAAECiBGABAAAAAAAAAAAAAAAAAAAAAACQKAFYAAAAAAAAAAAAAAAAAAAAAAAAJEoAFgAAAAAAAAAAAAAAAAAAAAAAAIkSgAUAAAAAAAAAAAAAAAAAAAAAAECiBGABAAAAAAAAAAAAAAAAAAAAAACQKAFYAAAAAAAAAAAAAAAAAAAAAAAAJEoAFgAAAAAAAAAAAAAAAAAAAAAAAIkSgAUAAAAAAAAAAAAAAAAAAAAAAECiBGABAAAAAAAAAAAAAAAAAAAAAACQKAFYAAAAAAAAAAAAAAAAAAAAAAAAJEoAFgAAAAAAAAAAAAAAAAAAAAAAAIkSgAUAAAAAAAAAAAAAAAAAAAAAAECiBGABAAAAAAAAAAAAAAAAAAAAAACQKAFYAAAAAAAAAAAAAAAAAAAAAAAAJEoAFgAAAAAAAAAAAAAAAAAAAAAAAIkSgAUAAAAAAAAAAAAAAAAAAAAAAECiBGABAAAAAAAAAAAAAAAAAAAAAACQKAFYAAAAAAAAAAAAAAAAAAAAAAAAJEoAFgAAAAAAAAAAAAAAAAAAAAAAAIkSgAUAAAAAAAAAAAAAAAAAAAAAAECiBGABAAAAAAAAAAAAAAAAAAAAAACQKAFYAAAAAAAAAAAAAAAAAAAAAAAAJEoAFgAAAAAAAAAAAAAAAAAAAAAAAIkSgAUAAAAAAAAAAAAAAAAAAAAAAECiBGABAAAAAAAAAAAAAAAAAAAAAACQKAFYAAAAAAAAAAAAAAAAAAAAAAAAJEoAFgAAAAAAAAAAAAAAAAAAAAAAAIkSgAUAAAAAAAAAAAAAAAAAAAAAAECicjI9AHuOioqKmDVrVrzzzjuxevXqyM3NjTZt2sRRRx0VX/ziF+u01/vvvx8vv/xyLFmyJCorK6NZs2bRpUuXOProoyMvL69OewEAAAAAAAAAAGTa+vXrY/bs2fHee+/F6tWrIyKiadOm0aFDhzjssMOiqKgowxMCAAAAAAAAAEDdEoC1lzr99NPjkUceSVtr165dLFy4sNZ3rVixIsaOHRuTJk2K9evXb3NPz5494+c//3kMHjx4V8ZNmTJlSvzyl7+M1157bZuf5+fnx9lnnx1jxoyJFi1afK5eAAAAAAAAAAAAWystLY2XX345Zs+eHS+//HK88sorsXbt2tTnu/oOa3tefPHFuPnmm+PZZ5+NysrK7e47+OCD45vf/GZcfvnl0a1btzrrDwAAAAAAAAAAmSIAay/09NNPVwu/2lUzZsyIoUOHxsqVK3e479VXX40hQ4bEmWeeGXfffXfk5ubWqs/GjRtjxIgR8eCDD+5w37p16+L222+PRx99NCZPnhx9+vSpVR8AAAAAAAAAAICtzZw5M8aPHx+zZ8+OpUuXJtJzzZo1cdFFF8VDDz1Uo/2lpaVx7733xpFHHikACwAAAAAAAACAvYIArL3MmjVr4sILL6yTu/7617/Gf/zHf0R5eXnaemFhYXTo0CFWr14dixcvjs2bN6c++5//+Z9Yt25dTJ48ObKysmrUZ8uWLXHqqafG1KlT09b322+/aNu2bTRt2jSKi4tjzZo1qc9WrFgR3/rWt2L69Onx9a9//XN8SwAAAAAAAAAAYF83Z86cePLJJxPrV1paGscff3zMnTu32metWrWKVq1aRYMGDWL16tWxcOHC+PTTTxObDQAAAAAAAAAAkpKd6QGoW6NGjYrS0tKIiGjcuPEu37N69eo49dRT08Kv2rVrF1OmTIlVq1bFa6+9FsXFxbFw4cL4f//v/6WdfeKJJ+KWW26pca+bbrqpWvjVBRdcECUlJfHBBx/E66+/HqtWrYonnngi2rZtm9qzYcOGGDZsWFowFgAAAAAAAAAAQF3Kz8+v0/s++eSTOOGEE9LCr5o1axY33HBDfPDBB7Fs2bJ488034+WXX4758+fH+vXr429/+1v84he/iI4dO9bpLAAAAAAAAAAAkEkCsPYiM2bMiHvuuSciIrKzs2PMmDG7fNdNN90US5cuTdUdOnSIWbNmxeDBgyMrKyu13qZNm7jrrrviuuuuSzs/bty4WL169U77fPzxx9XOXn/99fGb3/wmWrdunVrLzs6Ok046KWbNmhXt27dPrS9ZsiRuvvnm2n49AAAAAAAAAACAapo0aRL9+vWLUaNGxeOPPx4LFy6Mp59+uk57XHbZZfHWW2+l6r59+8b8+fNj9OjR0aFDh2r7c3Nz46ijjoqxY8fG/Pnz47TTTqvTeQAAAAAAAAAAIFMEYO0lysvL49xzz42qqqqIiPjRj34URx555C7dtWLFivjv//7vtLW77747LZBqa1dddVX06dMnVa9Zsyb+67/+a6e9brzxxli7dm2q7tOnT1x55ZXb3X/wwQenQr4+c8stt8THH3+8014AAAAAAAAAAADbMmjQoHj77bejrKwsnnvuubjxxhvjlFNOiXbt2tVpnxkzZsS9996bqo888sh49tlno3nz5jU6n5WVFYWFhXU6EwAAAAAAAAAAZIoArL3Ez3/+83j//fcjIqJt27Zx7bXX7vJdjzzySKxbty5V9+nTJwYMGLDDM1lZWTFmzJi0tXvvvTcVyLUtW7Zsifvuuy9t7ZprromsrKwd9howYEAce+yxqXrt2rXx2GOP7fAMAAAAAAAAAADA9nTs2DG6desW2dn1+6TusssuS72pysnJiXvuuScaNWpUrz0BAAAAAAAAAGB3JQBrLzBnzpz49a9/narvuOOOyM/P3+X7pk6dmlaPGDGiRuf69+8fHTp0SNXLli2Lv/3tb9vdP2vWrFixYkWq/uIXvxj9+vWrUa+tZ5oyZUqNzgEAAAAAAAAAAGTCnDlz4vXXX0/VQ4YMie7du2dwIgAAAAAAAAAAyCwBWHu4TZs2xYgRI2Lz5s0RETF06ND49re/vcv3rVu3Ll544YW0teOPP75GZ7OysmLgwIFpa88888x290+bNi2tPu644yIrK6tGvY477ri0esaMGbF+/foanQUAAAAAAAAAADvARIMAAQAASURBVEjaxIkT0+rvfe97GZoEAAAAAAAAAAB2DwKw9nDXX399/OMf/4iIiMLCwrjttts+131vv/12bNq0KVV36NAhvvCFL9T4fO/evdPqN954Y7t7t/7s6KOPrnGf1q1bR/v27VN1ZWVlzJ07t8bnAQAAAAAAAAAAkrT1Dwb269cvM4MAAAAAAAAAAMBuQgDWHmzu3Llx3XXXpeobbrihVmFV2zJv3ry0ulu3brU6v/X+re/LVC8AAAAAAAAAAIBMWbZsWSxZsiRVt2/fPpo2bRoREevWrYv77rsvjj/++Gjfvn00aNAgDjzwwPjyl78cF1xwQUybNi2qqqoyNToAAAAAAAAAANSbnEwPwK7ZsmVLjBgxIiorKyMi4thjj43zzjvvc9/77rvvptVFRUW1Or/1/kWLFkVFRUXk5eWlrZeXl0dJSUmd9tp6dgAAAAAAAAAAgN3BnDlz0uovfvGLERExffr0OOuss2Lp0qVpn69cuTJWrlwZb731Vvz2t7+Nnj17xp133hm9evVKbGYAAAAAAAAAAKhv2ZkegF1z2223xd/+9reIiMjNzY0JEyZEVlbW5753+fLlaXWbNm1qdb5Vq1aRk/OvXLUtW7bExx9/XG3fypUr036VcP/994+WLVvWqtfBBx+cVm89OwAAAAAAAAAAwO5gwYIFaXVBQUE88MADcfzxx1cLv9qWV199Nfr27RtPPvlkfY0IAAAAAAAAAACJy9n5FnY3xcXFcfXVV6fqq666Krp06VInd69bty6tbty4ca3OZ2VlRcOGDWPt2rXbvXNba40aNap1gNfWs22rz65Yvnx5rFixolZntn6gBgAAAAAAAAAA8JmysrK0ev78+XHuueemfkSwTZs28b3vfS969OgRjRs3jiVLlsQzzzwT06ZNS52pqKiI0047LWbNmhU9e/ass9m8lwIAAAAAAAAAIFMEYO2Bzj///Fi/fn1ERHTp0iV++tOf1tndW4dI5eXl1fqOXQnA2tU+O7pzV915550xduzYOrkLAAAAAAAAAABg6wCst99+O/X3s88+O+64445o1KhR2p4LLrggnnvuufjud7+bOl9ZWRmnn356zJ07N3Jy6ub5n/dSAAAAAAAAAABkSnamB6B2Jk6cGNOnT4+IiKysrJgwYULk5ubW2f0VFRVp9a7c3aBBg7S6vLw8Y30AAAAAAAAAAAAybXs/7jdo0KC49957q4VffaZ///4xderUyM7+11O/+fPnx2OPPVYvcwIAAAAAAAAAQJIEYO1BPvzww7jiiitS9bnnnhvHHntsnfbIy8tLqysrK2t9x8aNG3d4Z5J9AAAAAAAAAAAAMm1bb5tycnLijjvuiKysrB2e7dOnT5x55plpaxMmTKjT+QAAAAAAAAAAIBNyMj0ANffDH/4wysrKIiLiC1/4Qtx444113iM/Pz+trqioqPUd5eXlO7wzyT674qKLLoqhQ4fW6syCBQtiyJAhddIfAAAAAAAAAADYu2zrbdMJJ5wQRUVFNTp//vnnx6RJk1L17Nmzo7KyMnJzcz/3bN5LAQAAAAAAAACQKQKw9hCPP/54PPnkk6n61ltvjcLCwjrvs/VDq/Xr19fqfFVV1S4FYG3YsCGqqqp2+muGO5qtrgKwWrZsGS1btqyTuwAAAAAAAAAAALb1tqlv3741Pn/kkUdGw4YNU2+zKioq4h//+Ef07Nnzc8/mvRQAAAAAAAAAAJmSnekBqJlRo0al/n7iiSfGsGHD6qXP1g+ZlixZUqvzH330UXz66aepOjs7O1q0aFFtX4sWLdLCrjZt2hTLly+vVa/S0tK02iMsAAAAAAAAAABgd9SqVatqa4ceemiNz+fk5ETHjh3T1mr73goAAAAAAAAAAHY3ArD2EGVlZam/T5s2LbKysnb6p3///ml3LFq0qNqeN954I21P586d0+qSkpJazbn1/nbt2kVeXl61fQ0bNoy2bdvWaa8uXbrU6jwAAAAAAAAAAEASunbtWm2toKCgVndsvX/16tWfayYAAAAAAAAAAMg0AVik2TpEau7cubU6P2/evB3el6leAAAAAAAAAAAAmdKtW7dqaxs3bqzVHRUVFWl1o0aNPtdMAAAAAAAAAACQaQKwSPOlL30p9t9//1S9cOHC+PDDD2t8fubMmWl1jx49trt3689mzZpV4z4ffvhhLFy4MFXvv//+23wkBgAAAAAAAAAAkGnNmzePtm3bpq199NFHtbpj+fLl1e4EAAAAAAAAAIA9WU6mB6Bmpk6dGps2barVmTfffDOuuOKKVN2qVat44IEH0vZ06tQprW7SpEn06dMn/vznP6fW/vSnP8WZZ565035VVVUxffr0tLVBgwZtd/+3v/3tuOGGG1L19OnTo6qqKrKysnba649//GNa3b9//8jPz9/pOQAAAAAAAAAAgEz4zne+E7fffnuqfvXVV2v0Livin2FZS5YsSVs79NBD63Q+AAAAAAAAAABImgCsPUTfvn1rfSYnJ/1/3ry8vBg4cOBOz33nO99JC8CaOHFijR5aPffcc1FcXJyqW7VqFUcdddR29x999NHRokWLWLlyZUREfPDBBzFjxozo37//TntNnDgxrR48ePBOzwAAAAAAAAAAAGTKSSedlBaANWXKlLjlllsiOzt7p2cnT56cVnft2jVatWpV5zMCAAAAAAAAAECSdv5yhn3OaaedFo0bN07VL7zwQvzlL3/Z4ZmqqqoYO3Zs2to555yzw8dZ2dnZcfbZZ6etjR07NqqqqnbY689//nO8+OKLqbpJkyYxbNiwHZ4BAAAAAAAAAADIpL59+0bnzp1TdUlJSdx///07Pbdhw4YYP3582pr3UgAAAAAAAAAA7A0EYFFNy5Yt4+KLL05bO/fcc2Pp0qXbPXP99dfHCy+8kKqbNm0ao0aN2mmvK6+8MvLz81P1888/HzfccMN295eWlsa5556btjZy5Mho0aLFTnsBAAAAAAAAAABkyn777RfXXntt2tqll14ar7322nbPbN68OUaMGBHFxcWptcaNG8ePfvSjepsTAAAAAAAAAACSkpPpAdg9jR49Ou6///5YtmxZREQUFxfH0UcfHbfddlsMGjQosrKyIiJiyZIlce2118Zvf/vbtPM/+9nP4oADDthpnxYtWsRPf/rT+OlPf5pau+qqq6KkpCSuvvrqaN26dUREbNmyJZ566qkYOXJklJSUpPa2bt06Lr/88s/9fQEAAAAAAAAAgH3bzJkzo7y8vNr6m2++mVZXVFTE9OnTt3lH69ato1u3btvtccopp0Tfvn3j+eefj4iINWvWRP/+/WPcuHFxzjnnREFBQWrvK6+8EqNGjYoZM2ak3XHzzTdH8+bNa/q1AAAAAAAAAABgtyUAi2064IAD4tFHH41vfvObUVFRERERixYtisGDB0dhYWF06NAhysrKoqSkJDZv3px2dvDgwXHFFVfUuNeVV14Zs2bNimeeeSa19pvf/CYmTJgQ7dq1i6ZNm0ZxcXGUlZWlnWvYsGE89thjUVhYuMvfEwAAAAAAAAAAICJi+PDhsWjRop3u++ijj+K4447b5mdnnXVWTJo0aYfnH3744ejdu3cUFxdHRMQnn3wSP/7xj2P06NHRsWPHaNy4cSxZsiT144X/7rzzzovzzz9/518GAAAAAAAAAAD2ANmZHoDdV58+fWLatGlxwAEHpK2XlZXF66+/HsXFxdXCr84444x49NFHIysrq8Z9srOz4/HHH4/TTjstbX3z5s3xwQcfxOuvv14t/Kp58+bx7LPPRu/evWv3pQAAAAAAAAAAADLooIMOihdeeCG++tWvpq1XVlbGvHnz4pVXXqkWfpWdnR3XXHNNTJgwIclRAQAAAAAAAACgXgnAYoe+8Y1vxNy5c+PCCy+MRo0abXffV77ylfj9738fDz74YDRo0KDWffLy8uLhhx+OyZMnR48ePba7r3HjxnHRRRfF3Llzo1+/frXuAwAAAAAAAAAAkGlt2rSJl156KW6//fbo2LHjdvc1aNAgTjrppHjzzTdjzJgxCU4IAAAAAAAAAAD1LyfTA1B/+vXrF1VVVZ/7nlatWsWdd94Z48ePj1mzZsW8efOirKwscnNz4+CDD46jjjoqOnXqVAcTR5x88slx8sknx4IFC2L27NlRWloalZWVUVhYGF27do3evXtHXl5enfQCAAAAAAAAAAD4zMKFCxPtl5OTEz/84Q/jhz/8Ybz11lvx+uuvx9KlS2PLli3RokWLaNeuXRxzzDE7/OFCAAAAAAAAAADYkwnAosYaNmwYAwYMiAEDBtR7r06dOtVZqBYAAAAAAAAAAMDu7LDDDovDDjss02MAAAAAAAAAAECisjM9AAAAAAAAAAAAAAAAAAAAAAAAAPsWAVgAAAAAAAAAAAAAAAAAAAAAAAAkSgAWAAAAAAAAAAAAAAAAAAAAAAAAiRKABQAAAAAAAAAAAAAAAAAAAAAAQKIEYAEAAAAAAAAAAAAAAAAAAAAAAJAoAVgAAAAAAAAAAAAAAAAAAAAAAAAkSgAWAAAAAAAAAAAAAAAAAAAAAAAAiRKABQAAAAAAAAAAAAAAAAAAAAAAQKIEYAEAAAAAAAAAAAAAAAAAAAAAAJAoAVgAAAAAAAAAAAAAAAAAAAAAAAAkSgAWAAAAAAAAAAAAAAAAAAAAAAAAiRKABQAAAAAAAAAAAAAAAAAAAAAAQKIEYAEAAAAAAAAAAAAAAAAAAAAAAJAoAVgAAAAAAAAAAAAAAAAAAAAAAAAkSgAWAAAAAAAAAAAAAAAAAAAAAAAAiRKABQAAAAAAAAAAAAAAAAAAAAAAQKIEYAEAAAAAAAAAAAAAAAAAAAAAAJAoAVgAAAAAAAAAAAAAAAAAAAAAAAAkSgAWAAAAAAAAAAAAAAAAAAAAAAAAiRKABQAAAAAAAAAAAAAAAAAAAAAAQKIEYAEAAAAAAAAAAAAAAAAAAAAAAJAoAVgAAAAAAAAAAAAAAAAAAAAAAAAkSgAWAAAAAAAAAAAAAAAAAAAAAAAAiRKABQAAAAAAAAAAAAAAAAAAAAAAQKIEYAEAAAAAAAAAAAAAAAAAAAAAAJAoAVgAAAAAAAAAAAAAAAAAAAAAAAAkSgAWAAAAAAAAAAAAAAAAAAAAAAAAiRKABQAAAAAAAAAAAAAAAAAAAAAAQKIEYAEAAAAAAAAAAAAAAAAAAAAAAJAoAVgAAAAAAAAAAAAAAAAAAAAAAAAkSgAWAAAAAAAAAAAAAAAAAAAAAAAAiRKABQAAAAAAAAAAAAAAAAAAAAAAQKIEYAEAAAAAAAAAAAAAAAAAAAAAAJAoAVgAAAAAAAAAAAAAAAAAAAAAAAAkSgAWAAAAAAAAAAAAAAAAAAAAAAAAiRKABQAAAAAAAAAAAAAAAAAAAAAAQKIEYAEAAAAAAAAAAAAAAAAAAAAAAJAoAVgAAAAAAAAAAAAAAAAAAAAAAAAkSgAWAAAAAAAAAAAAAAAAAAAAAAAAiRKABQAAAAAAAAAAAAAAAAAAAAAAQKIEYAEAAAAAAAAAAAAAAAAAAAAAAJAoAVgAAAAAAAAAAAAAAAAAAAAAAAAkSgAWAAAAAAAAAAAAAAAAAAAAAAAAiRKABQAAAAAAAAAAAAAAAAAAAAAAQKIEYAEAAAAAAAAAAAAAAAAAAAAAAJAoAVgAAAAAAAAAAAAAAAAAAAAAAAAkSgAWAAAAAAAAAAAAAAAAAAAAAAAAiRKABQAAAAAAAAAAAAAAAAAAAAAAQKIEYAEAAAAAAAAAAAAAAAAAAAAAAJAoAVgAAAAAAAAAAAAAAAAAAAAAAAAkSgAWAAAAAAAAAAAAAAAAAAAAAAAAiRKABQAAAAAAAAAAAAAAAAAAAAAAQKIEYAEAAAAAAAAAAAAAAAAAAAAAAJAoAVgAAAAAAAAAAAAAAAAAAAAAAAAkSgAWAAAAAAAAAAAAAAAAAAAAAAAAiRKABQAAAAAAAAAAAAAAAAAAAAAAQKIEYAEAAAAAAAAAAAAAAAAAAAAAAJAoAVgAAAAAAAAAAAAAAAAAAAAAAAAkSgAWAAAAAAAAAAAAAAAAAAAAAAAAiRKABQAAAAAAAAAAAAAAAAAAAAAAQKIEYAEAAAAAAAAAAAAAAAAAAAAAAJAoAVgAAAAAAAAAAAAAAAAAAAAAAAAkSgAWAAAAAAAAAAAAAAAAAAAAAAAAiRKABQAAAAAAAAAAAAAAAAAAAAAAQKIEYAEAAAAAAAAAAAAAAAAAAAAAAJAoAVgAAAAAAAAAAAAAAAAAAAAAAAAkSgAWAAAAAAAAAAAAAAAAAAAAAAAAiRKABQAAAAAAAAAAAAAAAAAAAAAAQKIEYAEAAAAAAAAAAAAAAAAAAAAAAJAoAVgAAAAAAAAAAAAAAAAAAAAAAAAkSgAWAAAAAAAAAAAAAAAAAAAAAAAAiRKABQAAAAAAAAAAAAAAAAAAAAAAQKIEYAEAAAAAAAAAAAAAAAAAAAAAAJAoAVgAAAAAAAAAAAAAAAAAAAAAAAAkSgAWAAAAAAAAAAAAAAAAAAAAAAAAiRKABQAAAAAAAAAAAAAAAAAAAAAAQKIEYAEAAAAAAAAAAAAAAAAAAAAAAJAoAVgAAAAAAAAAAAAAAAAAAAAAAAAkSgAWAAAAAAAAAAAAAAAAAAAAAAAAiRKABQAAAAAAAAAAAAAAAAAAAAAAQKIEYAEAAAAAAAAAAAAAAAAAAAAAAJAoAVgAAAAAAAAAAAAAAAAAAAAAAAAkSgAWAAAAAAAAAAAAAAAAAAAAAAAAiRKABQAAAAAAAAAAAAAAAAAAAAAAQKIEYAEAAAAAAAAAAAAAAAAAAAAAAJAoAVgAAAAAAAAAAAAAAAAAAAAAAAAkSgAWAAAAAAAAAAAAAAAAAAAAAAAAiRKABQAAAAAAAAAAAAAAAAAAAAAAQKIEYAEAAAAAAAAAAAAAAAAAAAAAAJAoAVgAAAAAAAAAAAAAAAAAAAAAAAAkSgAWAAAAAAAAAAAAAAAAAAAAAAAAiRKABQAAAAAAAAAAAAAAAAAAAAAAQKIEYAEAAAAAAAAAAAAAAAAAAAAAAJAoAVgAAAAAAAAAAAAAAAAAAAAAAAAkSgAWAAAAAAAAAAAAAAAAAAAAAAAAiRKABQAAAAAAAAAAAAAAAAAAAAAAQKIEYAEAAAAAAAAAAAAAAAAAAAAAAJAoAVgAAAAAAAAAAAAAAAAAAAAAAAAkSgAWAAAAAAAAAAAAAAAAAAAAAAAAiRKABQAAAAAAAAAAAAAAAAAAAAAAQKIEYAEAAAAAAAAAAAAAAAAAAAAAAJAoAVgAAAAAAAAAAAAAAAAAAAAAAAAkSgAWAAAAAAAAAAAAAAAAAAAAAAAAiRKABQAAAAAAAAAAAAAAAAAAAAAAQKIEYAEAAAAAAAAAAAAAAAAAAAAAAJAoAVgAAAAAAAAAAAAAAAAAAAAAAAAkSgAWAAAAAAAAAAAAAAAAAAAAAAAAiRKABQAAAAAAAAAAAAAAAAAAAAAAQKIEYAEAAAAAAAAAAAAAAAAAAAAAAJConEwPwK6rrKyMd955JxYuXBilpaWxdu3a2LRpUxQUFETz5s2je/fu0bVr19hvv/0yPWqtlZaWxksvvRSLFi2K8vLyKCgoiEMPPTSOOeaYyM/Pz/R4AAAAAAAAAAAAAAAAAAAAAADA5yAAaw8zefLkmD59esycOTPeeeed+PTTT3e4v2nTpnH66afHyJEjo0uXLjXu0759+1i0aNEuz/ncc89Fv379an3u+eefj2uuuSZmzJixzc9zc3Pj1FNPjXHjxkX79u13eT4AAAAAAAAAAAAAAAAAAAAAACBzsjM9ALXz4x//OH7729/GW2+9tdPwq4iINWvWxF133RXdu3ePa665JqqqqhKYsvaqqqpi9OjR0a9fv+2GX0VEVFZWxu9+97s47LDD4ve//31yAwIAAAAAAAAAAPuE0tLSePLJJ+MnP/lJfOMb34iCgoLIyspK/anvH+77xz/+Ebm5uWk9s7KyYtKkSfXaFwAAAAAAAAAAkpaT6QH4/PLy8qJt27bRtGnT2LJlS6xcuTJKSkrSwq42bdoUY8eOjcWLF8fEiRMzOO22XXLJJXH77benrWVlZUWbNm3iwAMPjJKSkli5cmXqs/Xr18epp54ajz/+eJx00klJjwsAAAAAAAAAAOxFZs6cGePHj4/Zs2fH0qVLMzbH5s2bY8SIEbFp06aMzQAAAAAAAAAAAEkRgLUHat26dZx44onRp0+f+PrXvx4dOnSI7OzstD2rV6+OyZMnx7hx42LJkiWp9XvvvTeOOeaYOOecc2rcr1WrVvHAAw/UasbDDz+8xnsfe+yxauFXJ598clx//fVxyCGHpNb+/Oc/x2WXXRZ///vfI+Kfj73OOuus+MpXvlLvv6oIAAAAAAAAAADsvebMmRNPPvlkpseIW265JebMmZPpMQAAAAAAAAAAIBECsPYwzz77bHz5y1+OrKysHe5r1qxZnHfeeXHKKafEwIED47XXXkt99rOf/SzOOuusaqFZ25OXlxcDBw78XHNvT2VlZVx55ZVpaxdccEHceeed1b7jgAED4oUXXoiBAwfGK6+8EhERa9eujTFjxsT9999fL/MBAAAAAAAAAAD7tvz8/Fi3bl2993n//ffjF7/4Rapu3LhxrF+/vt77AgAAAAAAAABAptQsAYndRvfu3XcafvXvmjVrFg888EDamQ8//DBmzpxZH+PV2sSJE2PhwoWp+pBDDolbbrllu9+xadOmcf/990dubm5q7cEHH4x33nmnvkcFAAAAAAAAAAD2ck2aNIl+/frFqFGj4vHHH4+FCxfG008/Xe99q6qq4rzzzovy8vKIiBg0aFB89atfrfe+AAAAAAAAAACQSQKw9gFdu3aNnj17pq3NmzcvQ9Oku+eee9Lqq666KvLy8nZ4plu3bnHqqaem6s2bN8d9991XL/MBAAAAAAAAAAB7v0GDBsXbb78dZWVl8dxzz8WNN94Yp5xySrRr1y6R/nfffXc899xzERGRn58fd9xxRyJ9AQAAAAAAAAAgkwRg7SM6duyYVq9cuTJDk/zLkiVL4rXXXkvV+fn5MWzYsBqdHTFiRFo9derUOp0NAAAAAAAAAADYd3Ts2DG6desW2dnJP6krLS2N0aNHp+rrrrsuioqKEp8DAAAAAAAAAACSJgBrH1FRUZFWFxYWZmaQfzNt2rS0unfv3tG4ceMane3du3c0atQoVb/77rsxf/78Op0PAAAAAAAAAACgvl100UWxZs2aiIjo1atXXHzxxRmeCAAAAAAAAAAAkiEAax9QVVUVc+bMSVvr2bNnhqb5lzfeeCOtPvroo2t8NicnJ3r16rXD+wAAAAAAAAAAAHZnjzzySDz11FMR8c83UXfffXdkZ3vWBwAAAAAAAADAviEn0wNQ/+69995YunRpqu7SpUu18KiaWLlyZSxZsiQ++eSTKCgoiObNm0ebNm0iKytrl+aaN29eWt2tW7dane/WrVvMmDFju/cBAAAAAAAAAADsrj7++OO45JJLUvXll18e3bt3z+BEAAAAAAAAAACQLAFYe7n7778/LrroolSdnZ0dt99+e61Cq5YvXx7dunXbZsDUAQccEMcee2ycccYZcfLJJ8d+++1X43vffffdtLqoqKjGZ7e1f+v7AAAAAAAAAAAAdlcjR46MFStWREREx44dY8yYMRmeCAAAAAAAAAAAkiUAaw/33nvvRUlJSaretGlTrF69Ot56662YOnVqzJ07N/VZbm5uTJgwIQYMGFCrHuXl5dsMv4qIWLVqVUydOjWmTp0aHTt2jIkTJ0bfvn1rdO9nj7c+06ZNm1rNdfDBB6fVy5cvr9V5AAAAAAAAAACATHj22WfjwQcfTNV33XVXNGzYMIMTAQAAAAAAAABA8gRg7eHuvPPOuPXWW3e4JysrK0444YS4/vrr4/DDD6+3Wd5///0YMGBAjB8/PkaOHLnDveXl5bF58+a0tcaNG9eq39b7161bV6vz27N8+fJq4Vw7s2DBgjrpDQAAAAAAAAAA7N3Wrl0bF1xwQar+/ve/HwMHDszYPN5LAQAAAAAAAACQKQKw9gFDhw6NSy65pNbhVwUFBXHCCSfEN7/5zTj88MOjQ4cOUVBQEBs2bIilS5fGrFmz4r777ou//vWvqTObN2+OSy+9NFq1ahWnnXbadu/eVlhVXl5erebb+hcP6yoA684774yxY8fWyV0AAAAAAAAAAAD/7sorr4zFixdHRESLFi3i5ptvzug83ksBAAAAAAAAAJAp2ZkegPr32GOPxTHHHBN9+vSp8S/v3XTTTVFaWhqPPvpo/OAHP4iePXvGAQccEDk5OVFQUBBdunSJH/zgB/Hiiy/GE088EYWFhamzVVVVMWLEiFi2bNl276+oqKi2lpubW6vv1aBBg7S6vLy8VucBAAAAAAAAAACS9OKLL8Zdd92VqsePHx8tWrTI4EQAAAAAAAAAAJA5ArD2cL/+9a+jqqoq9WfDhg2xePHieOaZZ2LEiBHRsGHD1N4XX3wxjjzyyHjllVd2eu/QoUMjPz+/RjOcdNJJ8b//+79pvTZs2BDXXXfdds/k5eVVW6usrKxRv89s3Lhxp3cCAAAAAAAAAADsDioqKmLEiBFRVVUVEREDBw6MM888M8NTAQAAAAAAAABA5uRkegDqVsOGDaNNmzbRpk2bOPHEE+MnP/lJDB06NN54442IiCgrK4shQ4bEW2+9FYWFhXXW92tf+1qMHj06xo4dm1p76KGH4tZbb43s7Oo5a9sK16qoqKhViFV5eflO79wVF110UQwdOrRWZxYsWBBDhgypk/4AAAAAAAAAAMDeZ8yYMTF//vyI+Oc7r7vuuivDE/2T91IAAAAAAAAAAGSKAKy9XKdOneJPf/pTHHHEEbF48eKIiCgtLY2bbroprrvuujrtNXLkyLj22mtj8+bNERGxatWqeOWVV6JXr17V9jZs2DD222+/1N6IiPXr19cqlGv9+vVpdV0FYLVs2TJatmxZJ3cBAAAAAAAAAAC89tprMX78+FT9i1/8Ijp27JjBif7FeykAAAAAAAAAADIlO9MDUP9atGgRY8eOTVubNGlSnfdp1qxZHHHEEWlr77777nb3H3jggWn1kiVLatWvtLQ0rfYICwAAAAAAAAAA2N18+umn8YMf/CD1Y4Hdu3ePK664IsNTAQAAAAAAAABA5gnA2kecdNJJkZWVlaqXLl0aixYtqvM+RUVFafWKFSu2u7dz585pdUlJSa16bb2/S5cutToPAAAAAAAAAABQ3x544IF48803IyIiOzs7JkyYEDk5ORmeCgAAAAAAAAAAMk8A1j6isLAwDjjggLS1ZcuW1Xmf/fffP63etGnTdvduHVg1d+7cWvWaN2/eDu8DAAAAAAAAAADItLKystTft2zZEl/72tciKytrp3+ef/75tHvOOeectM+HDBmS7BcBAAAAAAAAAIA6JgBrH7Z1WFVd2DpU68ADD9zu3h49eqTVs2bNqnGfTz/9NF5++eUd3gcAAAAAAAAAAAAAAAAAAAAAAOyeBGDtI9auXRurVq1KW2vVqlWd9ti4cWPMmTMnba2oqGi7+0888cS0etasWbF+/foa9Zo5c2Zs2LAhVR966KFx6KGH1mJaAAAAAAAAAAAAAAAAAAAAAAAgU3IyPQDJmDZtWlRVVaXqAw88MA466KA67fHII4+khVI1aNAgevfuvd39RUVF8ZWvfCVef/31iIhYt25dPPbYY3HOOefstNfEiRPT6sGDB+/i1AAAAAAAAAAAAPXn5JNPjsMOO6zW5y6//PL4+9//nqpHjRoVxx9/fKpu2bJlncwHAAAAAAAAAACZIgBrH1BeXh5jxoxJW/v2t78d2dnZddZj2bJl8bOf/Sxt7fjjj49GjRrt8NyIESPi4osvTtW/+tWv4vTTT4+8vLztnpk3b148+uijqTo7OzvOPvvsXRscAAAAAAAAAACgHhUVFUVRUVGtzzVr1iyt7tatWwwcOLCuxgIAAAAAAAAAgIyruwQk6t3o0aNjzpw5tTqzatWq+M53vhPvvfdeam2//faLSy+9dJv7P/zwwxgzZkysXr26xj0WLlwYJ5xwQpSWlqbWsrKy4pprrtnp2fPOOy/atm2bqt9777249NJLo6qqapv7P/nkkzjzzDOjsrIytXbGGWdEt27dajwvAAAAAAAAAAAAAAAAAAAAAACQWQKw9iB//OMfo1evXnHUUUfFzTffHG+88UZs2rSp2r6qqqp455134pe//GV07tw5pk+fnvb5pZdeGl/+8pe32WPjxo0xbty4aNu2bQwfPjyeeOKJWLp06Tb3LliwIK6++uro0aNHvPnmm2mfjRw5Mo444oidfqfc3Nz41a9+lbZ21113xbBhw2L+/Plp63/5y1/i2GOPjVdeeSW1lp+fH+PGjdtpHwAAAAAAAAAAAAAAAAAAAAAAYPeRk+kBqL2XX345Xn755Yj4Z4DUwQcfHIWFhZGbmxtr166NxYsXx9q1a7d59qyzzoobbrhhpz3WrVsXDz30UDz00EMREdG8efNo2bJlFBQURHl5eXz44YexYsWKbZ4dOnRojB8/vsbf5/TTT48XX3wxfvOb36TWJk+eHL///e+jqKgoDjzwwFi0aFGsXLky7Vx2dnbcd9990aFDhxr3AgAAAAAAAAAA2JaZM2dGeXl5tfWtfxywoqKi2o8SfqZ169bRrVu3epkPAAAAAAAAAAD2NgKw9nCVlZVRXFy8030FBQXxq1/9Ki644ILIysqqdZ+PP/44Pv744x3uadCgQfznf/5nXHrppbXucfvtt0deXl7ccsstqbWqqqooKSmJkpKSavsbNWoU9913X5xyyim16gMAAAAAAAAAALAtw4cPj0WLFu1030cffRTHHXfcNj8766yzYtKkSXU8GQAAAAAAAAAA7J2yMz0ANffwww/HDTfcEAMHDoyCgoKd7s/Kyoru3bvHTTfdFAsWLIgLL7xwp8FUrVq1iltvvTWGDBkSrVq1qtFc7dq1i6uvvjo++OCDuOyyy3YpYCs7Oztuvvnm+Mtf/hLHHnvsdvfl5ubG8OHD46233ophw4bVug8AAAAAAAAAAAAAAAAAAAAAAJB5OZkegJrr2rVrdO3aNUaPHh1btmyJ+fPnx4IFC6KkpCQ++eST2LRpUzRp0iSaNm0a7du3jyOOOKJGQVn/rmHDhnHJJZfEJZdcEhERH374Ybz77rtRUlISK1eujA0bNkRubm40a9YsWrZsGUceeWS0bt26zr5j//79o3///rFkyZKYNWtWlJSUREVFRTRp0iQOOeSQOOaYY2r9nQAAAAAAAAAAAAAAAAAAAAAAgN2LAKw9VHZ2dnTu3Dk6d+5cr30OOuigOOigg+q1x7a0adMmhg0blnhfAAAAAAAAAABg37Rw4cJMj5BmxowZmR4BAAAAAAAAAADqVXamBwAAAAAAAAAAAAAAAAAAAAAAAGDfIgALAAAAAAAAAAAAAAAAAAAAAACARAnAAgAAAAAAAAAAAAAAAAAAAAAAIFECsAAAAAAAAAAAAAAAAAAAAAAAAEiUACwAAAAAAAAAAAAAAAAAAAAAAAASJQALAAAAAAAAAAAAAAAAAAAAAACARAnAAgAAAAAAAAAAAAAAAAAAAAAAIFECsAAAAAAAAAAAAAAAAAAAAAAAAEiUACwAAAAAAAAAAAAAAAAAAAAAAAASJQALAAAAAAAAAAAAAAAAAAAAAACARAnAAgAAAAAAAAAAAAAAAAAAAAAAIFECsAAAAAAAAAAAAAAAAAAAAAAAAEiUACwAAAAAAAAAAAAAAAAAAAAAAAASJQALAAAAAAAAAAAAAAAAAAAAAACARAnAAgAAAAAAAAAAAAAAAAAAAAAAIFECsAAAAAAAAAAAAAAAAAAAAAAAAEiUACwAAAAAAAAAAAAAAAAAAAAAAAASJQALAAAAAAAAAAAAAAAAAAAAAACARAnAAgAAAAAAAAAAAAAAAAAAAAAAIFECsAAAAAAAAAAAgP/P3n1GWVmd/+O+z8ww9CpVqRasWEDsFTVYIhgVjCUgX0ss+Rk1iIUooAY1ajTGGDsajSX2HhuoiAYUKwgoAkOXjnRmhvN/4Z8TD3UGZs5hhutai+Wz97P3ve8jvNzr8wAAAAAAAAAAAEBGCcACAAAAAAAAAAAAAAAAAAAAAAAgowRgAQAAAAAAAAAAAAAAAAAAAAAAkFECsAAAAAAAAAAAAAAAAAAAAAAAAMgoAVgAAAAAAAAAAAAAAAAAAAAAAABklAAsAAAAAAAAAAAAAAAAAAAAAAAAMkoAFgAAAAAAAAAAAAAAAAAAAAAAABklAAsAAAAAAAAAAAAAAAAAAAAAAICMEoAFAAAAAAAAAAAAAAAAAAAAAABARgnAAgAAAAAAAAAAAAAAAAAAAAAAIKMEYAEAAAAAAAAAAAAAAAAAAAAAAJBRArAAAAAAAAAAAAAAAAAAAAAAAADIKAFYAAAAAAAAAAAAAAAAAAAAAAAAZJQALAAAAAAAAAAAAAAAAAAAAAAAADJKABYAAAAAAAAAAAAAAAAAAAAAAAAZJQALAAAAAAAAAAAAAAAAAAAAAACAjBKABQAAAAAAAAAAAAAAAAAAAAAAQEYJwAIAAAAAAAAAAAAAAAAAAAAAACCjBGABAAAAAAAAAAAAAAAAAAAAAACQUQKwAAAAAAAAAAAAAAAAAAAAAAAAyCgBWAAAAAAAAAAAAAAAAAAAAAAAAGSUACwAAAAAAAAAAAAAAAAAAAAAAAAySgAWAAAAAAAAAAAAAAAAAAAAAAAAGSUACwAAAAAAAAAAAAAAAAAAAAAAgIwSgAUAAAAAAAAAAAAAAAAAAAAAAEBGCcACAAAAAAAAAAAAAAAAAAAAAAAgowRgAQAAAAAAAAAAAAAAAAAAAAAAkFECsAAAAAAAAAAAAAAAAAAAAAAAAMgoAVgAAAAAAAAAAAAAAAAAAAAAAABklAAsAAAAAAAAAAAAAAAAAAAAAAAAMkoAFgAAAAAAAAAAAAAAAAAAAAAAABklAAsAAAAAAAAAAAAAAAAAAAAAAICMEoAFAAAAAAAAAAAAAAAAAAAAAABARgnAAgAAAAAAAAAAAAAAAAAAAAAAIKMEYAEAAAAAAAAAAAAAAAAAAAAAAJBRedluAAAAAFi/Dlf8M9stAABk1Mhbe2S7BQAAAAAAACAL3JUCALZG7ksBAABbu5xsNwAAAAAAAAAAAAAAAAAAAAAAAMDWRQAWAAAAAAAAAAAAAAAAAAAAAAAAGSUACwAAAAAAAAAAAAAAAAAAAAAAgIwSgAUAAAAAAAAAAAAAAAAAAAAAAEBGCcACAAAAAAAAAAAAAAAAAAAAAAAgowRgAQAAAAAAAAAAAAAAAAAAAAAAkFECsAAAAAAAAAAAAAAAAAAAAAAAAMgoAVgAAAAAAAAAAAAAAAAAAAAAAABklAAsAAAAAAAAAAAAAAAAAAAAAAAAMkoAFgAAAAAAAAAAAAAAAAAAAAAAABklAAsAAAAAAAAAAAAAAAAAAAAAAICMEoAFAAAAAAAAAAAAAAAAAAAAAABARgnAAgAAAAAAAAAAAAAAAAAAAAAAIKMEYAEAAAAAAAAAAAAAAAAAAAAAAJBRArAAAAAAAAAAAAAAAAAAAAAAAADIKAFYAAAAAAAAAAAAAAAAAAAAAAAAZJQALAAAAAAAAAAAAAAAAAAAAAAAADJKABYAAAAAAAAAAAAAAAAAAAAAAAAZJQALAAAAAAAAAAAAAAAAAAAAAACAjBKABQAAAAAAAAAAAAAAAAAAAAAAQEYJwAIAAAAAAAAAAAAAAAAAAAAAACCjBGABAAAAAAAAAAAAAAAAAAAAAACQUQKwAAAAAAAAAAAAAAAAAAAAAAAAyCgBWAAAAAAAAAAAAAAAAAAAAAAAAGSUACwAAAAAAAAAAAAAAAAAAAAAAAAySgAWAAAAAAAAAAAAAAAAAAAAAAAAGSUACwAAAAAAAAAAAAAAAAAAAAAAgIwSgAUAAAAAAAAAAAAAAAAAAAAAAEBGCcACAAAAAAAAAAAAAAAAAAAAAAAgowRgAQAAAAAAAAAAAAAAAAAAAAAAkFECsAAAAAAAAAAAAAAAAAAAAAAAAMgoAVgAAAAAAAAAAAAAAAAAAAAAAABklAAsAAAAAAAAAAAAAAAAAAAAAAAAMkoAFgAAAAAAAAAAAAAAAAAAAAAAABklAAsAAAAAAAAAAAAAAAAAAAAAAICMEoAFAAAAAAAAAAAAAAAAAAAAAABARgnAAgAAAAAAAAAAAAAAAAAAAAAAIKMEYAEAAAAAAAAAAAAAAAAAAAAAAJBRArAAAAAAAAAAAAAAAAAAAAAAAADIKAFYAAAAAAAAAAAAAAAAAAAAAAAAZJQALAAAAAAAAAAAAAAAAAAAAAAAADJKABYAAAAAAAAAAAAAAAAAAAAAAAAZJQALAAAAAAAAAAAAAAAAAAAAAACAjBKABQAAAAAAAAAAAAAAAAAAAAAAQEYJwAIAAAAAAAAAAAAAAAAAAAAAACCjBGABAAAAAAAAAAAAAAAAAAAAAACQUQKwAAAAAAAAAAAAAAAAAAAAAAAAyCgBWAAAAAAAAAAAAAAAAAAAAAAAAGSUACwAAAAAAAAAAAAAAAAAAAAAAAAySgAWAAAAAAAAAAAAAAAAAAAAAAAAGSUACwAAAAAAAAAAAAAAAAAAAAAAgIwSgAUAAAAAAAAAAAAAAAAAAAAAAEBGCcACAAAAAAAAAAAAAAAAAAAAAAAgowRgAQAAAAAAAAAAAAAAAAAAAAAAkFECsAAAAAAAAAAAAAAAAAAAAAAAAMiovGw3wKZbuXJljB07NiZNmhTTpk2LRYsWRWFhYdSpUye22Wab2HPPPWPXXXeN3NzcMjmvqKgohg8fHqNGjYq5c+dGbm5uNGvWLDp06BC77757mZyx2rRp0+Ljjz+OgoKCWLZsWdSpUyfatm0bhxxySNSqVatMzwIAAAAAAAAAAMi0xYsXx+jRo2Ps2LExd+7cWL58edSrVy8aN24c++67b7Ru3TrbLQIAAAAAAAAAQLkSgFXBPPvss/HOO+/EsGHDYuzYsVFUVLTB9XXr1o3TTz89fv/738cuu+yySWcuXrw4br755vjHP/4R8+bNW+eanXfeOa688so4++yzI5FIbNI5ERHvv/9+9O/fP9577711vs/Pz4/TTjstrr/+ehe8AAAAAAAAAACAMjdt2rQYMWJEDB8+PEaMGBGffvppLFq0KPW+VatWMWnSpE2qPXz48HjxxRfj3XffjZEjR8aqVavWu7ZVq1ZxwQUXxG9/+9uoX7/+Jp0HAAAAAAAAAABbMgFYFcyll14a06ZNK/H6hQsXxr333hsPPfRQXHPNNdGvX79SBVR9/fXX0bVr15g4ceIG140bNy7+7//+L55++ul4+umno27duiU+IyIimUzGlVdeGbfeeusG161cuTIee+yxeP755+PRRx+NU045pVTnAAAAAAAAAAAArGnYsGFx++23x/Dhw2P69OllXv+LL76IU045JSZMmFDiPQUFBXH11VfHX//61xg0aFAce+yxZd4XAAAAAAAAAABkU062G2DzVatWLdq2bRsdO3aMDh06RKtWrdYKuSosLIwBAwbEueeeW+K648aNi06dOq0VflWrVq3Yc889Y6eddooqVaqkvXvzzTfjuOOOi+XLl5fqN1xyySVrhV8lEolo0aJFtG/fPho2bJj2bsmSJXHaaafFCy+8UKpzAAAAAAAAAAAA1vTJJ5/ECy+8UC7hVxERU6dOXW/4Vd26dWPnnXeO/fbbL7bffvu17n7NnDkzTjjhhHjqqafKpTcAAAAAAAAAAMgWAVgV0LbbbhvnnXdePPbYYzF+/PhYsmRJjBs3LkaMGBGffvppTJo0KebOnRv3339/NG/ePG3vww8/HIMGDdroGUVFRdGtW7eYM2dOaq5Bgwbx6KOPxrx58+LLL7+Mb7/9NmbOnBl9+/aNnJz//VP6+OOPo0+fPiX+Pf/+97/j7rvvTps75ZRTYty4cTF58uQYOXJkzJ49O955553Yc889U2uKi4ujZ8+eMWnSpBKfBQAAAAAAAAAAUBq1atUq85oHHHBA3H333TF69OhYsGBBjB07NoYPHx7ff/99/PDDD/GnP/0patSokVq/atWq6NGjR3z++edl3gsAAAAAAAAAAGSLAKwK5vXXX4+pU6fG/fffH2eddVbssMMOaeFTq9WvXz/OO++8+Oqrr6J9+/Zp7/r27RurVq3a4DkPP/xwfP3112n1hg4dGj169IgqVaqk5hs0aBA33nhjPPbYY2n7//GPf8R333230d+zcuXKuPLKK9PmLrjggnjmmWdip512Sps/6qij4oMPPoh99903Nbdo0aLo16/fRs8BAAAAAAAAAADYmNq1a8cRRxwRV1xxRTzzzDMxadKkeOWVV8qkdk5OTpx11lkxatSo+Pjjj+Piiy+O3Xbbba11jRo1imuuuSY+/vjjaNCgQWq+sLAwLr300jLpBQAAAAAAAAAAtgQCsCqYPffcMxKJRInX169fPx5//PG0PTNmzIhhw4atd8/KlSvjxhtvTJu77bbb1nnZarUzzjgjzjrrrNS4qKgo+vfvv9H+HnrooZg0aVJqvNNOO8Udd9yx3t9Yt27dePTRRyM/Pz81969//SvGjh270bMAAAAAAAAAAADW5cQTT4zRo0fHggULYsiQIfHnP/85Tj311GjVqlWZ1G/btm189dVX8dhjj8Xuu+9eoj177rlnDBo0KG3ugw8+iPHjx5dJTwAAAAAAAAAAkG0CsLYCu+66a3To0CFtbsyYMetd/+abb8aUKVNS49atW0evXr02ek7//v3TgqueeeaZWLhw4Qb3PPjgg2njq6++OqpVq7bBPbvttlucdtppqXFxcfFaF70AAAAAAAAAAABKaocddojddtstcnLK50pd27ZtSxx89XNdunRZ68OF//nPf8qqLQAAAAAAAAAAyCoBWFuJHXbYIW08Z86c9a596aWX0sa9evVKC7ba0BmHH354alxYWBivv/76etdPnTo1Pvvss9S4Vq1a0b17942eExFxzjnnbLBnAAAAAAAAAACAyuDQQw9NG0+ePDlLnQAAAAAAAAAAQNkSgLWVWL58edq4Xr1661372muvpY1/8YtflPicY445Jm386quvlvicgw8+OGrWrFmicw4++OCoUaNGajxu3Lj47rvvStwnAAAAAAAAAABARVC/fv208cKFC7PUCQAAAAAAAAAAlC0BWFuBZDIZn3zySdpchw4d1rn2hx9+iJkzZ6bGVatWjfbt25f4rIMPPjht/MUXX6x37ZrvDjrooBKfk5eXF/vtt1+JzwIAAAAAAAAAAKiIpk2bljbeZpttstQJAAAAAAAAAACULQFYW4GHH344pk+fnhrvsssua4VHrTZmzJi08Y477hj5+fklPmu33XZLG48fPz6KiopKdNaae0t71pr1AAAAAAAAAAAAKrJkMhkffvhh2lzbtm2z1A0AAAAAAAAAAJQtAViV3KOPPhoXXXRRapyTkxN33313JBKJda4fN25c2rhFixalOq9Ro0ZRrVq11HjlypUxceLEcjlrzfVr1gMAAAAAAAAAAKjI3nvvvbT7V4lEIo499tgsdgQAAAAAAAAAAGUnL9sNsHm+/fbbmDx5cmpcWFgY8+fPj1GjRsVLL70U33zzTepdfn5+3H///XHUUUett96sWbPSxs2bNy91T9tuu21MmDAhreZOO+201rrZs2dv1lnbbbdd2njN3gEAAAAAAAAAACqqVatWxdVXX502d+yxx0bTpk2z1BEAAAAAAAAAAJQtAVgV3D333BN//etfN7hm9Vf/brrppthrr702uHbx4sVp45o1a5a6pzX3rFkzImLZsmVRXFy8WWeV5JxNMWvWrLXCuTZm/PjxZXI2AAAAAAAAAABARMRtt90Ww4cPT41zcnLiT3/6U5mf474UAAAAAAAAAADZIgBrK9CtW7e45JJLNhp+FbF2iFS1atVKfV716tU3WHN9c6U9qyTnbIp77rknBgwYUCa1AAAAAAAAAAAASmvo0KHRt2/ftLlLL7009tlnnzI/y30pAAAAAAAAAACyJSfbDVD+/v3vf8chhxwShx122Ea/vLd8+fK0cX5+fqnPq1q1atp42bJlGz1nU84qyTkAAAAAAAAAAAAVyYQJE+Lkk0+OoqKi1Nzee+8dAwcOzGJXAAAAAAAAAABQ9gRgVXB33nlnJJPJ1J+lS5fGlClT4tVXX41zzjknqlevnlo7dOjQ6NixY3z66afrrVetWrW08cqVK0vd04oVKzZYc31zpT2rJOcAAAAAAAAAAABUFHPmzInjjjsu5syZk5pr0qRJPP/882t9MBAAAAAAAAAAACq6vGw3QNmqXr16NG/ePJo3bx4nnHBCXHXVVdGtW7f44osvIiJiwYIFcdJJJ8WoUaOiXr16a+2vVatW2nj58uWl7mHZsmUbrLm+ueXLl5cqxKok52yKiy66KLp161aqPePHj4+TTjqpTM4HAAAAAAAAAAC2PosWLYrjjjsuvv3229Rc3bp1480334w2bdqU27nuSwEAAAAAAAAAkC0CsCq5HXfcMd5+++1o3759TJkyJSIipk2bFrfeemv86U9/Wmv9miFSS5YsKfWZa+5ZVzBV9erVIzc3N4qLi9P2rSuUa3PO2RSNGzeOxo0bl0ktAAAAAAAAAACAjVm+fHl06dIlPv3009RcjRo14rXXXou99tqrXM92XwoAAAAAAAAAgGzJyXYDlL+GDRvGgAED0uYeeeSRda5d8yLT1KlTS33e9OnTN1hztUaNGm3WWdOmTSvROQAAAAAAAAAAAFuqwsLC6N69e7z33nupufz8/Hj++efj4IMPzl5jAAAAAAAAAABQzgRgbSV+9atfRSKRSI2nT58eBQUFa63beeed08aTJ08u1TmzZs2K5cuXp8b5+fmx/fbbr3Pt5p615vpddtmlVPsBAAAAAAAAAACyadWqVdGjR4945ZVXUnO5ubnxxBNPROfOnbPYGQAAAAAAAAAAlD8BWFuJevXqRYMGDdLmZs6cuda6NUOkvv/++1i5cmWJzxkzZkzaeIcddoi8vLx1rl3zrG+++abE56zrLAFYAAAAAAAAAABARZFMJuP888+Pp556KjWXSCTiwQcfjFNOOSWLnQEAAAAAAAAAQGYIwNqKValSZa25pk2bRtOmTVPjFStWxMiRI0tcc9iwYWnjvffee71r13z30UcflficoqKiGDFiRInPAgAAAAAAAAAA2JJcdtll8dBDD6XN3XXXXXH22WdnpyEAAAAAAAAAAMgwAVhbiUWLFsW8efPS5po0abLOtSeccELa+O233y7xOWuuPfHEE9e7ds1zPvroo1iyZEmJzhk2bFgsXbo0NW7btm20bdu2xH0CAAAAAAAAAABky7XXXht//etf0+YGDhwYv/vd77LUEQAAAAAAAAAAZJ4ArK3Ea6+9FslkMjVu1KhRNGvWbJ1ru3TpkjYeNGhQ2t71+f777+P9999PjatUqRLHH3/8ete3aNEi9tlnn9R48eLF8e9//3uj50TEWl8+7Nq1a4n2AQAAAAAAAAAAZNOtt94aN954Y9rc1VdfHVdffXWWOgIAAAAAAAAAgOwQgLUVWLZsWfTr1y9t7pe//GXk5Kz7r79z587RvHnz1HjSpEkxaNCgjZ7Tv3//tKCsU045JerWrbvBPeecc07a+Oabb47ly5dvcM+YMWPi6aefTo1zcnLi7LPP3mh/AAAAAAAAAAAA2XTfffdFnz590uZ+97vfxcCBA7PUEQAAAAAAAAAAZI8ArAqkT58+8cknn5Rqz7x586JLly7x7bffpuZyc3PjsssuW++eqlWrRt++fdPmevfuHd9888169zzxxBPx+OOPp50xYMCAjfZ33nnnRcuWLVPjb7/9Ni677LK0IK2f+/HHH6NHjx6xcuXK1NwZZ5wRu+2220bPAgAAAAAAAAAAyJYnnngiLrroorS5Xr16xV133ZWljgAAAAAAAAAAILvyst0AJffWW2/FrbfeGvvtt1+cdtpp0alTp9h9992jSpUqaeuSyWSMGzcunnnmmbjrrrtizpw5ae8vu+yyaNeu3QbPOuecc+Luu++O0aNHR0TE/Pnz49BDD4077rgjzjjjjMjL++mfzrx58+KOO+5Y6wuEv/3tb6Nt27Yb/U35+flx8803xxlnnJGau/fee2POnDkxcODA2GmnnVLzgwcPjssuuyy++uqr1FytWrXi+uuv3+g5AAAAAAAAAAAAGzJs2LBYtmzZWvNffvll2nj58uXxzjvvrLPGtttuu86P+b3zzjvRs2fPWLVqVWpul112idNOOy3efffdUvVZv3796NChQ6n2AAAAAAAAAADAlkgAVgU0YsSIGDFiRET8FCC13XbbRb169SI/Pz8WLVoUU6ZMiUWLFq1zb8+ePeOWW27Z6BlVqlSJZ555Jg455JCYN29eRPwUdtWzZ8+4+OKLY4cddohly5bFxIkTo7CwMG3vfvvtF7fddluJf8/pp58eQ4cOjX/84x+puWeffTaee+65aNGiRTRq1CgKCgrWCvLKycmJQYMGRZs2bUp8FgAAAAAAAAAAwLqceeaZUVBQsNF1P/zwQxxzzDHrfNezZ8945JFH1pr/8MMPo6ioKG1u7Nixceyxx5a6z8MPPzzee++9Uu8DAAAAAAAAAIAtjQCsCm7lypUxceLEja6rU6dO3HzzzXHBBRdEIpEoUe1dd901Bg8eHF27dk272LV48eK1vmq42tFHHx3PPPNMVK9evWQ/4P939913R7Vq1eKOO+5IzSWTyZg8eXJMnjx5rfU1atSIQYMGxamnnlqqcwAAAAAAAAAAAAAAAAAAAAAAgOzLyXYDlNyTTz4Zt9xySxx99NFRp06dja5PJBKx5557xq233hrjx4+PCy+8sMThV6vttdde8fXXX8fVV18d9evXX++6nXbaKR544IF46623ol69eqU6IyIiJycn/vKXv8TgwYPj0EMPXe+6/Pz8OPPMM2PUqFHRvXv3Up8DAAAAAAAAAAAAAAAAAAAAAABkX162G6Dkdt1119h1112jT58+sWrVqvjuu+9i/PjxMXny5Pjxxx+jsLAwateuHXXr1o3WrVtH+/btSxSUtTG1a9eOgQMHxoABA2L48OExatSomDt3buTm5kazZs2iffv20a5duzL4hRFHHnlkHHnkkTF16tT46KOPYvLkybF8+fKoXbt27LTTTnHIIYeUyW8CAAAAAAAAAAD4uUmTJpVb7f79+0f//v3LrT4AAAAAAAAAAFREArAqqJycnNh5551j5513ztiZVapUiUMOOSQOOeSQcj+refPm0b1793I/BwAAAAAAAAAAAAAAAAAAAAAAyLycbDcAAAAAAAAAAAAAAAAAAAAAAADA1kUAFgAAAAAAAAAAAAAAAAAAAAAAABklAAsAAAAAAAAAAAAAAAAAAAAAAICMEoAFAAAAAAAAAAAAAAAAAAAAAABARgnAAgAAAAAAAAAAAAAAAAAAAAAAIKMEYAEAAAAAAAAAAAAAAAAAAAAAAJBRArAAAAAAAAAAAAAAAAAAAAAAAADIKAFYAAAAAAAAAAAAAAAAAAAAAAAAZJQALAAAAAAAAAAAAAAAAAAAAAAAADJKABYAAAAAAAAAAAAAAAAAAAAAAAAZJQALAAAAAAAAAAAAAAAAAAAAAACAjBKABQAAAAAAAAAAAAAAAAAAAAAAQEYJwAIAAAAAAAAAAAAAAAAAAAAAACCjBGABAAAAAAAAAAAAAAAAAAAAAACQUQKwAAAAAAAAAAAAAAAAAAAAAAAAyCgBWAAAAAAAAAAAAAAAAAAAAAAAAGSUACwAAAAAAAAAAAAAAAAAAAAAAAAySgAWAAAAAAAAAAAAAAAAAAAAAAAAGSUACwAAAAAAAAAAAAAAAAAAAAAAgIwSgAUAAAAAAAAAAAAAAAAAAAAAAEBGCcACAAAAAAAAAAAAAAAAAAAAAAAgowRgAQAAAAAAAAAAAAAAAAAAAAAAkFECsAAAAAAAAAAAAAAAAAAAAAAAAMgoAVgAAAAAAAAAAAAAAAAAAAAAAABklAAsAAAAAAAAAAAAAAAAAAAAAAAAMkoAFgAAAAAAAAAAAAAAAAAAAAAAABklAAsAAAAAAAAAAAAAAAAAAAAAAICMEoAFAAAAAAAAAAAAAAAAAAAAAABARgnAAgAAAAAAAAAAAAAAAAAAAAAAIKMEYAEAAAAAAAAAAAAAAAAAAAAAAJBRArAAAAAAAAAAAAAAAAAAAAAAAADIKAFYAAAAAAAAAAAAAAAAAAAAAAAAZJQALAAAAAAAAAAAAAAAAAAAAAAAADJKABYAAAAAAAAAAAAAAAAAAAAAAAAZJQALAAAAAAAAAAAAAAAAAAAAAACAjBKABQAAAAAAAAAAAAAAAAAAAAAAQEYJwAIAAAAAAAAAAAAAAAAAAAAAACCjBGABAAAAAAAAAAAAAAAAAAAAAACQUQKwAAAAAAAAAAAAAAAAAAAAAAAAyCgBWAAAAAAAAAAAAAAAAAAAAAAAAGSUACwAAAAAAAAAAAAAAAAAAAAAAAAySgAWAAAAAAAAAAAAAAAAAAAAAAAAGSUACwAAAAAAAAAAAAAAAAAAAAAAgIwSgAUAAAAAAAAAAAAAAAAAAAAAAEBGCcACAAAAAAAAAAAAAAAAAAAAAAAgowRgAQAAAAAAAAAAAAAAAAAAAAAAkFECsAAAAAAAAAAAAAAAAAAAAAAAAMgoAVgAAAAAAAAAAAAAAAAAAAAAAABklAAsAAAAAAAAAAAAAAAAAAAAAAAAMkoAFgAAAAAAAAAAAAAAAAAAAAAAABklAAsAAAAAAAAAAAAAAAAAAAAAAICMEoAFAAAAAAAAAAAAAAAAAAAAAABARgnAAgAAAAAAAAAAAAAAAAAAAAAAIKMEYAEAAAAAAAAAAAAAAAAAAAAAAJBRArAAAAAAAAAAAAAAAAAAAAAAAADIKAFYAAAAAAAAAAAAAAAAAAAAAAAAZJQALAAAAAAAAAAAAAAAAAAAAAAAADJKABYAAAAAAAAAAAAAAAAAAAAAAAAZJQALAAAAAAAAAAAAAAAAAAAAAACAjBKABQAAAAAAAAAAAAAAAAAAAAAAQEblZbuBbJg3b16MGTMm5s2bFwsXLoxVq1ZF586do0mTJtluDQAAAAAAAAAAAAAAAAAAAAAAoNLbagKwZs2aFXfffXc899xzMXbs2LXev/322+sMwBo0aFBMmTIlIiK23XbbOPfcc8u9VwAAAAAAAAAAAAAAAAAAAAAAgMpsqwjAuvXWW+O6666LlStXRjKZXOt9IpFY797FixdH//79I5FIRG5ubpx44onrDMoCAAAAAAAAAAAAAAAAAAAAAACgZHKy3UB5Ki4ujpNPPjmuuuqqWLFixVrvNxR8tdo555wTderUiWQyGcXFxfHEE0+UR6sAAAAAAAAAAAAAAAAAAAAAAABbjUodgHXxxRfHiy++GMlkMhKJRCSTydhnn33iyiuvjL///e+RTCY3WqNGjRpx4oknpsavv/56ebYMAAAAAAAAAAAAAAAAAAAAAABQ6VXaAKwPP/ww7r///kgkEpFIJKJhw4bx2muvxciRI+Omm26KCy+8MCIiEonERmuddNJJERGRTCZj2LBhsXLlyvJsHQAAAAAAAAAAAAAAAAAAAAAAoFKrtAFY1113XUT8FFpVu3bteP/99+O4447bpFr7779/6nnFihUxbty4MukRAAAAAAAAAAAAAAAAAAAAAABga1QpA7Dmz58fQ4cOjUQiEYlEIv74xz/GLrvsssn1mjdvHvXr10+Nx44dWxZtAgAAAAAAAAAAAAAAAAAAAAAAbJUqZQDWhx9+GMXFxZFMJiMnJyfOPffcza7ZuHHj1POsWbM2ux4AAAAAAAAAAAAAAAAAAAAAAMDWqlIGYE2fPj0iIhKJRGy//fZRr169za5Zt27d1POiRYs2ux4AAAAAAAAAAAAAAAAAAAAAAMDWqlIGYM2bNy/13KBBgzKpuWLFitRzlSpVyqQmAAAAAAAAAAAAAAAAAAAAAADA1qhSBmDVrVs39bxo0aIyqTlr1qzUc8OGDcukJgAAAAAAAAAAAAAAAAAAAAAAwNaoUgZgNWrUKCIikslkFBQUxKpVqzar3pQpU2LGjBmp8bbbbrtZ9QAAAAAAAAAAAAAAAAAAAAAAALZmlTIAa6+99ko9L126NIYNG7ZZ9Z555pnUc25ubhxwwAGbVQ8AAAAAAAAAAAAAAAAAAAAAAGBrVikDsNq2bRtt2rSJRCIRERF/+ctfNrnWjz/+GHfccUckEolIJBLRsWPHqF27dlm1CgAAAAAAAAAAAAAAAAAAAAAAsNWplAFYERE9evSIZDIZyWQyXn755Xj00UdLXaO4uDh69OgR06ZNi2QyGRERF110UVm3CgAAAAAAAAAAAAAAAAAAAAAAsFWptAFYvXv3jsaNG0cikYhkMhnnnntu3HrrrVFcXFyi/WPHjo1OnTrFK6+8EolEIhKJRLRt2zbOOOOMcu4cAAAAAAAAAAAAAAAAAAAAAACgcsvLdgPlpWbNmvHggw/Gr371q1i1alUUFxfHVVddFffcc0+cfvrp0aFDh4iISCaTkUgkYuTIkTFv3rwYP358DB48OAYPHhzJZDKSyWRERFSvXj2eeOKJSCQS2fxZAAAAAAAAAAAAAAAAAAAAAAAAFV6lDcCKiPjlL38Zf//73+Oiiy6KiJ/CrgoKCuKWW25JW5dMJuOqq65aa2512FWVKlVi0KBBsc8++2SmcQAAAAAAAAAAAAAAAAAAAAAAgEosJ9sNlLfzzz8/3nzzzWjSpElERCrUanXA1eo/yWQy9Wf1umQyGU2aNIl33303unfvnrXfAAAAAAAAAAAAAAAAAAAAAAAAUJlU+gCsiIijjjoqxowZEwMHDoxmzZqlQq7WDL1aLZlMRr169WLAgAExbty4OOSQQ7LRNgAAAAAAAAAAAAAAAAAAAAAAQKWUl+0GMqVu3bpx1VVXRZ8+feLLL7+MoUOHxpgxY2Lu3LmxYMGCqFGjRjRs2DDatGkTRx55ZOy3336Rl7fV/O8BAAAAAAAAAAAAAAAAAAAAAADImK0u4SknJyf22Wef2GeffbLdCgAAAAAAAAAAAAAAAAAAAAAAwFYpJ9sNAAAAAAAAAAAAAAAAAAAAAAAAsHURgAUAAAAAAAAAAAAAAAAAAAAAAEBGCcACAAAAAAAAAAAAAAAAAAAAAAAgowRgAQAAAAAAAAAAAAAAAAAAAAAAkFF52W6gvHzwwQflVvuwww4rt9oAAAAAAAAAAAAAAAAAAAAAAACVXaUNwDriiCMikUiUed1EIhFFRUVlXhcAAAAAAAAAAAAAAAAAAAAAAGBrUWkDsFZLJpPZbgEAAAAAAAAAAAAAAAAAAAAAAICfqdQBWJsafpVIJMqkDgAAAAAAAAAAAAAAAAAAAAAAAGurtAFY/fr1K/WepUuXxuzZs+OTTz6J0aNHR8RPYVg77rhjnHnmmWXdIgAAAAAAAAAAAAAAAAAAAAAAwFZJANZ6jBo1Kvr27RuvvPJKfP/99zF+/PgYNGhQ5OVV2v9lAAAAAAAAAAAAAAAAAAAAAAAAGZGT7Qa2VHvssUe89NJL0bdv30gmk/HEE09Er169st0WAAAAAAAAAAAAAAAAAAAAAABAhScAayNuuOGG6Ny5cyoE68knn8x2SwAAAAAAAAAAAAAAAAAAAAAAABWaAKwS6NevX0REJJPJ1DMAAAAAAAAAAAAAAAAAAAAAAACbRgBWCRxwwAHRoEGDiIj4/vvv4/PPP89yRwAAAAAAAAAAAAAAAAAAAAAAABWXAKwSatmyZer5s88+y2InAAAAAAAAAAAAAAAAAAAAAAAAFZsArBLKyfnf/6pZs2ZlsRMAAAAAAAAAAAAAAAAAAAAAAICKTQBWCaxatSomTJiQGlerVi2L3QAAAAAAAAAAAAAAAAAAAAAAAFRsArBK4NVXX40FCxakxk2bNs1eMwAAAAAAAAAAAAAAAAAAAAAAABWcAKyN+P777+Piiy+ORCKRmjvkkEOy2BEAAAAAAAAAAAAAAAAAAAAAAEDFlpftBrZExcXFMWrUqPj3v/8df/vb32LJkiWRTCYjkUjEgQceGC1atMh2iwAAAAAAAAAAAGWmU6dOWT0/kUjEu+++m9UeAAAAAAAAAACAzKq0AVjbb7/9Ju1btmxZzJ8/PwoLCyMiUsFXERG5ublx2223lVmPAAAAAAAAAAAAW4L33nsvdU8q035+RwsAAAAAAAAAANh6VNoArEmTJkUikYhkMrnJNRKJRKpGbm5uPPDAA3HAAQeUYZcAAAAAAAAAAAAV05p3s0oSYrUpewAAAAAAAAAAgMqp0gZgrbYpF6RWX7Ja/d/99tsv/va3v0XHjh3LtDcAAAAAAAAAAIAtxaZ8bPDn97NKsn/N9ZvzgUMAAAAAAAAAAKBiq7QBWC1btix1+FUikYhq1apFnTp1olWrVtG+ffs4/vjjo127duXUJQAAAAAAAAAAQPatWrWqVOvff//96NWrVxQUFEQymYymTZvGr3/96zjiiCOiXbt2sc0220TNmjVjyZIlMXfu3Pjqq6/i/fffjyeffDJ++OGHSCQS0aZNmxg0aFAcdthh5fSrAAAAAAAAAACALVmlDcCaNGlStlsAAAAAAAAAAACodJ5++uno0aNHFBUVRV5eXvTr1y969+4d+fn5a62tU6dO1KlTJ9q0aRNdu3aNm2++OW699da4/vrrY9KkSXHMMcfE448/Ht26dcvCLwEAAAAAAAAAALIpJ9sNAAAAAAAAAAAAUDF8/fXX0bNnzygsLIy8vLx46aWX4pprrlln+NW65OfnR9++feOll16K3NzcKCwsjB49esSoUaPKuXMAAAAAAAAAAGBLIwALAAAAAAAAAACAErniiiti5cqVkUgkok+fPnHsscduUp1jjz02+vTpExERK1eujCuuuKIs2wQAAAAAAAAAACqAvGw3wKZLJpMxadKk+Prrr2Pq1KmxYMGCqFq1atSvXz922mmn6NixY1SrVi3bbW6y0aNHx8iRI2PGjBlRXFwc22yzTeyxxx6x//77R16ef7oAAAAAAAAAAJBJ06dPj7fffjsiInJycuL//b//t1n1LrnkkrjllluiuLg43nrrrZgxY0Y0a9asLFqtUJYvXx4fffRRjB07NubPnx/5+fnRvHnz2H///WP77bfPdnsAAAAAAAAAAFBupAhVMPPnz48XX3wx/vOf/8TgwYNjzpw5611bpUqVOOGEE+LSSy+Nww8/vFTnTJo0Kdq0abNZvSaTyU3aM2jQoLjlllvi22+/XeeabbbZJi688MK46qqrombNmpvVIwAAAAAAAAAAUDIfffRRJJPJSCQS0aZNm2jcuPFm1WvcuHG0adMmxo8fHxERH374YXTr1q0sWt0s06ZNixEjRsTw4cNjxIgR8emnn8aiRYtS71u1ahWTJk3a7HNmz54dAwYMiEceeSSWLFmyzjUdOnSIa6+9Nrp27brZ5wEAAAAAAAAAwJZGAFYFcvHFF8eDDz4YK1euLNH6wsLCePHFF+PFF1+MHj16xN/+9reoU6dOOXe56RYsWBDdu3dPfSVyfebOnRs33nhjPPHEE/Hyyy/H7rvvnqEOAQAAAAAAAABg61VQUJB6rl+/fpnU/HmdyZMnl0nNTTFs2LC4/fbbY/jw4TF9+vRyP++9996Lbt26bfADiBERI0eOjJNOOil69OgRDzzwQOTn55d7bwAAAAAAAAAAkClbZQBWYWFhLFy4MJYtWxbJZLLU+1u2bFkOXW3c8OHD1xl+lZubG82aNYsmTZpEYWFhFBQUxMKFC9PW/POf/4yxY8fGu+++G7Vq1cpUyyW2bNmy6Ny5c4wYMSJtPj8/P1q3bh1Vq1aNCRMmpH3pcMKECXHkkUfGRx99FDvuuGOmWwYAAAAAAAAAgK1KUVFRREQkk8mYOXNmmdT8eZ3V9bPhk08+iRdeeCEjZ3344Ydx/PHHx7Jly9Lm69WrF23atIn58+fHlClTori4OPXun//8ZyxevDieffbZSCQSGekTAAAAAAAAAADK21YRgDV//vx4/PHH44033ojPPvssZs+evcm1EolEVi9arVavXr0444wz4oQTTohDDz00ateunXpXXFwcQ4cOjeuuuy6GDh2amh8xYkScffbZ8eyzz5b6vF/84hdxxRVXlEnv63L55ZenhV/l5ORE375947LLLkt95XHlypXxxBNPxOWXXx7z58+PiIjZs2dH9+7d45NPPonc3Nxy6w8AAAAAAAAAALZ2zZo1Sz1PnTo1vv3222jbtu0m1xs3blxMmTIlFejUtGnTze6xPNSqVSsWL15cJrXmz58fp512Wlr4VatWreKvf/1rdOnSJfX/YurUqXHjjTfGfffdl1r3/PPPxx133BGXX355mfQCAAAAAAAAAADZVukDsO6888649tprY+nSpRHx09cHK7LWrVvHH//4xzjjjDOievXq61yTm5sbRxxxRAwZMiQuuuiiuP/++1PvnnvuuRgyZEgceeSRpTq3WbNmcfTRR29W7+szduzYeOCBB9LmHn/88Tj99NPT5vLz8+Pss8+Ojh07xiGHHBILFiyIiIjPP/88/vnPf0avXr3KpT8AAAAAAAAAACBi9913j4hIhTRdf/318fjjj29yveuvvz4ifrrTlUgkYo899tj8JjdT7dq1o0OHDtGxY8fYb7/9omPHjjFx4sRS37dan1tvvTWmT5+eGrdp0yY+/PDD2HbbbdPWNW/ePO69995o2bJl9O3bNzV//fXXR69evVIfFQQAAAAAAAAAgIosJ9sNlKcLLrgg/vCHP8SSJUtSwVerL19VRAMGDIhx48bFOeecs97wq5/Lzc2Ne+65J/bdd9+0+QcffLC8Wtwk/fr1i+Li4tT4N7/5zVrhVz+3++67x2233ZY2N2DAgCgsLCy3HgEAAAAAAAAAYGvXoUOH2GGHHSLip9CqJ598Mm6++eZNqnXTTTfFk08+mbrPtf3220eHDh3KrNfSOvHEE2P06NGxYMGCGDJkSPz5z3+OU089NVq1alVmZ8yePTv+9re/pc098MADa4Vf/dzVV18dhx12WGq8cOHCte5OAQAAAAAAAABARZWX7QbKy6OPPhr3339/RPwUepVMJiOZTEb9+vWjXbt20bhx46hZs2aWuyydE044odR7cnNzo0+fPtG9e/fU3JtvvlmWbW2W+fPnx/PPP58aJxKJ6N+//0b39erVK2644YYoKCiIiIiCgoJ455134rjjjiuvVgEAAAAAAAAAYKt3zTXXxDnnnJO6k9W3b9/473//G7fcckvsvPPOG90/duzYuPLKK+PVV19N1UgkEnHNNddkoPv1Wx3sVZ6eeuqpWLx4cWp82GGHxVFHHbXBPYlEIvr165e27uGHH44bb7yxQn8MEgAAAAAAAAAAIipxANZ1110XEf8Lv9prr73i5ptvjmOOOSZycnKy3F1mHXrooWnjuXPnxtKlS6NGjRpZ6uh/XnvttSgqKkqNjzjiiNh+++03ui8nJyd69eqVFpb14osvCsACAAAAAAAAAIBy1KtXr3j++efjtddeS93NeuWVV+KVV16JDh06xBFHHBF77LFHbLPNNlGjRo1YunRpzJkzJ0aNGhXvv/9+jBw5MiIiFXwVEXHcccdFr169svmzMuKll15KG59zzjkl2nfkkUdGmzZtYuLEiRERMXPmzPjvf/8bBx54YJn3CAAAAAAAAAAAmVQpA7A+//zzmDJlSuqC1EEHHRRvv/12VK9ePcudZUf9+vXXmlu4cOEWE4D1c7/4xS9KvPeYY45JC8B69dVXy6otAAAAAAAAAABgPZ599tk4+eST44033kjd0Uomk/Hpp5+mAq7WJZlMRsRPHzVcHZ7VuXPnePbZZzPSdzYtXrw4Pvjgg7S5kt6VSiQScfTRR8cDDzyQmnv11VcFYAEAAAAAAAAAUOHlZLuB8vDFF19ExP8uTN19991bbfhVRMS0adPWmttmm22y0MnaVv9drXbQQQeVeG+HDh2iatWqqfH06dNj9uzZZdUaAAAAAAAAAACwDlWrVo2XX345Bg4cGFWrVo1kMpkKtYr46d7Wmn8i0oOv8vPz48Ybb4xXXnklqlWrls2fkxGjR4+OwsLC1LhNmzbRtGnTEu8/+OCD08Zr3rsCAAAAAAAAAICKqFIGYP08BGnbbbeNvffeO3vNbAGGDh2aNm7VqlXk5+dvUq0pU6bEJ598EkOHDo3Ro0dvVuBUYWFhjB8/Pm1ut912K/H+qlWrxg477JA2N2bMmE3uBwAAAAAAAAAAKJnc3Ny46qqrYuzYsXHllVdGkyZN0sKu1rT6XePGjePKK6+MsWPHxjXXXBN5eXkZ7jw71rzXVJp7Uuta754UAAAAAAAAAACVQaW8PbT6S4KJRCK22267LHeTfQ8//HDa+Pjjjy91jbfeeiu23XbbmDFjxlrvWrduHUcccUScf/75ceCBB5a45oQJE6KoqCg1rl69ejRs2LBUfbVo0SK++eab1HjcuHFx2GGHlaoGAAAAAAAAAACwaVq2bBk33XRT3HTTTTF27NgYMWJETJw4MRYsWBCLFy+OmjVrRr169WL77bePjh07xq677prtlrNi3LhxaeMWLVqUav+a6wsKCmL58uVRrVq1ze4NAAAAAAAAAACypVIGYLVs2TL1vHjx4ix2kn2vv/56fPDBB2lzZ599dqnrrCv4arVJkybFI488Eo888kh06tQpBg0alPZ3sD6zZs1KG29KWNmae9asCQAAAAAAAAAAZMYuu+wSu+yyS7bb2CKtea+pefPmpdrfpEmTyMvLS31wcNWqVTF37lwfiAQAAAAAAAAAoEKrlAFYBx10UEREJJPJmDRpUqxcuTLy8/Oz3FXmzZs3L37729+mzZ100kmx3377lduZgwcPjn322SdeeOGFOOywwza4ds1wspo1a5b6vDX3lEXg2axZs2L27Nml2jN+/PjNPhcAAAAAAAAAAKicNveuVCKRiOrVq8eiRYvWW3NTuS8FAAAAAAAAAEC2VMoArBYtWsSRRx4ZQ4YMiWXLlsUbb7wRXbt2zXZbGbVq1ao466yzYurUqam5unXrxl133VWqOs2bN48TTzwxOnXqFHvssUc0a9YsatasGQsXLoyJEyfGkCFD4t57740JEyak9sybNy+6du0aH3/88Qa/6LjmBaxq1aqVqreIiOrVq2+w5qa45557YsCAAZtdBwAAAAAAAAAAIKLs7kqVRwCW+1IAAAAAAAAAAGRLTrYbKC8333xz5ObmRkRE3759Y/ny5VnuKLOuuOKKeOONN9Lm7rvvvmjRokWJ9tetWzdefvnlKCgoiHvuuSdOPfXU2GWXXaJu3bqRl5cX22yzTey7775xxRVXxLfffhv9+vWLnJz//XNasGBBnHXWWZFMJtd7xpp/J/n5+aX4hT+pWrVq2njZsmWlrgEAAAAAAAAAAFCe3JUCAAAAAAAAAIC1VdoArI4dO8btt98eyWQyxowZE6ecckra1+8qs7vuuiv+8pe/pM316dMnTjvttBLXqF+/fpx44olpoVbrk5ubG/3791/rzJEjR8bzzz+/3n1rfsVw5cqVJe5vtRUrVmywJgAAAAAAAAAAQLa5KwUAAAAAAAAAAGvLy3YD5emSSy6JqlWrxu9///v4z3/+E3vuuWdcffXV0a1bt6hfv3622ysXTzzxRFx66aVpc2effXbcfPPN5X7273//+3jhhRfi/fffT8099thjccopp6xzfa1atdLGa37lsCTW/IrhmjU3xUUXXRTdunUr1Z7x48fHSSedtNlnAwAAAAAAAABANnzwwQfZbiEOO+ywbLdQbrbUu1IR7ksBAAAAAAAAAJA9lTYAq1OnTqnnRo0axbRp06KgoCAuvPDCuOiii6J169bRuHHjUn8FL5FIxLvvvlvW7ZaJV199NXr27BnJZDI1d/LJJ8eDDz4YiUQiIz384Q9/SAvAGjx4cBQVFUVe3tr/1Na8gLVkyZJSn7fmnrK41NW4ceNo3LjxZtcBAAAAAAAAAICK4ogjjsjYHaN1SSQSUVRUlLXzy9vm3pVKJpPlFoDlvhQAAAAAAAAAANlSaQOw3nvvvbQLWaufk8lkJJPJmDBhQkycOLFUNZPJZFYveW3IkCFDolu3bmmXwI455ph48sknIzc3N2N9dOrUKRKJRCqEa9GiRTFjxoxo0aLFWmvXvDQ1bdq0Up+35h4XsQAAAAAAAAAAYNP9/ON7lJ017zVNnTq1VPt/+OGHtLthOTk50bBhwzLpDQAAAAAAAAAAsiUn2w1kWiKRSP2pLIYPHx5dunSJ5cuXp+YOOuigeOGFFyI/Pz+jvdSsWTPq16+fNjd79ux1rt1+++0jL+9/GWzLli1b79r1mTx5ctp4l112KdV+AAAAAAAAAADgJ8Kvys/OO++cNl7z3tPGrLm+VatWUa1atc3uCwAAAAAAAAAAsilv40sqrq3hQtZXX30Vxx13XCxevDg1t88++8Trr78eNWvWzEpPVapUSRsXFhaud90OO+wQ48aNS8198803cfjhh5fonBUrVsSECRPS5gRgAQAAAAAAAABA6fXr1y/bLVRqa95r+uabb0q1f8yYMRusBwAAAAAAAAAAFVGlDcBatWpVtlsod+PGjYtjjjkm5s+fn5rbdddd480334y6detmpaeioqKYO3du2lyjRo3Wu37vvfdOC8D66KOPShyANXLkyFixYkVq3KxZs2jcuHEpOwYAAAAAAAAAAARgla/dd989qlSpkvqY4KRJk2LGjBnRrFmzEu0fNmxY2njvvfcu6xYBAAAAAAAAACDjcrLdAJumoKAgjj766Jg1a1Zqrk2bNvH2229vMHCqvP33v/+NoqKi1DgvLy+aNm263vW//OUv08Zvv/12ic9ac+2JJ55Y4r0AAAAAAAAAAACZUrt27TjssMPS5kp6VyqZTMY777yTNueuFAAAAAAAAAAAlYEArApoxowZcdRRR8XUqVNTc9ttt128++67sd1222Wxs4iHHnoobXzggQdGjRo11rv++OOPj7y8vNT4vffeiwkTJmz0nGQyGY888kjaXNeuXUvXLAAAAAAAAAAAQIZ06dIlbbzmXav1GTJkSEycODE1btKkSey///5l2hsAAAAAAAAAAGSDAKwKZt68eXHMMcfE999/n5pr1KhRvP3229GmTZssdvZTeNVjjz2WNnfSSSdtcE+DBg3S1iSTyejfv/9Gz3r44Ydj0qRJqXGrVq3i6KOPLkW3AAAAAAAAAAAAmfPrX/86atasmRp/8MEHMXjw4A3uSSaTMWDAgLS5Xr16RU6Oq38AAAAAAAAAAFR8bsFUIIsWLYpjjz02Ro8enZqrV69evPXWW7HrrruW2Tlvv/12DBo0KIqKikq8Z/DgwXHyySdHcXFxaq5Zs2ZxwQUXbHTvgAED0i5kPfbYY/Hkk0+ud/0333wTvXv3Tpu79tprIz8/v8T9AgAAAAAAAAAAZFLjxo3jd7/7XdrcueeeG9OnT1/vnptuuik++OCD1Lhu3bpxxRVXlFuPAAAAAAAAAACQSXnZboCS69KlS3zyySdpc5dffnnMmTMn3nnnnVLV6tChQ9SvX3+d76ZNmxb/93//F9dee21069YtunTpEu3bt4+6deumrSsuLo5PP/007rnnnnj88cdj1apVqXc5OTnx97//PWrUqLHRXnbbbbc499xz4/7770/NnXXWWTFmzJi47LLLUn0WFhbGv/71r7j88stjwYIFqbV77rln9OzZszQ/HwAAAAAAAAAAKAdTpkyJyZMnx/z582PRokVRu3btqF+/frRq1SqaN2+e7fY2aNiwYbFs2bK15r/88su08fLly9d7X2vbbbeN3Xbbbb1n9OnTJx599NGYOXNmRERMnDgxDjrooLjrrrvixBNPjEQiERERU6dOjRtvvDHuu+++tP19+/aNBg0alOp3AQAAAAAAAADAlmqrCsAaP358vPDCCzF06NAYM2ZMzJs3LxYuXBgREW+99VZ06tRprT0zZsyIwsLCiIioXr16NGrUKKM9/9x777231tx11123SbWGDBkSRxxxxAbXTJs2Le6888648847IyJiu+22iwYNGkTNmjXjxx9/jMmTJ8fixYvX2pdIJOLOO++MX/3qVyXu54477ojPPvssPv3004iIWLVqVdxwww1xyy23RJs2baJq1aoxYcKEtc5r2LBhPPPMM5GXt1X9UwYAAAAAAAAAgC3GkCFD4v7774+hQ4fGjBkz1ruuWbNmcfjhh8d555230btL2XDmmWdGQUHBRtf98MMPccwxx6zzXc+ePeORRx5Z794GDRrE008/HZ07d47ly5dHRERBQUF07do16tWrF23atIkFCxbE5MmTo7i4OG1v165do3fv3iX/QQAAAAAAAAAAsIXbKlKDJkyYEH/4wx/ilVdeiWQyGRGR+m9EpL6aty79+/ePBx98MCIiGjVqFNOmTYvc3NzybXgLNW3atJg2bdoG1zRr1iweffTR9V7wWp8aNWrEm2++Gd26dYvBgwen5leuXBnjxo1b557WrVvHyy+/HG3bti3VWQAAAAAAAAAAwOYbNWpU9OzZM7744ouISL+TtS7Tp0+Pp556Kp566qlo3759PPLII7H77rtnoNMty2GHHRavvfZadOvWLebNm5eaX7BgQXz++efr3HPGGWfEww8/vMG7bgAAAAAAAAAAUNHkZLuB8vbcc89F+/bt4+WXX45Vq1alvSvJZaA//OEPEfHT5azZs2fHq6++Wi59bkk6deoUAwYMiCOOOCJq16690fU5OTnRvn37uPfee2P8+PGlDr9arUGDBvH222/H/fffHzvuuOMG111zzTXx9ddfR7t27TbpLAAAAAAAAAAAYNM9+uij0bFjx/jiiy9SwVeJRGK9d7J+/i6ZTMbIkSNj3333jX/+858Z63lL0qlTp/jmm2/iwgsvjBo1aqx33T777BPPPfdc/Otf/4qqVatmsEMAAAAAAAAAACh/edluoDy9/vrr8etf/zqKi4vTLk81bdo0WrRoEZ988slGa7Rt2zYOPvjg+PDDDyMi4vnnn4+uXbuWa9/rs7EvJJaVli1bxnXXXRfXXXddJJPJ+P7772P8+PExZcqUWLBgQSxfvjxq1qwZ9evXjxYtWsR+++0XderUKZOzc3Jy4rzzzovzzjsvvv766/jss89ixowZUVxcHNtss03ssccesf/++0eVKlXK5DwAAAAAAAAAAKB0XnjhhTj33HNT97ISiUTqblOLFi1ir732ioYNG0bNmjVjyZIlMWfOnPjyyy9jypQpEfG/DxeuWLEizjnnnKhbt27W7mT93KRJkzJ6XpMmTeKee+6J22+/PT766KMYM2ZMLFiwIPLz82O77baL/ffff4MfEgQAAAAAAAAAgIqu0gZgzZ49O04//fTUJatkMhndunWLP/7xj9GuXbuI+ClsaX1fHPy5U045JT788MNIJpPxzjvvlHfrW5REIhE77rhjVi5StWvXLvV3BQAAAAAAAAAAZN/cuXOjV69eafeyqlevHr///e/j//7v/zZ4z+j777+Phx56KO66665YtmxZJBKJKC4ujrPPPjvGjx8f22yzTQZ/yZajevXqcdRRR8VRRx2V7VYAAAAAAAAAACCjcrLdQHm54YYbYtGiRanxn//853j66ac3KVDpyCOPTD3PnDkzJk+eXCY9AgAAAAAAAAAAVCTXX399/Pjjj6nwq3bt2sU333wTAwcO3OhH9nbYYYcYOHBgjB49Otq1axfJZDIiIn788ce48cYbM9E+AAAAAAAAAACwBamUAVirVq2Kxx9/PBKJRCQSiTj11FOjd+/em1xvt912i/z8/NR4zJgxZdEmAAAAAAAAAABAhZFMJuPJJ59MhV+1bNkyPvjgg2jVqlWp6rRq1Sree++9aNWqVarWv/71r3LqGgAAAAAAAAAA2FJVygCs//73v7FgwYLUFwL/+Mc/bla9vLy82G677VLjyZMnb1Y9AAAAAAAAAACAimbEiBExZ86cSCaTkUgk4vbbb4+6detuUq169erFbbfdlrrjNXfu3BgxYkRZtgsAAAAAAAAAAGzhKmUA1nfffZd6bty4cbRr126za9arVy/1vHDhws2uBwAAAAAAAAAAUJH8/F5WrVq1omvXrptVr0uXLlG7du3U+Ntvv92segAAAAAAAAAAQMVSKQOwZs+eHRERiUQimjdvXiY18/LyUs9FRUVlUhMAAAAAAAAAAKCimDVrVkT8dC+rdevWaXeqNkWVKlWidevWa9UHAAAAAAAAAAC2DpUyACsn538/a9WqVWVSc968eann+vXrl0lNAAAAAAAAAACAiqK4uDj1nJubWyY1f16nrO56AQAAAAAAAAAAFUOlDMBq1KhRREQkk8mYOXPmZtdbunRpFBQURCKRSKsPAAAAAAAAAACwtWjcuHFE/HQvq6CgIJLJ5GbVW11nNfeyAAAAAAAAAABg61IpA7Bat26dep45c2baJalNMWTIkCgqKkpd2Np77703qx4AAAAAAAAAAEBF06ZNm9TzggUL4t13392seu+++27Mnz9/nfUBAAAAAAAAAIDKr1IGYB1wwAFRq1atSCQSERHxyCOPbFa9O+64I/XcsmXL2H777TerHgAAAAAAAAAAQEVz4IEHRu3atSORSEQymYzevXtHYWHhJtUqLCyMK664IjWuVatWHHTQQWXVKgAAAAAAAAAAUAFUygCsKlWqxLHHHhvJZDKSyWT85S9/iUmTJm1SrQcffDAGDx4ciUQiEolEdO/evWybBQAAAAAAAAAAqACqVKkSXbp0iWQyGYlEIr7++uvo0qVLLF68uFR1li5dGr/61a/iyy+/jIiIRCIRJ510UuTl5ZVH2wAAAAAAAAAAwBaqUgZgRUT069cvcnJyIpFIxKJFi6Jz586lDsG677774ne/+13qi4XVq1eP3r17l0/DAAAAAAAAAAAAW7gbbrgh8vPzIyIimUzGW2+9FbvuumsMGjQoli5dusG9S5cujUceeSR22WWXeOONNyKRSERERH5+fgwYMKDcewcAAAAAAAAAALYslfaTebvvvntceOGF8fe//z0SiUR899130a5du7j00kvjN7/5TbRt2zZt/erLVDNnzozBgwfH3XffHcOHD49kMpl6379//2jUqFHGfwsAAAAAAAAAAMCWoHXr1nHzzTfH5Zdfnvqw4LRp0+Lcc8+NSy65JDp27Bh77rlnNGzYMGrWrBlLliyJuXPnxpdffhmffPJJLF26NJLJZOq+ViKRiFtuuSVat26d3R8GAAAAAAAAAABkXKUNwIqIuPPOO+O7776Lt956KxKJRCxZsiQGDhwYAwcOjJo1a0ZEpC5Tde/ePZYtWxbLli1L7V/9LplMRvfu3aN3797Z+ikAAAAAAAAAAABbhEsvvTTmzp0bf/rTn1JBVslkMpYsWRLvv/9+vP/+++vc9/OPEa5+vvbaa+OSSy7JTOMAAAAAAAAAAMAWJSfbDZSn3NzceOGFF+I3v/lN2lcDk8lkLF68OG08d+7c1NcFV1+uWv3ut7/9bTz22GNZ+Q0AAAAAAAAAAABbmhtuuCFeeumlaNy4cepu1ur7WBGRuof187tYP7+v1aRJk3j55ZdjwIABGe8dAAAAAAAAAADYMlTqAKyIiOrVq8ejjz4aTz75ZOy8885pXxFc/d81/0T8dMlqxx13jCeffDL+8Y9/RF5eXtZ+AwAAAAAAAAAAwJbmxBNPjAkTJsS9994b++67b+Tk5KwVehXxvzCsnJyc2G+//eL++++PCRMmxC9/+cssdQ4AAAAAAAAAAGwJtppUp9NOOy1OO+20ePPNN+P111+PoUOHxpgxY2LFihWpNXl5edGqVas48sgj49hjj42TTjopcnIqfUYYAAAAAAAAAADAJqlevXqcf/75cf7558eSJUvi008/jYKCgpg/f34sXrw4atWqFfXr149WrVrFvvvuGzVr1sx2ywAAAAAAAAAAwBZiqwnAWq1z587RuXPn1Hjp0qWxYMGCqFGjRtSrVy97jQEAAAAAAAAAAFRgNWvWjMMPPzzbbQAAAAAAAAAAABXEVheAtaYaNWpEjRo1st0GAAAAAAAAAAAAAAAAAAAAAADAViMn2w0AAAAAAAAAAAAAAAAAAAAAAACwdam0AVifffZZtlsAAAAAAAAAAAAAAAAAAAAAAABgHfKy3UB52XfffWOPPfaInj17xplnnhlNmzbNdksAAAAAAAAAAABbhcmTJ8fTTz8dQ4cOjWnTpsXSpUujYcOG0bJly+jcuXN06dIl6tWrl+02AQAAAAAAAACALKq0AVgREaNHj44+ffrEVVddFcccc0ycffbZ0bVr16hatWq2WwMAAAAAAAAAANgiLVq0KJLJZGpcp06dEu8tLCyM3r17x7333htFRUUREala3377bXz00Ufx1FNPRb169eKGG26Iiy66qGybBwAAAAAAAAAAKoycbDdQ3pLJZBQXF8ebb74Zp59+ejT9/9i7zzCrqvNvwM8ZZuhViog0QUSxYAMjKiCCit1EMCoRrKiJ3ajRWLAbNRpj1GBBsXfFXmi2vwIqVkQRBEGUIiC97veDLycc6gzMnMMM931dc2WvddZ61rMxH9f12/Xrx2mnnRbvv/9+rlsDAAAAAAAAAADYqHz33XdRs2bNqFWrVtSqVSs6d+5c6L0LFiyITp06xR133BGLFy+OJEkiSZJIpVKRSqXS65IkiRkzZsSZZ54ZZ511Vkm8BgAAAAAAAAAAUAqU2QCsDh06pJ+XX55KkiRmzZoV99xzT+yzzz6xzTbbxLXXXhsTJkzIVZsAAAAAAAAAAAAbjVdeeSUdXBURce655xZ6b+/eveO9997LCL1KpVLpeisHYiVJEv/5z3/ijjvuKKnXAQAAAAAAAAAANmJlNgBr8ODBMW7cuOjTp09svfXW6QtZK4ZhjRkzJi6//PJo1qxZdOrUKfr37x9z587NZdsAAAAAAAAAAAA5M3DgwPTzZpttFt27dy/UvnfeeSceeuihdLhVxG93tFq0aBEXX3xx3H333XHLLbfEH//4x6hYsWJERDoE6+9//3tMmTKl+F8GAAAAAAAAAADYqJXZAKyIiMaNG8dll10Wo0ePjvfeey9OPfXUqFGjRkYYVpIksWzZshg6dGiccMIJUb9+/ejVq1cMGjQox90DAAAAAAAAAABk17Bhw9IhVkcccUSUK1euUPuuuuqq9PPy+1kXXXRRfPXVV3HdddfFqaeeGueee248+uij8dlnn8W2226bXj979ux44IEHivU9AAAAAAAAAACAjV+ZDsBa0Z577hl33313/PTTT/HEE0/EwQcfnL6cteIXB+fOnRsPPfRQdOnSJZo0aRKXXXZZfPvtt7lsHQAAAAAAAAAAoMRNnjw5fvrpp/T4sMMOK9S+CRMmxKBBg9IfJEylUnHYYYfF9ddfH3l5q15Ra968ebz22mtRpUqV9J6HH3642N4DAAAAAAAAAAAoHTaZAKzlypcvH926dYsXX3wxJk2aFLfccku0bt06/dXBFcOwfvjhh7juuuti2223jXbt2kXfvn1j1qxZuWwfAAAAAAAAAACgRIwZMyYiIn2Xao899ijUvgEDBqT3LHfDDTesdU+jRo3irLPOSu/78ssv49dffy1qywAAAAAAAAAAQCm2yQVgrahu3bpx7rnnxscffxyfffZZnHfeebH55puvNgzrww8/jNNPPz222GKLXLYMAAAAAAAAAABQIsaNG5d+rlevXtSrV69Q+4YMGZJ+TqVS8bvf/S5atmy5zn3HHXdcxnjkyJGFOg8AAAAAAAAAACgbNukArBXtsMMOcfPNN8fEiRPjlVdeie7du0eFChUiSZKMIKyFCxfmuFMAAAAAAAAAAIDiN2PGjIj4LcSqbt26hd737rvvRiqVSn94sGvXroXat91220W1atXS4++//77wzQIAAAAAAAAAAKWeAKyV5OXlxYEHHhiPP/54/PTTT3HzzTdHhQoVct0WAAAAAAAAAABAiZo7d276uWrVqoXa88MPP8SUKVMy5tq3b1/oMxs3bpx+njVrVqH3AQAAAAAAAAAApV9+rhvYGCVJEm+++Wb0798/nn/++Vi4cGGuWwIAAAAAAAAAAChR5cuXTz+vGIa1NsOHD88Yp1Kp2HXXXQt9ZrVq1dLPc+bMKfQ+AAAAAAAAAACg9BOAtYKvvvoqHnzwwXjkkUdi8uTJEfFbGFYqlcpxZwAAAAAAAAAAACWrZs2aEfHbnakJEyYUas8HH3yQMW7RokVUrVq10GeuGHpVUFBQ6H0AAAAAAAAAAEDpt8kHYE2bNi0effTR6N+/f3zyyScR8dsFrojfvkaYSqXS49/97nfRs2fPnPUKAAAAAAAAAABQUho1apR+/vXXX2P06NHRsmXLte4ZPHhwRPzvQ4N77bVXkc6cNm1a+rl69epF2gsAAAAAAAAAAJRum2QA1uLFi2PAgAHRv3//eO2112LJkiWrDb1KkiQaNWoUf/rTn6Jnz57RokWLHHcOAAAAAAAAAABQMtq0aRMRv92hioh45JFH4qqrrlrj+nHjxsVHH32U8ZHBDh06FPq82bNnx5QpU9LnbbHFFuvbOgAAAAAAAAAAUAptUgFYH3zwQfTv3z+eeOKJmDlzZkRERvDV8tCrypUrxx/+8Ifo2bNn7LvvvukLVgAAAAAAAAAAAGXVZpttFjvvvHN8+umnkSRJ3HbbbXHiiSdG06ZNV7v+xhtvzBgXFBTEwQcfXOjzPvjgg1i2bFlE/HZ/a5tttlnv3gEAAAAAAAAAgNKnzAdgTZgwIR566KHo379/jBkzJiIyQ69W/vpgz54946ijjoqqVavmrGcAAAAAAAAAAIBcOPnkk+Mvf/lLpFKpmDNnTnTu3Dkee+yxaNOmTca6O+64I+655570/atUKhUHHXRQbLbZZoU+a8iQIennChUqxNZbb11crwEAAAAAAAAAAJQCZTYAq1+/ftG/f/945513IkmS1YZeJUkSzZs3j+OPPz6OP/74aNKkSY67BgAAAAAAAAAAyJ0TTjghbrnllvj+++8jlUrF2LFj43e/+13stNNOse2228bSpUtj2LBh8cMPP6SDr5a75JJLinTWo48+mt7ftm3bKFeuXLG+CwAAAAAAAAAAsHErswFYJ510UjroKiIyQq+qV68e3bt3j549e8Zee+2V404BAAAAAAAAAAA2DpUqVYp+/fpFly5dYsmSJel7V59++ml89tlnEREZd7KW/++JJ54Yu+++e6HPGTx4cIwfPz5do0OHDsX8JgAAAAAAAAAAwMauzAZgLbf8AlYqlYouXbpEz54948gjj4yKFSvmujUAAAAAAAAAAICNTvv27eOZZ56J7t27x4IFC9IhVcutOE6SJDp16hR33HFHkc646aabMu52HXLIIcXSOwAAAAAAAAAAUHrk5bqBkpQkSWy77bZxww03xIQJE+K1116LY445RvgVAAAAAAAAAADAWhxyyCHxxRdfxJFHHhnlypWLJElW+atZs2Zcc8018frrr0eFChUKXfuDDz6I1157LZIkiYiIhg0bRps2bUrqVQAAAAAAAAAAgI1Ufq4bKCl//vOfo2fPnrH77rvnuhUAAAAAAAAAAIBSp1mzZvHMM8/EzJkzY8iQITFx4sSYPXt21KxZM7bffvvYc889o6CgoMh18/Lyol+/fulx06ZNi7FrAAAAAAAAAACgtCizAVj//ve/c90CAAAAAAAAAABAqVezZs044ogjiq1e27Zto23btsVWDwAAAAAAAAAAKJ3yct0AAAAAAAAAAAAAAAAAAAAAAAAAmxYBWAAAAAAAAAAAAAAAAAAAAAAAAGRVfq4byKYkSWLEiBHxzjvvxKhRo+KXX36JWbNmxbJly+KWW26JXXbZJdctAgAAAAAAAAAAAAAAAAAAAAAAlHmbRADW4sWL484774x//etfMX78+IzfkiSJVCoVM2bMWO3e3r17x5tvvhkREU2aNInBgweXeL8AAAAAAAAAAAAAAAAAAAAAAABlWZkPwBozZkwcffTRMXLkyEiSJCIiUqlURER6vDZHH3103HPPPRERMX78+Pjwww9jjz32KLmGAQAAAAAAAAAAAAAAAAAAAAAAyri8XDdQksaOHRt77713OvxqxeCrFcdr06lTp2jZsmV6/MQTT5RYvwAAAAAAAAAAAAAAAAAAAAAAAJuCMhuAtWjRojjooINiypQp6bkmTZrEv/71rxg1alTMmTOn0CFYf/jDH9LPr7/+eon0CwAAAAAAAAAAAAAAAAAAAAAAsKkoswFYd955Z3zzzTfpgKsjjzwyvvzyyzjzzDOjZcuWUbly5ULX6tq1a0REJEkSX3/9dUyfPr1EegYAAAAAAAAAAAAAAAAAAAAAANgUlNkArNtuuy0dfrXrrrvG448/HpUqVVqvWjvvvHO6VkTEV199VSw9AgAAAAAAAAAAAAAAAAAAAAAAbIrKZADWqFGjYsKECZEkSUREXHvttVFQULDe9apUqRJbbrllevzdd99tcI8AAAAAAAAAAAAAAAAAAAAAAACbqjIZgPXJJ5+kn6tWrRqdO3fe4Jq1atVKP8+cOXOD6wEAAAAAAAAAAAAAAAAAAAAAAGyqymQA1tSpUyMiIpVKxVZbbRV5eRv+mpUrV04/z5s3b4PrAQAAAAAAAAAAAAAAAAAAAAAAbKrKZADWggUL0s8VKlQolpqzZs1KP1evXr1YagIAAAAAAAAAAAAAAAAAAAAAAGyKymQAVt26ddPP06ZN2+B6S5cujR9++CE9rlOnzgbXBAAAAAAAAAAAAAAAAAAAAAAA2FSVyQCsLbbYIiIikiSJ8ePHx6xZszao3ogRI2Lu3Lnp8TbbbLNB9QAAAAAAAAAAAAAAAAAAAAAAADZlZTIAq127dpGfnx+pVCqSJImnn356g+r997//TT/XrFkzdt111w1tEQAAAAAAAAAAAAAAAAAAAAAAYJOVn+sGSkKNGjWiXbt28fbbb0dExPXXXx/HHHNMVK5cuci1Pvjgg3j44YcjlUpFRETXrl2LtVcAAAAAAAAAAICybvTo0fHuu+/GtGnTolatWrHbbrvFbrvtluu2AAAAAAAAAACAHCqTAVgREeeff368/fbbkUqlYty4cXHcccfFk08+GQUFBYWuMXLkyPjDH/4QS5cujSRJIi8vLy6++OIS7BoAAAAAAAAAAGDjNXPmzPj444/T49atW0ft2rXXuH7atGnRq1evePXVV1f5beedd477778/WrduXSK9AgAAAAAAAAAAG7e8XDdQUg499NDo0KFDJEkSEREDBgyIPfbYIwYOHLjOvZMmTYq//e1vsffee8fkyZMjSZJIpVJx3HHHxQ477FDSrQMAAAAAAAAAAGyU/v3vf0eXLl2iS5cucdhhh0Ve3pqvoM2ZMyf22WefePXVVyNJklX+Pvnkk9h7771j2LBhWXwDAAAAAAAAAABgY5Gf6wZK0pNPPhl77LFHjB8/PiIiRo4cGfvvv3/Ur18/dt1114iIdLjVddddF//85z9jzJgx8e2332b8liRJ7LjjjnH33Xfn7F0AAAAAAAAAAABy7fnnn0/fq+rWrVvUqlVrjWsvvfTSGD16dKRSqfQ9rOVSqVRERMydOze6desWX3/9dVSqVKnE+wcAAAAAAAAAADYea/78XhlQt27deP3116Nly5YZYVaTJ0+OV155Jb0uSZIYPHhwvPrqq/HNN9+kvzC4fP0uu+wSL7/8sgtWAAAAAAAAAADAJmvu3Lnx2WefpcOrDj300DWunTJlSvz3v/9N38FKpVLRo0ePuOuuu+Lqq6+Oxo0bpwOxJk6cGLfddls2XgEAAAAAAAAAANiIlOkArIiIFi1axEcffRS9e/eOcuXKRcT/vh64/MuCy8crzkVElCtXLnr37h3vvfdebLnlltlvHgAAAAAAAAAAYCPxxRdfxNKlS9PBVfvss88a1z722GOxaNGidPjVHXfcEf3794/evXvHpZdeGh9//HG0aNEiHZD1wAMPZOktAAAAAAAAAACAjUWZD8CKiKhUqVLcddddMXbs2Ljwwgtjhx12iIiIJElW+9e8efP4y1/+EqNHj4677rorKlasmOM3AAAAAAAAAAAAyK2xY8emn+vWrRt169Zd49oXXngh/bz11lvHaaedlvF7rVq14pprrkmHaY0ZMybGjx9fzB0DAAAAAAAAAAAbs/xcN5BNDRs2jBtuuCFuuOGGmDlzZowePTqmT58eM2fOjMqVK0edOnViq622ii233DLXrQIAAAAAAAAAAGxUpkyZEhERqVQq6tWrt8Z1CxcujP/7v/+LVCoVERHHHnvsatcdeuihUVBQEIsXL46IiJEjR0aTJk2KuWsAAAAAAAAAAGBjtUkFYK2oZs2asccee+S6DQAAAAAAAAAAgFJh3rx56edq1aqtcd2IESNi4cKFEfFbWNaBBx642nUVK1aMZs2axejRoyMiYtKkScXYLQAAAAAAAAAAsLHLy3UDpcmAAQOibdu2uW4DAAAAAAAAAAAg6/Ly/nfdbHnA1eq8++676edKlSrF7rvvvsa1NWvWTD/Pnj17wxoEAAAAAAAAAABKlfxcN1AaPPfcc3HNNdfEyJEjc90KAAAAAAAAAABATlSvXj0iIpIkiUmTJq1x3aBBgyIiIpVKxR577BHlypVb49pFixYVb5MAAAAAAAAAAECpkbfuJZuup556Klq3bh1HHXVUjBw5MpIkyXVLAAAAAAAAAAAAOdG0adP085QpU+KHH35YZc2sWbNi6NChkUqlIiKiY8eOa635yy+/pJ+rVatWLH0CAAAAAAAAAAClgwCslSRJEo899ljssMMO8cc//jE+//xzwVcAAAAAAAAAAMAmb9ddd42ISIdb9e3bd5U19913XyxatCh956pTp05rrDd//vyYOHFiut6WW25Z3C0DAAAAAAAAAAAbsTITgDVp0qS47rrrYr/99osmTZpElSpVomrVqtG8efPo3r17PPPMM+sMsnr88cejVatW0aNHj/jqq68iSZJIpVKRSqUiSZLIz8+Pnj17ZumNAAAAAAAAAAAANh6bb7557LnnnhHx24cG//GPf0T//v3T97JeeumluPLKKzMCrfbaa6811vv0009j6dKl6f0tWrQo4TcAAAAAAAAAAAA2Jvm5bqA4XHbZZXHLLbfEwoULIyIygq7GjRsX33//fTzzzDPRunXreOqpp6J58+YZ+z/77LM49dRTY/jw4em9yy9hJUkSBQUF0bNnz7jkkkuiadOm2XkpAAAAAAAAAACAjcw555wTRx99dKRSqVi8eHGccMIJceaZZ0ZeXl78+uuvGfevzjjjjLXWeu2119LPVapUie22265EewcAAAAAAAAAADYuebluYEP16NEjrrvuuliwYEHG5akV/5IkiSRJYuTIkbH33nvHDz/8kN5/1113Rdu2bdPhVyvuKV++fJx++ukxZsyY6Nu3r/ArAAAAAAAAAABgk9atW7c44ogj0netkiSJ2bNnx6xZs9JzEREtW7aMc845Z621nnrqqYj47b7X7373u/ReAAAAAAAAAABg01CqA7Duu+++ePTRRyMiVgm7WvFv+e8RET///HP07t07IiL+8Y9/xF/+8pdYtGhRek2SJFGhQoU488wz47vvvov//Oc/0ahRoxy8HQAAAAAAAAAAwMbn8ccfj+OOOy59N2tFSZJEq1at4uWXX46KFSuuscbbb78do0aNSt/rOuCAA0qsXwAAAAAAAAAAYOOUn+sG1teSJUvi0ksvzfjqX5Ik0bZt2+jcuXM0bNgwkiSJiRMnxltvvRXDhw9PB1y9/vrrcd9998Ull1yS8SXCgoKC6N27d1x66aWx+eab5/DtAAAAAAAAAAAANk7ly5ePhx56KM4+++x46qmn4ptvvon58+dHgwYNokuXLtGtW7fIz1/71bS+fftGjRo10uPDDz+8pNsGAAAAAAAAAAA2MqU2AOvFF1+MKVOmpMOratWqFQ8//HB07dp1lbXXXnttvPzyy3H88cfHzJkzI0mSOOOMM2LZsmXp/e3atYv77rsvWrZsmYO3AQAAAAAAAAAAKF1233332H333ddr78MPP1zM3QAAAAAAAAAAAKVNXq4bWF+DBg2KiIgkSSKVSsUTTzyx2vCr5Q4++OB4/PHH0+sXL16c/u3444+PIUOGCL8CAAAAAAAAAAAAAAAAAAAAAADIglIbgPXRRx9FREQqlYoOHTpE586d17mnS5cu0bFjx3QIVkTETjvtFPfff3/k5+eXaL8AAAAAAAAAAAAAAAAAAAAAAAD8ptQGYP3www/p565duxZ63/K1y0Owzj333MjLK7X/DAAAAAAAAAAAAFnTqVOn9N8nn3yyQbU+/vjjdK399tuvmDoEAAAAAAAAAABKi/xcN7C+Zs2alX7eeuutC72vRYsWGeP27dsXW08AAAAAAAAAAABl2ZAhQyKVSkVExIwZMzao1owZM2LIkCEREemaAAAAAAAAAADApiMv1w2sr7lz56YvPVWvXr3Q+6pVq5YxbtCgQbH2BQAAAAAAAAAAUJYlSZLrFgAAAAAAAAAAgDKg1AZgrXiJakO+/le+fPniaAcAAAAAAAAAAGCTsCH3tQAAAAAAAAAAAJYrtQFYAAAAAAAAAAAAlF5LlixJP+fn5+ewEwAAAAAAAAAAIBcEYAEAAAAAAAAAAJB1U6dOTT9XrVo1h50AAAAAAAAAAAC5IAALAAAAAAAAAACArBs0aFBERKRSqdhyyy1z3A0AAAAAAAAAAJBt+bluoDj0798/3n333UKtHTt2bMb4qquuKvJ5l19+eZH3AAAAAAAAAAAAlCWpVKrIe+bPnx/jxo2Lp59+Ovr375+u0bp16+JuDwAAAAAAAAAA2MiV+gCsJEnioYceWu+9ffr0KfI+AVgAAAAAAAAAAEBZVa5cubX+niRJRER07tx5g85ZXieVSsWRRx65QbUAAAAAAAAAAIDSp9QHYKVSqfRFqKLsWa6we5efsz5fLQQAAAAAAAAAACgtCnunqqj3tlaUSqXSd7J23XXXOPzww9e7FgAAAAAAAAAAUDrl5bqBDZEkyXpdolq+ryh7N+SyFgAAAAAAAAAAQGlS0h8KXH5/q1OnTjFgwIAoV65ciZ4HAAAAAAAAAABsfPJz3cD66tmzZ65bAAAAAAAAAAAAKHPat2+/xgCsoUOHpn/bcccdo1atWoWum5eXF1WqVInNNtsstt9+++jSpUvsvPPOxdEyAAAAAAAAAABQCpXaAKx+/frlugUAAAAAAAAAAIAyZ8iQIWv8LS8vL/38z3/+Mzp16pSFjgAAAAAAAAAAgLIob91LAAAAAAAAAAAA4DdJkuS6BQAAAAAAAAAAoAzIz3UDAAAAAAAAAAAAlA5XXHFF+rlZs2Y57AQAAAAAAAAAACjtBGABAAAAAAAAAABQKCsGYAEAAAAAAAAAAGyIvFw3AAAAAAAAAAAAAAAAAAAAAAAAwKZFABYAAAAAAAAAAAAAAAAAAAAAAABZJQALAAAAAAAAAAAAAAAAAAAAAACArMrPdQMAAAAAAAAAAADk1lVXXbXK3OWXX16odcVldecBAAAAAAAAAABllwAsAAAAAAAAAACATdyVV14ZqVQqY251gVSrW1dcBGABAAAAAAAAAMCmJS/XDQAAAAAAAAAAALDxSJKkTJ8HAAAAAAAAAABsHPJz3QAAAAAAAAAAAAC5V9ggKoFVAAAAAAAAAABAcRCABQAAAAAAAAAAsIkbPHhwsa4DAAAAAAAAAABYFwFYAAAAAAAAAAAAm7gOHToU6zoAAAAAAAAAAIB1yct1AwAAAAAAAAAAAAAAAAAAAAAAAGxaBGABAAAAAAAAAAAAAAAAAAAAAACQVQKwAAAAAAAAAAAAAAAAAAAAAAAAyCoBWAAAAAAAAAAAAAAAAAAAAAAAAGRVfq4bYP0lSRLff/99fP755zFx4sSYOXNmVKhQIWrVqhUtWrSINm3aRMWKFYv1zNmzZ8d7770X33zzTfz6669RqVKlaNKkSbRr1y4aNGhQrGd9+eWX8dFHH8XkyZNj6dKlUbt27dhhhx1ijz32iPx8/9cFAAAAAAAAAADKhoULF8Ynn3wSo0aNihkzZsT8+fOjevXqUa9evdh1111j6623jlQqles2AQAAAAAAAACgWEkRKmVmzJgRzz//fLz22msxaNCgmDZt2hrXFhQUxMEHHxznnHNOdOjQYYPOHTduXFx++eXx5JNPxqJFi1b5PZVKRYcOHaJPnz7Rvn379T4nSZLo169f3HjjjfHNN9+sdk3t2rXj9NNPj4svvjiqVKmy3mcBAAAAAAAAAADF4+uvv44ffvghZs2aFfPnz48kSYpc4/jjjy+BzjZuH330Udx6663x9NNPx8KFC9e4bsstt4yTTjopzj777Nhss82y2CEAAAAAAAAAAJQcAVilyJ///Oe49957VxtAtTqLFy+O559/Pp5//vk4/vjj49///ndUr169yOc++eSTccIJJ8S8efPWuCZJkhgyZEh07NgxLrzwwrj++uuL/MXBmTNnRvfu3ePNN99c67rp06fHNddcE48++mgMGDAgtt9++yKdAwAAAAAAAAAAbLjXX389+vbtG2+88cZa7xYV1qYUgLVs2bK45JJL4qabboply5atc/2kSZPiqquuiv/+97/xwAMPxIEHHpiFLgEAAAAAAAAAoGSVugCsCRMm5LqFaNy4cU7O/fDDD1cbflWuXLnYYostYvPNN4/FixfH+PHjY9asWRlr+vfvH19//XUMHDgwqlatWugzn3rqqTjmmGNWuWRVt27daNSoUUyZMiUmTZqU/mJjkiRx4403xsKFC+PWW28t9Dnz58+PAw44IIYNG5YxX758+WjatGlUqFAhxo4dG3Pnzk3/Nnbs2Nh3333j/fffj6233rrQZwEAAAAAAAAAAOtv5syZ0atXr3jxxRcjItJ3h9ZHKpWKJEmK/LG90q53795x7733rjJfuXLlaN68eVSqVCmmT58eY8eOzfj3/fnnn+Pwww+P559/Prp27ZrNlgEAAAAAAAAAoNiVugCspk2b5vSyUyqViiVLluTs/OVq1qwZxx57bBx88MGxzz77RLVq1dK/LV26NN555524/PLL45133knPDxs2LHr16hVPP/10oc747rvv4oQTTsgIv2rdunXceuutse+++6bnRo8eHZdcckk8++yz6bnbbrst9tlnn/j9739fqLPOO++8jPCrvLy8uPTSS+Pcc8+NWrVqRUTEokWL4tFHH43zzjsvZsyYERERU6dOje7du8fw4cOjXLlyhToLAAAAAAAAAABYP/PmzYsDDjggRowYkQ6uWh5itT42JDyrtHr66adXCb9q1apV3HTTTbH//vtHfv7/rvVNnTo17rrrrrj22mvTH09ctGhR9OzZM0aPHp2+WwUAAAAAAAAAAKVRqQvAWm5TvPgU8VsA2N///vc49thjo1KlSqtdU65cuejYsWMMHjw4zjjjjOjbt2/6t2eeeSYGDx6cEWC1JpdddlnMnTs3PW7Tpk289dZbUb169Yx1LVu2jKeffjpOO+20jLMuvPDCOOywwzIuZK3O119/Hffcc0/G3MMPPxzHHHNMxlz58uWjV69e0aZNm9h7771j5syZERHxySefRP/+/eOEE05Y5zsBAAAAAAAAAADr7/rrr4/hw4dnBF9VrFgx9t9//9h5552jXr16UaVKlVy3uVHr06dPxnj33XePIUOGrPbfrW7dunH55ZfH3nvvHQcccED6441Tp06Nu+++O/72t79lpWcAAAAAAAAAACgJpTYAa1PUp0+f6NKlS5QvX75Q68uVKxd33nlnfPzxxzFixIj0/L333rvOAKwvv/wynnjiifS4fPny8eCDD64SfrVcKpWKf/3rXzF48OD49ttvIyLiu+++i379+sUpp5yy1rOuuOKKWLp0aXr8pz/9aZXwqxVtv/32cfPNN8fJJ5+cnuvTp0/06NEjCgoK1noWAAAAAAAAAACwfhYtWhS33XZbOvgqIuKUU06JG2+8MWrWrJnb5kqJsWPHxhdffJExd+edd64zNKxTp05x0kknxX//+9/03IsvvigACwAAAAAAAACAUq3UBWD17Nkz1y3kzMEHH1zkPeXKlYsLL7wwunfvnp57/fXX17nv/vvvj2XLlqXHf/zjH2O77bZb656KFSvGxRdfHCeddFJ67t57711rANaMGTPi2WefTY9TqVRceeWV6+zvhBNOiKuvvjrGjx8fERHjx4+Pt956K7p27brOvQAAAAAAAAAAQNG9++67MXfu3EilUpFKpaJXr14ZgUys2+jRozPGDRs2jDZt2hRq7x/+8IeMf+8xY8YUa28AAAAAAAAAAJBtpS4Aq1+/frluodTZZ599MsbTp0+PefPmReXKlde4Z8CAARnjFUOt1uboo4+Os846K+bOnRsREcOHD48ff/wxGjRosNr1L7/8cixZsiQ97tixYzRr1myd5+Tl5cUJJ5yQEZb1/PPPC8ACAAAAAAAAAIASsjxwKUmSyMvLi2uvvTbHHZU+v/zyS8a4UaNGhd7buHHjjPHMmTOLoyUAAAAAAAAAAMiZvFw3QMmrVavWKnOzZs1a4/rRo0dnfB2wSpUq0a5du0KdtfLaJEni5ZdfXuP6lX/bf//9C3VORESXLl0yxi+99FKh9wIAAAAAAAAAAEUzffr0iIhIpVKx9dZbR/369XPcUelTo0aNjPH8+fMLvXfltXXq1CmWngAAAAAAAAAAIFcEYG0CJk2atMpc7dq117h+5MiRGeO2bdtGfn5+oc/ba6+91lpvbb8VNmgrImK33XaLChUqpMc//vhjTJ06tdD7AQAAAAAAAACAwqtUqVL6eXUf5WPddt5554zxqFGjYu7cuYXaO2zYsIxx27Zti6stAAAAAAAAAADICQFYm4B33nknY9ykSZMoX778GtePGjUqY9yqVasinbfy+pXrLbd48eIYM2bMep9VoUKFaN68eaHOAgAAAAAAAAAANszWW2+dfp4+fXoOOym9GjZsmPGRwIULF8btt9++zn0LFy6M2267LWPupJNOKu72AAAAAAAAAAAgqwRgbQLuv//+jPFBBx201vWjR4/OGDdq1KhI5628fuV6y40dOzaWLFmSHleqVCnq1KlTImcBAAAAAAAAAAAbpn379lG+fPlIkiTGjRsXM2bMyHVLpdKNN94YeXn/u7p3+eWXx4MPPrjG9TNnzoyjjjoq4+OAhx56aBx66KEl2icAAAAAAAAAAJQ0AVhl3CuvvBJvv/12xlyvXr3WumfKlCkZ44YNGxbpzC233DJjPHXq1EKds/K+9Tlr5ZoAAAAAAAAAAEDxqF69ehx77LEREbFs2bJ46KGHctxR6bT33nvHHXfcEalUKiIilixZEr169Yq2bdvGDTfcEM8991y89tpr8fDDD8eZZ54ZzZs3j5deeim9v0uXLvHYY4/lqn0AAAAAAAAAACg2+blugJLzyy+/RO/evTPmjjjiiGjbtu1a982ZMydjXKVKlSKdu/L6xYsXx8KFC6NChQrFes7q9qxcc31MmTJljaFdazJmzJgNPhcAAAAAAAAAADZ21113XQwYMCBmzJgRV199dRx22GHRtGnTXLdV6px++unRsmXLOOuss+LLL7+MiIjhw4fH8OHD17inWbNmceGFF8Ypp5wSeXnF9+1L96UAAAAAAAAAAMiVTSoA6+uvv473338/Pvnkk5g2bVrMnDkzFi5cWKQaqVQqBg4cWEIdFp9ly5ZFjx49YuLEiem5GjVqxO23377OvSuHSFWsWLFIZ1eqVGm1NdcVgFXUc1Z3VnEEYN15553Rp0+fDa4DAAAAAAAAAABlTf369eO5556Lrl27xvTp02O//faLp59+OnbZZZdct1bqdOrUKYYPHx6XX3553HrrrbF06dI1rm3cuHFccMEFceyxxxZr+FWE+1IAAAAAAAAAAOTOJhGA9cILL8QNN9wQw4YN26A6SZJEKpUqpq5K1l//+td49dVXM+b++9//RqNGjda5d8GCBRnj8uXLF+nslYOuIiLmz59f7Oes7qzVnQMAAAAAAAAAABSfffbZJ95+++3o3r17jB07NvbYY4846qijonv37rH77rtHvXr11usu0Kbm7rvvjquuuiomT568zrUTJkyIM844I/7+97/HTTfdFCeeeGIWOgQAAAAAAAAAgJJVpgOwli5dGr17945+/fpFRGaAVZIk6XWrC7Va1+8bs9tvvz3++c9/ZsxdeOGFcfTRRxdqf8WKFTPGixYtKtL5CxcuXGfN4jhndWet7hwAAAAAAAAAAKB4lCtXLmOcSqViyZIl8cQTT8QTTzyx3nWX19kULF68OI455ph45pln0nObbbZZ/OUvf4lDDjkkWrRoEVWqVIlp06bFiBEjol+/fvH8889HkiTxyy+/xEknnRSjRo2Km266KYdvAQAAAAAAAAAAG65MB2Cdc845cf/990dErBJ8tWKo1YphV8ut6/eN1aOPPhrnnHNOxlyvXr3ihhtuKHSNqlWrZowXLFhQpB7mz5+/zprFcc7qzlrdOUV1xhlnRLdu3Yq0Z8yYMXHEEUds8NkAAAAAAAAAALAxW92HBVOpVKm6Y5Vrp59+ekb4Vdu2beOFF16I+vXrZ6zbYost4tBDD41DDz00BgwYEEcffXT6jtXNN98crVq1ihNOOGGD+3FfCgAAAAAAAACAXCmzAVhDhw6N//znP+lLVuXLl4+//vWv0aNHj2jatGlUrFgx/dtbb70Ve++9d/zyyy/x5ZdfxqBBg+L++++Pn3/+OVKpVLRq1SoeeeSRaN26dS5faZ1eeuml6NmzZ8Zlst///vdx7733ZgR6rcvKIVJz584tUh8rr8/Pz4+KFSsW+zmr21McAVj16tWLevXqbXAdAAAAAAAAAAAoi5YHXhVH6NWmFp41ZMiQuO+++9LjevXqxUsvvRR169Zd677DDjss/vOf/8RJJ52UnvvrX/8af/zjH6NSpUob1JP7UgAAAAAAAAAA5EqZDcC6/vrrI+K3Lw7m5+fHiy++GJ07d17j+vLly0f9+vWjfv36sd9++8UVV1wRf//73+OWW26JUaNGRfv27eOll16KffbZJ1uvUCSDBw+Obt26xZIlS9JzXbp0icceeyzKlStXpForX2aaOHFikfZPmjQpY7ymy1krn7PyvvU5y0UsAAAAAAAAAAAoOe3bty/Sx/jIdPvtt2eMzznnnHWGXy3Xq1evuPHGG+Obb76JiIjp06fHs88+G8cdd1yx9wkAAAAAAAAAANlQJgOw5s6dGwMHDkxftDr11FPXGn61OuXLl49//OMf0bx58zj99NNj9uzZceSRR8aXX34Zm2++eUm0vd4+/PDDOOyww2LBggXpuXbt2sVzzz0X5cuXL3K9li1bZownTJhQpP0rr992221Xu65Zs2aRn5+fDu2aP39+TJ06tdAXuopyFgAAAAAAAAAAsOGGDBmS6xZKrSRJYtCgQRlzhx56aKH35+XlxcEHH5wOwIqIePvttwVgAQAAAAAAAABQauXluoGS8MEHH8TSpUsjSZKIiDjttNPWu1bv3r2jW7duERExY8aMuOyyy4qlx+Ly2WefRdeuXWPOnDnpuV122SVeeeWVqFKlynrVXDlE6quvvirS/lGjRq213nIFBQXRvHnz9T5r4cKFMXbs2EKdBQAAAAAAAAAAkEszZsyIWbNmZcxttdVWRaqx8vpJkyZtcF8AAAAAAAAAAJArZTIAa/z48ennGjVqxA477LDW9QsXLlzr75deemlE/PYFvkceeSQWLFiw4U0Wg9GjR0eXLl1ixowZ6bntttsuXn/99ahRo8Z61915550zxsOHD48lS5YUev9777231npr++39998v9DkfffRRxn+7LbbYIurVq1fo/QAAAAAAAAAAANmyuntq+fn5RapRUFCQMV66dOkG9QQAAAAAAAAAALlUJgOwfvnll4iISKVS0bhx49WuWfHi0LoCrXbaaafYfPPN02uLEtJUUsaPHx+dO3eOKVOmpOe22mqrePPNN6Nu3bobVHvbbbeN5s2bp8dz584t9DvPnTs3/u///i89TqVSccghh6xx/cq/vfnmm4Xuc+W1hx56aKH3AgAAAAAAAAAAZFPt2rVXmfvxxx+LVGPSpEkZ4w29KwYAAAAAAAAAALlUJgOwlixZkn6uUqXKatdUq1YtkiSJiMgIkVqThg0bpp9Hjx69gR1umMmTJ8d+++0XEydOTM9tueWWMXDgwNhyyy2L5YzDDjssY3zfffcVat8TTzwRc+bMSY933333aNCgwRrXH3TQQRlhZEOGDImxY8eu85wkSeKBBx7ImDv88MML1SMAAAAAAAAAAEC2lS9fPrbYYouMuUGDBhWpxsCBAzPGK37oEAAAAAAAAAAASpsyGYBVo0aN9POKYUwrqlmzZvp5/Pjx66y5bNmy9PPMmTPXu7cN9csvv0SXLl3iu+++S8/VrVs33nzzzdhqq62K7ZwTTzwxUqlUevz444/HqFGj1rpnwYIFccMNN2TMnXTSSWvds9lmm8URRxyRHidJEldeeeU6+7v//vvj+++/T4+bNGkSnTt3Xuc+AAAAAAAAAACAXNlvv/0yxrfddlvGBx/XZujQofF///d/a60HAAAAAAAAAAClSZkMwGrcuHFE/Bam9Msvv6x2zbbbbpt+/vDDD9dab+nSpfHtt9+mA6EqVKhQTJ0WzezZs+PAAw+ML7/8Mj1Xs2bNeOONN2K77bYr1rN22GGH6N69e3q8aNGi6NmzZ/z666+rXZ8kSZxzzjnx7bffpueaNWsWJ5544jrP6tOnT+Tl/e//ig899FA89thja1z/1VdfxQUXXJAxd9lll0X58uXXeRYAAAAAAAAAAECu9OjRI2P8xRdfxBlnnJHxgcbVGTNmTBx77LEZcy1atIg999yz2HsEAAAAAAAAAIBsyc91AyVh++23Tz//+OOPMWfOnKhatWrGmp133jleffXVSJIk3n333fjxxx+jQYMGq6333HPPxZw5cyIiIpVKxRZbbFFyza/FYYcdFsOHD8+YO++882LatGnx1ltvFanWbrvtFrVq1VrrmmuuuSZefPHFmDdvXkREDB8+PNq3bx+33XZbdOzYMb3um2++ib/97W/x7LPPZuy/4YYboqCgYJ29tGrVKk4++eTo27dveq5Hjx4xatSoOPfcc9N9Ll68OB555JE477zzYubMmem1O+20U/Ts2XOd5wAAAAAAAAAAAGvXrFmzYqtVUFAQNWvWjJo1a0bTpk1jzz33jPbt2xfrGaXNAQccEPvuu28MHjw4PXfPPffEqFGj4sorr4wOHTpEfv7/rvVNnz49Hnjggbj66qtj1qxZGbWuu+66KFeuXNZ6BwAAAAAAAACA4lYmA7CaNm0a9evXj59++ikiIkaMGJER2BQRccQRR8T1118fqVQqlixZEqeffno888wzGZeHIiLGjh0bZ599dqRSqUiSJCIi9tprr6y8x8qGDBmyytzll1++XrUGDx68yr/Jyrbeeuu477774thjj02/+6effhr77rtv1K1bNxo3bhxTpkyJiRMnpn9f7swzz4xu3boVup9bb701Pv744xgxYkRERCxbtiyuvvrquPHGG2OrrbaKChUqxNixY9NBZMvVqVMnnnrqqVX+uwEAAAAAAAAAAEX3/fffZ9yVKg6pVCoiIu69996IiOjUqVNccMEFccABBxTbGaXJo48+Gu3atYtx48al5959993o3LlzVK1aNbbaaquoVKlSTJ8+PcaOHbva/xbnn39+HHXUUdlsGwAAAAAAAAAAil1erhsoKZ06dUo/v/LKK6v83qZNm9hxxx3T45deeil22223+Pe//x1vvPFGvPTSS3HxxRfHrrvuGj/99FMkSRKpVCrat28fjRs3zso7bAz++Mc/xiOPPBKVKlXKmJ86dWp89NFH8cMPP6xyweqCCy6If/3rX0U6p3LlyvH6669n/HeLiFi0aFGMHj06Pvvss1XCr5o2bRqDBg2KbbbZpkhnAQAAAAAAAAAAa5dKpYrtb7kkSSJJkhg4cGAcdNBBcfLJJ8eCBQty+Ja5Ub9+/Rg6dOhqP2A4Z86c+Pzzz2PYsGHx3XffrXI3q6CgIG644Ya46aabstQtAAAAAAAAAACUnDIbgPX73/8+/fzUU0+t9it4d9xxR/o5SZL4/PPP45xzzomuXbvG4YcfHjfddFP8+uuv6TUFBQVx4403lmzjG6Fjjjkmvvjiizj22GOjoKBgjevat28fQ4YMiZtuuinj4lphbbbZZvHmm29G3759Y+utt17ruksuuSQ+//zzjBAzAAAAAAAAAABgwy0PqiruvxVDsZIkiX79+sVBBx0US5cuzfUrZ12jRo1i4MCB8eSTT0bHjh0jL2/tV/lq1KgRp59+enz++edx0UUXrdf9LAAAAAAAAAAA2Njk57qBknLwwQfHrrvuGgsXLoyIiPfffz/22muvjDX77LNP3HnnnXHGGWekLwStGJS14mWrgoKC6Nu3b7Rt2zZ7L7GS1YV4ZUuzZs3ikUceibvuuivefffd+Pbbb2P27NlRsWLFaNy4cey1116x5ZZbbvA5eXl5ccopp8Qpp5wSn3/+eXz88ccxefLkWLp0adSuXTt22GGH2GOPPdYaxAUAAAAAAAAAAKyfwYMHF1utBQsWxOzZs2PKlCnx5ZdfxnvvvRefffZZRET6XtbQoUPj3HPPjdtvv73Yzi0t8vLyolu3btGtW7eYPXt2jBgxIsaOHRszZ86MBQsWRPXq1aN27dqx0047RatWrdYZkgUAAAAAAAAAAKVNmQ3AqlChQowYMWKd63r37h3bbLNNnH/++TFy5MiM35YHTu25555x8803x5577lkSrZYq1atXj4MOOigrZ+24446x4447ZuUsAAAAAAAAAAAgokOHDiVa/6uvvoqLL744XnrppXQI1l133RV//vOfo2XLliV69sasWrVqse+++8a+++6b61YAAAAAAAAAACBrymwAVlHsu+++8fHHH8e3334bH3zwQfz888+RJEnUr18/2rVrF82bN891iwAAAAAAAAAAAKVeq1atYsCAAXHZZZfFtddeG6lUKpYtWxY33XRT3HvvvbluDwAAAAAAAAAAyCIBWCto0aJFtGjRItdtAAAAAAAAAAAAlGlXX311vP322/HOO+9ERMSAAQNy3BEAAAAAAAAAAJBtebluAAAAAAAAAAAAgE3P3/72t/Tz9OnT48svv8xhNwAAAAAAAAAAQLYJwAIAAAAAAAAAACDrOnbsGBUqVEiPv/rqqxx2AwAAAAAAAAAAZFuZDcAqV65clCtXLvLz82PQoEEbVGvgwIEZ9QAAAAAAAAAAANgwFStWjEaNGqXH06dPz2E3AAAAAAAAAABAtpXZNKckSTbqegAAAAAAAAAAAJu6zTbbLP08c+bM3DUCAAAAAAAAAABkXV6uGyhJqVQq1y0AAAAAAAAAAACwBvPnz08/V6hQIYedAAAAAAAAAAAA2VamA7AAAAAAAAAAAADYeP3888/p59q1a+ewEwAAAAAAAAAAINsEYBXCokWL0s++MggAAAAAAAAAALDhxo4dG1OmTEmPGzRokMNuAAAAAAAAAACAbBOAVQgTJkxIP1erVi2HnQAAAAAAAAAAAJQNjzzySPo5Ly8v9thjjxx2AwAAAAAAAAAAZFt+rhsoDZ588smIiEilUtGsWbMcdwMAAAAAAAAAAFC6jRs3Lm655ZZIpVIREbHLLrv4OCEAAAAAAAAAAGxiSnUA1ttvv12odZ9++mnk5xf+VZMkiXnz5sW4cePimWeeiSFDhqR/a9OmTVHbBAAAAAAAAAAA4P/79NNP46ijjopff/01In77MOFpp52W464AAAAAAAAAAIBsK9UBWB07dkx/AXB1kiSJiIgLLrig2M485phjiq0WAAAAAAAAAADApuCXX36J9957Lx5//PF46qmnYunSpZFKpSJJkmjcuHEcf/zxuW4RAAAAAAAAAADIslIdgLXc8qCr9f19bVYM2OrRo0fsueee610LAAAAAAAAAABgY9apU6diq7Vw4cKYM2dO/PzzzzF16tT0fJIk6fCrihUrxhNPPBH5+WXiKhsAAAAAAAAAAFAEpf7W0IaEWxW2fp06deKss86KSy65pETPAgAAAAAAAAAAyKUhQ4ZkfDRwQ618vyuVSqXDrypXrhwPPvhgtG3bttjOAwAAAAAAAAAASo9SHYB1xRVXrPG3Pn36pC9i9ejRI5o1a1bounl5eVGlSpXYbLPNYvvtt49ddtnFFwYBAAAAAAAAAACKaOUwreWBWG3atIkHHnggtttuu1y0BQAAAAAAAAAAbARKdarTugKwluvZs2d06tQpGy0BAAAAAAAAAACUastDqopbw4YNo0OHDnHKKadE+/btS+QMAAAAAAAAAACg9CjVAVjrUlIXsQAAAAAAAAAAAMqifv36FVut/Pz8qFmzZtSsWTO22mqraNCgQbHVBgAAAAAAAAAASr8yG4A1ePDg9HPr1q1z2AkAAAAAAAAAAEDp0LNnz1y3AAAAAAAAAAAAbCLKbABWhw4dct0CAAAAAAAAAAAAAAAAAAAAAAAAq5GX6wYAAAAAAAAAAAAAAAAAAAAAAADYtOTnuoFc+eGHH2LChAkxY8aMmD17dlSrVi1q1aoVTZo0iYYNG+a6PQAAAAAAAAAAAAAAAAAAAAAAgDJrkwrAGjx4cPTt2zfeeeedmDx58hrXbbHFFtGhQ4c45ZRTomPHjtlrEAAAAAAAAAAAAAAAAAAAAAAAYBOQl+sGsuGLL76I3XbbLTp37hxPPvlk/Pjjj5EkyRr/fvzxx3j88cdjv/32izZt2sSXX36Z61cAAAAAAAAAAAAAAAAAAAAAAAAoM8p8ANaDDz4Ybdq0iZEjR0aSJBERkUqlIpVKrXb9ir8lSRIfffRR7L777tG/f/+s9QwAAAAAAAAAAAAAAAAAAAAAAFCW5ee6gZL03HPPxcknnxxLly5NB1stD8Fq1KhRtG7dOurUqRNVqlSJuXPnxrRp0+LTTz+NH374ISIiHYS1cOHCOOmkk6JGjRpx+OGH5+x9AAAAAAAAAAAAAAAAAAAAAAAAyoIyG4A1ffr0OOGEE9LhV0mSRKVKleLss8+OE088Mbbeeus17v3uu+/ivvvui9tvvz3mz58fqVQqli5dGr169YoxY8ZE7dq1s/gmAAAAAAAAAAAAAAAAAAAAAAAAZUterhsoKVdddVX8+uuv6fCrHXfcMb766qu47rrr1hp+FRHRvHnzuO666+LLL7+MHXfcMZIkiYiIX3/9Na655ppstA8AAAAAAAAAAAAAAAAAAAAAAFBmlckArCRJ4rHHHkuHXzVu3DjefvvtaNKkSZHqNGnSJIYMGRJNmjRJ13rkkUdKqGsAAAAAAAAAAAAAAAAAAAAAAIBNQ5kMwBo2bFhMmzYtkiSJVCoVt9xyS9SoUWO9atWsWTNuvvnmSJIkIiKmT58ew4YNK852AQAAAAAAAAAAAAAAAAAAAAAANillMgDr22+/TT9XrVo1Dj/88A2qd9hhh0W1atXS42+++WaD6gEAAAAAAAAAAAAAAAAAAAAAAGzKymQA1pQpUyIiIpVKRdOmTSM/P3+D6hUUFETTpk1XqQ8AAAAAAAAAAAAAAAAAAAAAAEDRlckArKVLl6afy5UrVyw1V6yzbNmyYqkJAAAAAAAAAAAAAAAAAAAAAACwKSqTAVj16tWLiIgkSWL8+PGRJMkG1VteZ7m6detuUD0AAAAAAAAAAAAAAAAAAAAAAIBNWZkMwNpqq63SzzNnzoyBAwduUL2BAwfGjBkzVlsfAAAAAAAAAAAAAAAAAAAAAACAoimTAVh77rlnVKtWLVKpVCRJEhdccEEsXrx4vWotXrw4/vrXv6bHVatWjXbt2hVXqwAAAAAAAAAAAAAAAAAAAAAAAJucUhuAddVVV6X/vv/++4zfCgoK4rDDDoskSSKVSsXnn38ehx12WMyZM6dIZ8ybNy+OPPLI+PTTTyMiIpVKxRFHHBH5+fnF9RoAAAAAAAAAAAAAAAAAAAAAAACbnFIbgHXllVdGnz59ok+fPjF27NhVfr/66qujfPnyERGRJEm88cYbsd1220W/fv1i3rx5a609b968eOCBB2LbbbeNV199NVKpVERElC9fPvr06VP8LwMAAAAAAAAAAAAAAAAAAAAAALAJyc91AxsiSZJ0ONXKmjZtGjfccEOcd955kUqlIkmSmDRpUpx88slx1llnRZs2bWKnnXaKOnXqRJUqVWLu3Lkxffr0+PTTT2P48OExb968jPqpVCpuvPHGaNq0aRbfEAAAAAAAAAAAAAAAAAAAAAAAoOwp1QFYawq/Wu6cc86J6dOnx7XXXptemyRJzJ07N4YOHRpDhw5d7b4kSdL1lz9fdtllcdZZZxVj9wAAAAAAAAAAAAAAAAAAAAAAAJumvFw3UNKuvvrqeOGFF6JevXqRJEmkUqmM4KwkSdJ/y60YlrX55pvHgAEDok+fPlnvHQAAAAAAAAAAAAAAAAAAAAAAoCwq8wFYERGHHnpojB07Nu6+++7YfffdIy8vb5XQq4j/hWHl5eVF27Zto2/fvjF27Ng45JBDctQ5AAAAAAAAAAAAAAAAAAAAAABA2ZOf6waypVKlSnHqqafGqaeeGnPnzo0RI0bE+PHjY8aMGTFnzpyoWrVq1KpVK5o0aRK77757VKlSJdctAwAAAAAAAAAAAAAAAAAAAAAAlEmbTADWiqpUqRIdOnTIdRsAAAAAAAAAAAAAAAAAAAAAAACbpLxcNwAAAAAAAAAAAAAAAAAAAAAAAMCmRQAWAAAAAAAAAAAAAAAAAAAAAAAAWSUACwAAAAAAAAAAAAAAAAAAAAAAgKzKz3UDxeH888+PWrVqZeWsVCoVAwcOzMpZAAAAAAAAAAAAAAAAAAAAAAAAZVGpD8BKkiQ+++yzrJ2VSqWychYAAAAAAAAAAAAAAAAAAAAAAEBZlZfrBgAAAAAAAAAAAAAAAAAAAAAAANi05Oe6geKQJEmuWwAAAAAAAAAAAAAAAAAAAAAAAKCQSn0AViqVigsuuCBatWqV61YAAAAAAAAAAAAAAAAAAAAAAAAohFIfgBURccABB0SnTp1y3QYAAAAAAAAAAAAAAAAAAAAAAACFkJfrBgAAAAAAAAAAAAAAAAAAAAAAANi0CMACAAAAAAAAAAAAAAAAAAAAAAAgqwRgAQAAAAAAAAAAAAAAAAAAAAAAkFUCsAAAAAAAAAAAAAAAAAAAAAAAAMgqAVgAAAAAAAAAAAAAAAAAAAAAAABklQAsAAAAAAAAAAAAAAAAAAAAAAAAskoAFgAAAAAAAAAAAAAAAAAAAAAAAFklAAsAAAAAAAAAAAAAAAAAAAAAAICsys91AxsiSZJctwAAAAAAAAAAAAAAAAAAAAAAAEARldoArHHjxqWf69evn8NOAAAAAAAAAAAAAAAAAAAAAAAAKIpSG4DVpEmTXLcAAAAAAAAAAAAAAAAAAAAAAADAesjLdQMAAAAAAAAAAAAAAAAAAAAAAABsWgRgAQAAAAAAAAAAAAAAAAAAAAAAkFUCsAAAAAAAAAAAAAAAAAAAAAAAAMgqAVgAAAAAAAAAAAAAAAAAAAAAAABklQAsAAAAAAAAAAAAAAAAAAAAAAAAskoAFgAAAAAAAAAAAAAAAAAAAAAAAFklAAsAAAAAAAAAAAAAAAAAAAAAAICsEoAFAAAAAAAAAAAAAAAAAAAAAABAVgnAAgAAAAAAAAAAAAAAAAAAAAAAIKsEYAEAAAAAAAAAAAAAAAAAAAAAAJBVArAAAAAAAAAAAAAAAAAAAAAAAADIKgFYAAAAAAAAAAAAAAAAAAAAAAAAZJUALAAAAAAAAAAAAAAAAAAAAAAAALJKABYAAAAAAAAAAAAAAAAAAAAAAABZJQALAAAAAAAAAAAAAAAAAAAAAACArBKABQAAAAAAAAAAAAAAAAAAAAAAQFYJwAIAAAAAAAAAAAAAAAAAAAAAACCrBGABAAAAAAAAAAAAAAAAAAAAAACQVQKwAAAAAAAAAAAAAAAAAAAAAAAAyCoBWAAAAAAAAAAAAAAAAAAAAAAAAGSVACwAAAAAAAAAAAAAAAAAAAAAAACySgAWAAAAAAAAAAAAAAAAAAAAAAAAWSUACwAAAAAAAAAAAAAAAAAAAAAAgKwSgAUAAAAAAAAAAAAAAAAAAAAAAEBWCcACAAAAAAAAAAAAAAAAAAAAAAAgqwRgAQAAAAAAAAAAAAAAAAAAAAAAkFUCsAAAAAAAAAAAAAAAAAAAAAAAAMgqAVgAAAAAAAAAAAAAAAAAAAAAAABklQAsAAAAAAAAAAAAAAAAAAAAAAAAskoAFgAAAAAAAAAAAAAAAAAAAAAAAFklAAsAAAAAAAAAAAAAAAAAAAAAAICsEoAFAAAAAAAAAAAAAAAAAAAAAABAVgnAAgAAAAAAAAAAAAAAAAAAAAAAIKsEYAEAAAAAAAAAAAAAAAAAAAAAAJBVArAAAAAAAAAAAAAAAAAAAAAAAADIKgFYAAAAAAAAAAAAAAAAAAAAAAAAZJUALAAAAAAAAAAAAAAAAAAAAAAAALJKABYAAAAAAAAAAAAAAAAAAAAAAABZJQALAAAAAAAAAAAAAAAAAAAAAACArBKABQAAAAAAAAAAAAAAAAAAAAAAQFYJwAIAAAAAAAAAAAAAAAAAAAAAACCrBGABAAAAAAAAAAAAAAAAAAAAAACQVQKwAAAAAAAAAAAAAAAAAAAAAAAAyCoBWAAAAAAAAAAAAAAAAAAAAAAAAGSVACwAAAAAAAAAAAAAAAAAAAAAAACySgAWAAAAAAAAAAAAAAAAAAAAAAAAWZWf6wZgdb777rsYNmxYTJw4MRYtWhS1atWKbbfdNtq1axcVK1bMdXsAAAAAAAAAAAAlYvTo0fHpp5/GxIkTY968eVGpUqXYfPPNY5tttonWrVtHhQoVct0iAAAAAAAAAAAUCwFYpdikSZNi2LBh8eGHH8awYcNixIgRMXv27PTvTZo0ie+//369aqdSqQ3qbdy4cdG0adMi73v++efj6quvjo8//ni1v1etWjV69eoVV1xxRdSpU2eDegQAAAAAAAAAANgYzJ49O/7973/HvffeG+PGjVvjuvLly0fbtm3jqKOOirPPPjuLHQIAAAAAAAAAQPETgFXKvPfee3HLLbfEhx9+GD/++GOu2yk2CxcujJNOOikeeeSRta6bM2dO3HHHHfHEE0/E008/He3bt89ShwAAAAAAAAAAAMXvpZdeipNPPjl+/vnnda5dtGhRvPvuu/Htt98KwAIAAAAAAAAAoNQTgFXKDB8+PJ577rlct1Gsli1bFkcffXS88MILGfPlypWLxo0bR40aNWLcuHExa9as9G9Tp06Nrl27xltvvRV77rlntlsGAAAAAAAAAADYYLfeemucf/75kSRJxnzFihWjQYMGUadOnZg/f35Mnjw5pk2blqMuAQAAAAAAAACgZAjAKkOqVq0ac+bMKfa6O+20U9xyyy1F2lO/fv1Cr73ppptWCb867bTT4rLLLosGDRpExG8hWS+88EKcc845MWHChIiImDdvXnTv3j2++OKLqFGjRpH6AwAAAAAAAAAAyKX77rsvzjvvvIy5rl27xllnnRX77rtvVKhQIeO3H3/8MQYNGhTPP/98DBs2LJutAgAAAAAAAABAiRCAVUpVq1Ytdtttt2jTpk20bds22rRpE+PGjYt999232M+qVatWdO7cudjrRkRMnz49rr322oy566+/Pi6++OKMuby8vDjyyCOjbdu2sffee8f3338fERETJ06Mf/7zn9GnT58S6Q8AAAAAAAAAAKC4jRkzJv7yl7+kxwUFBfHggw/GMcccs8Y9DRo0iB49ekSPHj1ixowZ2WgTAAAAAAAAAABKlACsUubQQw+N/fffP7bddtvIy8vL+G3cuHE56mr9/eMf/4jZs2enx+3bt4+LLrpojeu33HLLuPfeezMCuW699dY466yzonbt2iXaKwAAAAAAAAAAQHE49dRTY8GCBenxI488Et26dSv0/lq1apVEWwAAAAAAAAAAkFV5617CxqR58+bRqlWrVcKvSqNly5ZFv379MuauvPLKSKVSa9233377xT777JMez549O5588skS6REAAAAAAAAAAKA4vfDCCzF48OD0uFu3bkUKvwIAAAAAAAAAgLKi9KcoUWq9//77MXXq1PS4WbNm0bFjx0LtPemkkzLGzz//fDF2BgAAAAAAAAAAUDL69u2bMb7iiity1AkAAAAAAAAAAOSWACxy5uWXX84Yd+nSJVKpVKH2dunSJWM8ZMiQmDt3brH1BgAAAAAAAAAAUNwmTZoUr7/+enq88847x/bbb5/DjgAAAAAAAAAAIHcEYJEzI0eOzBi3a9eu0HsbNGgQTZs2TY8XLVoUX331VTF1BgAAAAAAAAAAUPxee+21WLp0aXq877775rAbAAAAAAAAAADILQFYFNrkyZPjo48+irfffjs+//zzmDx58gbVGzVqVMa4VatWRdq/8vqV6wEAAAAAAAAAAGxMhg8fnjFu3bp1+vmTTz6Js846K1q3bh21atWKypUrR9OmTaNLly5x8803x6RJk7LdLgAAAAAAAAAAlKj8XDfAxu/zzz+PZs2axbhx41b5rX79+tGhQ4fo1atXHHjggYWuOX/+/JgwYULGXKNGjYrU18rrR48eXaT9AAAAAAAAAAAA2bRyAFazZs1izpw5cfbZZ8f999+/yvrx48fH+PHj46233orLL788zjnnnOjTp08UFBRkq2UAAAAAAAAAACgxeblugI3fL7/8strwq4iIn376KZ544ono2rVr7LrrrvH5558Xqua0adMiSZL0uKCgIOrVq1ekvrbccsuM8ZQpU4q0HwAAAAAAAAAAIJvGjBmTMc7Ly4v27duvNvxqZfPnz4/rr78+DjrooJg9e3ZJtQgAAAAAAAAAAFmTn+sGKDs++eST2GOPPeLBBx+Mbt26rXXtnDlzMsaVK1eOVCpVpPOqVKmy1prra8qUKTF16tQi7Vn5YhoAAAAAAAAAAMCKli1btkpw1VlnnRWffPJJRESkUqk45JBD4qCDDoqGDRvG3Llz45NPPomHHnoofvzxx/Set956K3r16hXPPPNMsfTlvhQAAAAAAAAAALkiAIs1qlOnThxyyCHRuXPn2GmnnaJhw4ZRrVq1mDNnTkyYMCHeeeeduOeee+LTTz9N75k/f3706NEjNt9882jfvv0aa68cVlWxYsUi91epUqW11lxfd955Z/Tp06dYagEAAAAAAAAAAEREzJo1K5IkyZj7+OOPIyKidu3a8dxzz8U+++yT8fvRRx8df//736N3797x6KOPpuefffbZ6N+/fxx//PEb3Jf7UgAAAAAAAAAA5Eperhtg4/Twww/HpEmTol+/fnHcccfFjjvuGLVq1Yr8/PyoWbNm7LTTTvHnP/85Ro4cGXfffXdUqFAhvXfRokVx7LHHxoIFC9ZYf+XfypcvX+QeVzwz4rfwLQAAAAAAAAAAgI3Rmj7wV65cuXj55ZdXCb9armrVqvHQQw/F/vvvnzF/3XXXrRKoBQAAAAAAAAAApYkALFbruOOOK3Qo1fKvC+bl/e//TpMmTYr//Oc/a9xTsWLFjPGiRYuK3OPChQvXWhMAAAAAAAAAAGBjsab7TSeffHLssccea92bl5cXd911V8YdrdGjR8fQoUOLtUcAAAAAAAAAAMim/Fw3QNnw+9//Pv70pz/Fgw8+mJ576KGH4vzzz1/t+qpVq2aMFyxYUOQz58+fv9aa6+uMM86Ibt26FWnPmDFj4ogjjiiW8wEAAAAAAAAAgLJnTfebTjnllELtb9asWXTu3DneeOON9NzQoUOjY8eOG9SX+1IAAAAAAAAAAOSKACyKzfnnn58RgPXZZ5/Fzz//HJtvvvkqa1e+zDVv3rxIkiRSqVShz5s7d+5aa66vevXqRb169YqlFgAAAAAAAAAAQEREpUqVoly5crF06dL0XLVq1WKXXXYpdI0OHTpkBGCNGDFig/tyXwoAAAAAAAAAgFzJy3UDlB077rhjxkWoJEnim2++We3aOnXqZIRdLV68OKZMmVKk8yZNmpQxdgkLAAAAAAAAAADYmK18x2nrrbeOvLzCX+Nr2bJlxriod64AAAAAAAAAAGBjIgCLYtWwYcOM8dSpU1e7rlKlStG4ceOMuQkTJhTprJXXb7vttkXaDwAAAAAAAAAAkE3bbbddxrh69epF2r/y+hkzZmxwTwAAAAAAAAAAkCsCsChWBQUFGePFixevce3KgVVfffVVkc4aNWrUWusBAAAAAAAAAABsTFq1apUxXrhwYZH2L1iwIGNcuXLlDe4JAAAAAAAAAAByRQAWxeqnn37KGNetW3eNa3feeeeM8fvvv1/ocyZPnhzff/99elxQULDK5TAAAAAAAAAAAICNya677pox/vnnn4u0f8qUKRnj2rVrb3BPAAAAAAAAAACQKwKwKDYTJ06M8ePHZ8w1atRojesPOeSQjPFbb70VSZIU6qw33ngjY7zvvvtG1apVC9kpAAAAAAAAAABA9h188MGRl/e/a3vjxo2LX375pdD7P/roo4xxy5Yti603AAAAAAAAAADINgFYFJv77rsvY9yoUaNo0aLFGte3a9cu6tSpkx6PHTs2hgwZsl5nHX744YVvFAAAAAAAAAAAIAfq1asXe+21V8bcs88+W6i9S5Ysieeeey5jrmPHjsXVGgAAAAAAAAAAZJ0ALIrFqFGj4pZbbsmYO+KII9a6Jy8vL3r16pUx16dPn0iSZK37Bg4cGO+88056XK1atejevXuR+gUAAAAAAAAAAMiF3r17Z4xvuummWLhw4Tr33XPPPfHTTz+lx9WrV48DDjig2PsDAAAAAAAAAIBsEYBFhpEjR8att94a8+bNK9KeAw88MGbPnp2eq1SpUlx88cXr3HvRRRdF1apV0+OhQ4fGjTfeuMb1kyZNipNPPjlj7uyzz446deoUul8AAAAAAAAAAIBcOeaYY2LHHXdMj7/55pvo3bt3LFu2bI17Pvzww7jwwgsz5s4444yoUaNGifUJAAAAAAAAAAAlLT/XDVB07733XsyfP3+V+U8//TRjvGDBgnjrrbdWW6NBgwbRqlWrVeZnzpwZ5513Xlx77bXx+9//Po488sho06bNKgFTSZLEF198Effcc0/07dt3lS8QXn/99dGgQYN1vkudOnXikksuiUsuuSQ997e//S0mTJgQf//739M1li1bFgMGDIizzz47JkyYkPEe559//jrPAQAAAAAAAAAA2Bjk5eXFrbfeGl26dIkkSSIi4sEHH4xJkybFDTfcELvttlt67axZs+K+++6LK664IubMmZOe32abbTLuXAEAAAAAAAAAQGkkAKsUOu6442L8+PHrXPfzzz9Hly5dVvtbz54944EHHljj3unTp8c999wT99xzT0REbL755lGnTp2oVq1azJkzJyZNmhQzZsxY7d7zzz8/zj777HW/yP930UUXxfvvvx8vvfRSeu6uu+6Kvn37RpMmTaJGjRoxbty4mDlzZsa+SpUqxZNPPhk1a9Ys9FkAAAAAAAAAAAC5tt9++8X1118fF198cXrurbfeit133z3q168fDRs2jLlz58Z3330XixYtythbu3btePrpp6NatWrZbhsAAAAAAAAAAIqVACwK5eeff46ff/55rWuqV68ed955Zxx33HFFqp2XlxdPPfVUnHDCCfH444+n55cuXRpjx45d7Z7ll7j22muvIp0FAAAAAAAAAACwMbjooouicuXKcf7558fixYvT8z/99FP89NNPq93TsmXLePHFF6NFixbZahMAAAAAAAAAAEpMXq4bYOOy4447xo3/j717D7K6vA8//jkLLAssZbkIyMVlDa2A0ykWEyYwEHDBqAgYLWJsJmihjWIyySSCA15JzBgviZVUokaMOrXebxVMoigEZCtaLzEjyIiyUBAFgSVcdrnu74/fr+eXAyzs0eU5q75eM8zwPOf7fJ/PGf3zzJsbb4wzzjgjOnXq1Kgz/fr1i5tuuimqq6vzjl/9r5KSknjwwQfjsccei4EDBzb4XLt27WLq1KmxfPnyGDFixCe6CwAAAAAAAAAAoDn43ve+F2+99VZMnDgxWrVq1eBzFRUVcdttt8Vbb70lfgUAAAAAAAAAwOdGy0IPQP6qq6uP2bs7d+4c06dPj+nTp0dExJo1a+Ldd9+NtWvXxtatW6O2tjZKSkqiY8eOcfzxx8fgwYOjc+fOTXb/eeedF+edd16sWrUqli1bFuvXr489e/ZEWVlZ9O/fP4YOHRolJSVNdh8AAAAAAAAAAEAh9evXLx566KH485//HFVVVfHuu+/Gtm3borS0NLp16xZ///d/HyeddFKhxwQAAAAAAAAAgCYngMURlZeXR3l5efJ7+/btG3379k1+LwAAAAAAAAAAQCH81V/9VZxxxhlxxhlnFHoUAAAAAAAAAABIoqjQAwAAAAAAAAAAAAAAAAAAAAAAAPDFIoAFAAAAAAAAAAAAAAAAAAAAAABAUgJYAAAAAAAAAAAAAAAAAAAAAAAAJCWABQAAAAAAAAAAAAAAAAAAAAAAQFICWAAAAAAAAAAAAAAAAAAAAAAAACQlgAUAAAAAAAAAAAAAAAAAAAAAAEBSAlgAAAAAAAAAAAAAAAAAAAAAAAAkJYAFAAAAAAAAAAAAAAAAAAAAAABAUgJYAAAAAAAAAAAAAAAAAAAAAAAAJCWABQAAAAAAAAAAAAAAAAAAAAAAQFICWAAAAAAAAAAAAAAAAAAAAAAAACQlgAUAAAAAAAAAAAAAAAAAAAAAAEBSAlgAAAAAAAAAAAAAAAAAAAAAAAAkJYAFAAAAAAAAAAAAAAAAAAAAAABAUgJYAAAAAAAAAAAAAAAAAAAAAAAAJCWABQAAAAAAAAAAAAAAAAAAAAAAQFICWAAAAAAAAAAAAAAAAAAAAAAAACQlgAUAAAAAAAAAAAAAAAAAAAAAAEBSAlgAAAAAAAAAAAAAAAAAAAAAAAAkJYAFAAAAAAAAAAAAAAAAAAAAAABAUgJYAAAAAAAAAAAAAAAAAAAAAAAAJCWABQAAAAAAAAAAAAAAAAAAAAAAQFICWAAAAAAAAAAAAAAAAAAAAAAAACQlgAUAAAAAAAAAAAAAAAAAAAAAAEBSAlgAAAAAAAAAAAAAAAAAAAAAAAAkJYAFAAAAAAAAAAAAAAAAAAAAAABAUgJYAAAAAAAAAAAAAAAAAAAAAAAAJCWABQAAAAAAAAAAAAAAAAAAAAAAQFICWAAAAAAAAAAAAAAAAAAAAAAAACQlgAUAAAAAAAAAAAAAAAAAAAAAAEBSAlgAAAAAAAAAAAAAAAAAAAAAAAAkJYAFAAAAAAAAAAAAAAAAAAAAAABAUgJYAAAAAAAAAAAAAAAAAAAAAAAAJCWABQAAAAAAAAAAAAAAAAAAAAAAQFICWAAAAAAAAAAAAAAAAAAAAAAAACQlgAUAAAAAAAAAAAAAAAAAAAAAAEBSAlgAAAAAAAAAAAAAAAAAAAAAAAAkJYAFAAAAAAAAAAAAAAAAAAAAAABAUgJYAAAAAAAAAAAAAAAAAAAAAAAAJCWABQAAAAAAAAAAAAAAAAAAAAAAQFICWAAAAAAAAAAAAAAAAAAAAAAAACQlgAUAAAAAAAAAAAAAAAAAAAAAAEBSAlgAAAAAAAAAAAAAAAAAAAAAAAAkJYAFAAAAAAAAAAAAAAAAAAAAAABAUgJYAAAAAAAAAAAAAAAAAAAAAAAAJCWABQAAAAAAAAAAAAAAAAAAAAAAQFICWAAAAAAAAAAAAAAAAAAAAAAAACQlgAUAAAAAAAAAAAAAAAAAAAAAAEBSAlgAAAAAAAAAAAAAAAAAAAAAAAAkJYAFAAAAAAAAAAAAAAAAAAAAAABAUgJYAAAAAAAAAAAAAAAAAAAAAAAAJCWABQAAAAAAAAAAAAAAAAAAAAAAQFICWAAAAAAAAAAAAAAAAAAAAAAAACQlgAUAAAAAAAAAAAAAAAAAAAAAAEBSAlgAAAAAAAAAAAAAAAAAAAAAAAAkJYAFAAAAAAAAAAAAAAAAAAAAAABAUgJYAAAAAAAAAAAAAAAAAAAAAAAAJCWABQAAAAAAAAAAAAAAAAAAAAAAQFICWAAAAAAAAAAAAAAAAAAAAAAAACQlgAUAAAAAAAAAAAAAAAAAAAAAAEBSAlgAAAAAAAAAAAAAAAAAAAAAAAAkJYAFAAAAAAAAAAAAAAAAAAAAAABAUgJYAAAAAAAAAAAAAAAAAAAAAAAAJCWABQAAAAAAAAAAAAAAAAAAAAAAQFICWAAAAAAAAAAAAAAAAAAAAAAAACQlgAUAAAAAAAAAAAAAAAAAAAAAAEBSAlgAAAAAAAAAAAAAAAAAAAAAAAAkJYAFAAAAAAAAAAAAAAAAAAAAAABAUgJYAAAAAAAAAAAAAAAAAAAAAAAAJCWABQAAAAAAAAAAAAAAAAAAAAAAQFICWAAAAAAAAAAAAAAAAAAAAAAAACQlgAUAAAAAAAAAAAAAAAAAAAAAAEBSAlgAAAAAAAAAAAAAAAAAAAAAAAAkJYAFAAAAAAAAAAAAAAAAAAAAAABAUgJYAAAAAAAAAAAAAAAAAAAAAAAAJCWABQAAAAAAAAAAAAAAAAAAAAAAQFICWAAAAAAAAAAAAAAAAAAAAAAAACQlgAUAAAAAAAAAAAAAAAAAAAAAAEBSAlgAAAAAAAAAAAAAAAAAAAAAAAAkJYAFAAAAAAAAAAAAAAAAAAAAAABAUgJYAAAAAAAAAAAAAAAAAAAAAAAAJCWABQAAAAAAAAAAAAAAAAAAAAAAQFICWAAAAAAAAAAAAAAAAAAAAAAAACQlgAUAAAAAAAAAAAAAAAAAAAAAAEBSAlgAAAAAAAAAAAAAAAAAAAAAAAAkJYAFAAAAAAAAAAAAAAAAAAAAAABAUgJYAAAAAAAAAAAAAAAAAAAAAAAAJCWABQAAAAAAAAAAAAAAAAAAAAAAQFICWAAAAAAAAAAAAAAAAAAAAAAAACQlgAUAAAAAAAAAAAAAAAAAAAAAAEBSAlgAAAAAAAAAAAAAAAAAAAAAAAAkJYAFAAAAAAAAAAAAAAAAAAAAAABAUgJYAAAAAAAAAAAAAAAAAAAAAAAAJCWABQAAAAAAAAAAAAAAAAAAAAAAQFICWAAAAAAAAAAAAAAAAAAAAAAAACQlgAUAAAAAAAAAAAAAAAAAAAAAAEBSAlgAAAAAAAAAAAAAAAAAAAAAAAAkJYAFAAAAAAAAAAAAAAAAAAAAAABAUgJYAAAAAAAAAAAAAAAAAAAAAAAAJCWABQAAAAAAAAAAAAAAAAAAAAAAQFICWAAAAAAAAAAAAAAAAAAAAAAAACQlgAUAAAAAAAAAAAAAAAAAAAAAAEBSAlgAAAAAAAAAAAAAAAAAAAAAAAAkJYAFAAAAAAAAAAAAAAAAAAAAAABAUgJYAAAAAAAAAAAAAAAAAAAAAAAAJCWABQAAAAAAAAAAAAAAAAAAAAAAQFICWAAAAAAAAAAAAAAAAAAAAAAAACQlgAUAAAAAAAAAAAAAAAAAAAAAAEBSAlgAAAAAAAAAAAAAAAAAAAAAAAAk1bLQA/DZUVdXF1VVVfHOO+/E1q1bo7i4OHr16hWDBw+OE088sUnveu+99+KVV16JdevWxZ49e6Jjx47Rr1+/GDJkSJSUlDTpXQAAAAAAAAAAAAAAAAAAAAAAQFoCWJ9h69evj1deeSWWLVsWr7zySvz3f/93bN++Pft5eXl5VFdXf+p7Nm3aFLNmzYp77703du7cedhnBg0aFFdffXWMHz/+U9311FNPxU9+8pN4/fXXD/t5aWlpXHTRRXHttddGly5dPtVdAAAAAAAAAAAAAAAAAAAAAABAYRQVegDys3Tp0jj33HOjZ8+e0atXrzj33HPjxhtvjIULF+bEr5rKokWLYsCAAXH77bc3GL+KiHjttdfinHPOiUmTJsWePXvyvmf37t3xrW99K77xjW80GL+KiNixY0f827/9WwwYMCAWL16c9z0AAAAAAAAAAADN3Te/+c3IZDI5f/r06VPosQAAAAAAAAAAoEkJYH3GvPrqq/Hkk0/GBx98cMzveumll+Kss86Kjz/+OGe/rKwsTjnllOjTp0+0aNEi57P7778/vvnNb0Z9fX2j7zlw4EBMnDgxHnjggZz9Fi1aREVFRQwcODA6dOiQ89mmTZvizDPPjP/6r//K81sBAAAAAAAAAAA0X88880w89NBDhR4DAAAAAAAAAACOOQGsz5HS0tIme9fWrVtj4sSJUVtbm90rLy+Pp556KrZs2RKvv/56rF69Oqqrq+M73/lOztknnngibr311kbfdfPNN8fTTz+ds3fJJZfE2rVr4/3334833ngjtmzZEk888USccMIJ2Wd27doV559/fmzbtu0TfksAAAAAAAAAAIDmY9u2bXHppZcWegwAAAAAAAAAAEhCAOszqn379jFixIiYNm1aPProo1FdXR3PPPNMk73/5ptvjg8++CC7rqioiKqqqhg/fnxkMpnsfq9eveKOO+6In/70pznnf/zjH8fWrVuPes/mzZsPOXvDDTfEr371q+jRo0d2r6ioKL7xjW9EVVVV9OnTJ7u/bt26+MUvfpHv1wMAAAAAAAAAAGh2pk2bFuvXr4+IiHbt2hV4GgAAAAAAAAAAOLYEsD5jxo4dG2+//XbU1NTEwoUL46abbop/+Id/iPLy8ia7Y9OmTfHLX/4yZ+/Xv/51TpDqYDNmzIjhw4dn19u2bYtbbrnlqHfddNNNsX379ux6+PDhccUVVzT4fM+ePePuu+/O2bv11ltj8+bNR70LAAAAAAAAAACguVq0aFH2t1FFRUVx7bXXFngiAAAAAAAAAAA4tgSwPmO+9KUvxYABA6Ko6Nj9p3vooYdix44d2fXw4cOjsrLyiGcymcwhP7i65557or6+vsEzBw4ciN/85jc5e9ddd11kMpkj3lVZWRnDhg3Lrrdv3x6PPPLIEc8AAAAAAAAAAAA0V7W1tTFlypTs762+973vxZe//OUCTwUAAAAAAAAAAMeWABaHePrpp3PWkydPbtS5kSNHRkVFRXb94Ycfxssvv9zg81VVVbFp06bs+sQTT4wRI0Y06q6DZ3rqqacadQ4AAAAAAAAAAKC5ufrqq+O9996LiIgTTjghrr/++gJPBAAAAAAAAAAAx54AFjl27NgRixcvztk7/fTTG3U2k8nEqFGjcvbmzZvX4PPz58/PWY8ePToymUyj7ho9enTOetGiRbFz585GnQUAAAAAAAAAAGguXn311fjXf/3X7Pr222+P0tLSwg0EAAAAAAAAAACJCGCR4+233469e/dm1xUVFdG9e/dGnx86dGjO+s0332zw2YM/GzJkSKPv6dGjR/Tp0ye73rNnTyxfvrzR5wEAAAAAAAAAAApt7969MXny5Ni/f39EREyYMCHOPvvsAk8FAAAAAAAAAABpCGCRY8WKFTnrAQMG5HX+4OcPfl+h7gIAAAAAAAAAAGhubrjhhvjTn/4UERFlZWUxe/bsAk8EAAAAAAAAAADpCGCRY+XKlTnr3r1753X+4OfXrFkTdXV1hzxXW1sba9eubdK7Dp4dAAAAAAAAAACguVq+fHn89Kc/za5vvPHG6N69ewEnAgAAAAAAAACAtASwyLFx48acda9evfI6361bt2jZsmV2feDAgdi8efMhz3388cdRX1+fXbdq1Sq6du2a1109e/bMWR88OwAAAAAAAAAAQHN04MCBmDx5cuzZsyciIoYNGxb//M//XOCpAAAAAAAAAAAgrZZHf4Qvkh07duSs27Vrl9f5TCYTbdq0ie3btzf4zsPttW3bNjKZTF53HTzb4e75JDZu3BibNm3K68yqVaua5G4AAAAAAAAAAODzb/bs2fHyyy9HRERxcXHcddddef9+qqn4vRQAAAAAAAAAAIUigEWOgyNSJSUleb/jkwSwPuk9R3rnJzVnzpyYNWtWk7wLAAAAAAAAAADgL61evTquuuqq7HrGjBnRr1+/gs3j91IAAAAAAAAAABRKUaEHoHmpq6vLWRcXF+f9jtatW+esa2trC3YPAAAAAAAAAABAc/Iv//IvsXPnzoiI6NevX8ycObPAEwEAAAAAAAAAQGEIYJGjpKQkZ71nz56837F79+4jvjPlPQAAAAAAAAAAAM3F3LlzY8GCBRERkclk4q677vpE/3ggAAAAAAAAAAB8HrQs9AA0L6WlpTnrurq6vN9RW1t7xHemvOeTmDp1akyYMCGvM6tWrYpzzjmnSe4HAAAAAAAAAAA+fzZs2BCXX355dj1lypQYNmxYASf6v/xeCgAAAAAAAACAQhHAIsfBEamdO3fmdb6+vv4TBbB27doV9fX1kclkGn3XwbM1VQCra9eu0bVr1yZ5FwAAAAAAAAAAQETEZZddFjU1NRER0b1797jpppsKO9D/4/dSAAAAAAAAAAAUSlGhB6B5OfiHTOvWrcvr/EcffRT79u3LrouKiqJLly6HPNelS5ec2NXevXtj48aNed21fv36nLUfYQEAAAAAAAAAAM3Ro48+Gk8++WR2fdttt0VZWVnhBgIAAAAAAAAAgGZAAIscJ510Us567dq1eZ0/+Pny8vIoKSk55Lk2bdrECSec0KR39evXL6/zAAAAAAAAAAAAKUybNi379zFjxsT5559fwGkAAAAAAAAAAKB5EMAix8ERqeXLl+d1fsWKFUd8X6HuAgAAAAAAAAAAKJSamprs3+fPnx+ZTOaof0aOHJnzjjVr1hzyzJtvvpn2iwAAAAAAAAAAQBMSwCLHySefHK1atcquq6urY8OGDY0+v3Tp0pz1wIEDG3z24M+qqqoafc+GDRuiuro6u27VqlUMGDCg0ecBAAAAAAAAAAAAAAAAAAAAAIDCEcAiR/v27WP48OE5e88//3yjztbX18eCBQty9saOHdvg82effXbOesGCBVFfX9+ou5577rmc9ciRI6O0tLRRZwEAAAAAAAAAAAAAAAAAAAAAgMJqWegBaH7GjRsXL7zwQnY9d+7c+Pa3v33UcwsXLozVq1dn1926dYvBgwc3+PyQIUOiS5cu8fHHH0dExPvvvx+LFi2KkSNHHvWuuXPn5qzHjx9/1DMAAAAAAAAAAACF8PTTT8fevXvzOvPHP/4xLr/88uy6W7du8e///u85z/Tt27dJ5gMAAAAAAAAAgEIQwOIQF1xwQcycOTN27twZERGLFy+OF198MU477bQGz9TX18esWbNy9i6++OIoKipq8ExRUVFcdNFFccstt2T3Zs2aFSNGjIhMJtPguRdeeCGWLFmSXbdv3z7OP//8o34vAAAAAAAAAACAQvja176W95mWLXN/3ldSUhKjRo1qqpEAAAAAAAAAAKDgGq4T8YXVtWvX+O53v5uzN2XKlPjggw8aPHPDDTfE4sWLs+sOHTrEtGnTjnrXFVdcEaWlpdn1H/7wh7jxxhsbfH79+vUxZcqUnL3vf//70aVLl6PeBQAAAAAAAAAAAAAAAAAAAAAANA8tj/4Izc3SpUujtrb2kP0//vGPOeu6urpYsGDBYd/Ro0ePGDBgQIN3TJ8+Pe6777748MMPIyJi9erVMWTIkJg9e3aMHTs2MplMRESsW7curr/++rjzzjtzzl955ZXRqVOno36XLl26xMyZM2PmzJnZvRkzZsTatWvjqquuih49ekRExIEDB+I///M/4/vf/36sXbs253v86Ec/Ouo9AAAAAAAAAAAAAAAAAAAAAABA8yGA9Rn0j//4j7FmzZqjPvfRRx/F6NGjD/vZpEmT4t57723wbKdOneLhhx+Or3/961FXVxcREWvWrInx48dHWVlZVFRURE1NTaxduzb279+fc3b8+PFx+eWXN/r7XHHFFVFVVRXz5s3L7v3qV7+Ku+66K8rLy6NDhw6xevXqqKmpyTnXpk2beOSRR6KsrKzRdwEAAAAAAAAAAAAAAAAAAAAAAIVXVOgBaL6GDx8e8+fPj06dOuXs19TUxBtvvBGrV68+JH514YUXxsMPPxyZTKbR9xQVFcWjjz4aF1xwQc7+/v374/3334833njjkPhV586d49lnn42hQ4fm96UAAAAAAAAAAAAAAAAAAAAAAICCE8DiiE477bRYvnx5XHrppdG2bdsGnzvllFPi8ccfjwceeCBat26d9z0lJSXx4IMPxmOPPRYDBw5s8Ll27drF1KlTY/ny5TFixIi87wEAAAAAAAAAAAAAAAAAAAAAAAqvZaEHIH/V1dVJ7+vWrVvMmTMnfv7zn0dVVVWsWLEiampqori4OHr27BmDBw+Ovn37Nsld5513Xpx33nmxatWqWLZsWaxfvz727NkTZWVl0b9//xg6dGiUlJQ0yV0AAAAAAAAAAAAAAAAAAAAAAEBhCGDRaG3atInKysqorKw85nf17du3yaJaAAAAAAAAAAAAnzUjRoyI+vr6Qo8BAAAAAAAAAADHTFGhBwAAAAAAAAAAAAAAAAAAAAAAAOCLRQALAAAAAAAAAAAAAAAAAAAAAACApASwAAAAAAAAAAAAAAAAAAAAAAAASEoACwAAAAAAAAAAAAAAAAAAAAAAgKQEsAAAAAAAAAAAAAAAAAAAAAAAAEhKAAsAAAAAAAAAAAAAAAAAAAAAAICkBLAAAAAAAAAAAAAAAAAAAAAAAABISgALAAAAAAAAAAAAAAAAAAAAAACApASwAAAAAAAAAAAAAAAAAAAAAAAASEoACwAAAAAAAAAAAAAAAAAAAAAAgKQEsAAAAAAAAAAAAAAAAAAAAAAAAEiqZaEHAAAAAAAAgKYyaNr9hR4BACC5127+dqFHAAAAAAAAAAAAgLwVFXoAAAAAAAAAAAAAAAAAAAAAAAAAvlgEsAAAAAAAAAAAAAAAAAAAAAAAAEhKAAsAAAAAAAAAAAAAAAAAAAAAAICkBLAAAAAAAAAAAAAAAAAAAAAAAABISgALAAAAAAAAAAAAAAAAAAAAAACApASwAAAAAAAAAAAAAAAAAAAAAAAASEoACwAAAAAAAAAAAAAAAAAAAAAAgKQEsAAAAAAAAAAAAAAAAAAAAAAAAEhKAAsAAAAAAAAAAAAAAAAAAAAAAICkBLAAAAAAAAAAAAAAAAAAAAAAAABISgALAAAAAAAAAAAAAAAAAAAAAACApASwAAAAAAAAAAAAAAAAAAAAAAAASEoACwAAAAAAAAAAAAAAAAAAAAAAgKQEsAAAAAAAAAAAAAAAAAAAAAAAAEhKAAsAAAAAAAAAAAAAAAAAAAAAAICkBLAAAAAAAAAAAAAAAAAAAAAAAABISgALAAAAAAAAAAAAAAAAAAAAAACApASwAAAAAAAAAAAAAAAAAAAAAAAASEoACwAAAAAAAAAAAAAAAAAAAAAAgKQEsAAAAAAAAAAAAAAAAAAAAAAAAEhKAAsAAAAAAAAAAAAAAAAAAAAAAICkBLAAAAAAAAAAAAAAAAAAAAAAAABISgALAAAAAAAAAAAAAAAAAAAAAACApASwAAAAAAAAAAAAAAAAAAAAAAAASEoACwAAAAAAAAAAAAAAAAAAAAAAgKQEsAAAAAAAAAAAAAAAAAAAAAAAAEhKAAsAAAAAAAAAAAAAAAAAAAAAAICkBLAAAAAAAAAAAAAAAAAAAAAAAABISgALAAAAAAAAAAAAAAAAAAAAAACApASwAAAAAAAAAAAAAAAAAAAAAAAASEoACwAAAAAAAAAAAAAAAAAAAAAAgKQEsAAAAAAAAAAAAAAAAAAAAAAAAEhKAAsAAAAAAAAAAAAAAAAAAAAAAICkBLAAAAAAAAAAAAAAAAAAAAAAAABISgALAAAAAAAAAAAAAAAAAAAAAACApASwAAAAAAAAAAAAAAAAAAAAAAAASEoACwAAAAAAAAAAAAAAAAAAAAAAgKQEsAAAAAAAAAAAAAAAAAAAAAAAAEhKAAsAAAAAAAAAAAAAAAAAAAAAAICkBLAAAAAAAAAAAAAAAAAAAAAAAABISgALAAAAAAAAAAAAAAAAAAAAAACApASwAAAAAAAAAAAAAAAAAAAAAAAASKploQcAAAAAAAAAAAAAAAAAAAAAGm/QtPsLPQIAQHKv3fztQo9AEysq9AAAAAAAAAAAAAAAAAAAAAAAAAB8sQhgAQAAAAAAAAAAAAAAAAAAAAAAkJQAFgAAAAAAAAAAAAAAAAAAAAAAAEkJYAEAAAAAAAAAAAAAAAAAAAAAAJCUABYAAAAAAAAAAAAAAAAAAAAAAABJCWABAAAAAAAAAAAAAAAAAAAAAACQlAAWAAAAAAAAAAAAAAAAAAAAAAAASQlgAQAAAAAAAAAAAAAAAAAAAAAAkJQAFgAAAAAAAAAAAAAAAAAAAAAAAEkJYAEAAAAAAAAAAAAAAAAAAAAAAJCUABYAAAAAAAAAAAAAAAAAAAAAAABJCWABAAAAAAAAAAAAAAAAAAAAAACQlAAWAAAAAAAAAAAAAAAAAAAAAAAASQlgAQAAAAAAAAAAAAAAAAAAAAAAkJQAFgAAAAAAAAAAAAAAAAAAAAAAAEkJYAEAAAAAAAAAAAAAAAAAAAAAAJCUABYAAAAAAAAAAAAAAAAAAAAAAABJCWABAAAAAAAAAAAAAAAAAAAAAACQlAAWAAAAAAAAAAAAAAAAAAAAAAAASQlgAQAAAAAAAAAAAAAAAAAAAAAAkJQAFgAAAAAAAAAAAAAAAAAAAAAAAEkJYAEAAAAAAAAAAAAAAAAAAAAAAJCUABYAAAAAAAAAAAAAAAAAAAAAAABJCWABAAAAAAAAAAAAAAAAAAAAAACQlAAWAAAAAAAAAAAAAAAAAAAAAAAASQlgAQAAAAAAAAAAAAAAAAAAAAAAkJQAFgAAAAAAAAAAAAAAAAAAAAAAAEkJYAEAAAAAAAAAAAAAAAAAAAAAAJCUABYAAAAAAAAAAAAAAAAAAAAAAABJCWABAAAAAAAAAAAAAAAAAAAAAACQlAAWAAAAAAAAAAAAAAAAAAAAAAAASQlgAQAAAAAAAAAAAAAAAAAAAAAAkJQAFgAAAAAAAAAAAAAAAAAAAAAAAEkJYAEAAAAAAAAAAAAAAAAAAAAAAJCUABYAAAAAAAAAAAAAAAAAAAAAAABJCWABAAAAAAAAAAAAAAAAAAAAAACQlAAWAAAAAAAAAAAAAAAAAAAAAAAASQlgAQAAAAAAAAAAAAAAAAAAAAAAkJQAFgAAAAAAAAAAAAAAAAAAAAAAAEkJYAEAAAAAAAAAAAAAAAAAAAAAAJCUABYAAAAAAAAAAAAAAAAAAAAAAABJCWABAAAAAAAAAAAAAAAAAAAAAACQlAAWAAAAAAAAAAAAAAAAAAAAAAAASQlgAQAAAAAAAAAAAAAAAAAAAAAAkJQAFgAAAAAAAAAAAAAAAAAAAAAAAEkJYAEAAAAAAAAAAAAAAAAAAAAAAJCUABYAAAAAAAAAAAAAAAAAAAAAAABJCWABAAAAAAAAAAAAAAAAAAAAAACQlAAWAAAAAAAAAAAAAAAAAAAAAAAASQlgAQAAAAAAAAAAAAAAAAAAAAAAkJQAFgAAAAAAAAAAAAAAAAAAAAAAAEkJYAEAAAAAAAAAAAAAAAAAAAAAAJCUABYAAAAAAAAAAAAAAAAAAAAAAABJCWABAAAAAAAAAAAAAAAAAAAAAACQlAAWAAAAAAAAAAAAAAAAAAAAAAAASbUs9ABwsLq6uqiqqop33nkntm7dGsXFxdGrV68YPHhwnHjiiYUeDwAAAAAAAAAA4FOrr6+P6urq+NOf/hTr1q2LmpqaaN26dXTs2DH++q//Or785S9HSUlJoccEAAAAAAAAAIBjRgCLw7ruuuti1qxZn/j8pEmT4t57783rzKZNm2LWrFlx7733xs6dOw/7zKBBg+Lqq6+O8ePHf+LZAAAAAAAAAAAACmHr1q3x1FNPxe9+97t48cUX4+OPP27w2VatWsWYMWPiBz/4QXzta19LOCUAAAAAAAAAAKRRVOgBICJi0aJFMWDAgLj99tsbjF9FRLz22mtxzjnnxKRJk2LPnj0JJwQAAAAAAAAAAPjkLrvssujevXv80z/9UzzyyCNHjF9FROzduzeeeuqpGDFiREyaNCn+/Oc/J5oUAAAAAAAAAADSaFnoAeCll16Ks846K2pra3P2y8rKoqKiIrZu3Rr/8z//E/v3789+dv/998eOHTvisccei0wmk3pkAAAAAAAAAACAvCxbtuyw/+hfixYt4vjjj49u3brF3r17Y82aNbFt27acZ+6///5455134oUXXojS0tJUIwMAAAAAAAAAwDElgEWj3HLLLfF3f/d3jX6+R48ejXpu69atMXHixJz4VXl5edx2220xbty4bNxq3bp1cf3118edd96Zfe6JJ56IW2+9NX74wx82ei4AAAAAAAAAAIBCKysriwsvvDDGjBkTw4YNi/bt22c/279/fyxZsiSuueaaWLJkSXb/lVdeiYsuuigee+yxQowMAAAAAAAAAABNTgCLRhk0aFCMGDGiyd978803xwcffJBdV1RUxEsvvXRIQKtXr15xxx13xAknnBBXXnlldv/HP/5xXHzxxdGxY8cmnw0AAAAAAAAAAKAp9enTJ6666qq48MILo02bNod9pkWLFjFixIhYuHBhTJ06Ne66667sZ48//ngsXLgwRo4cmWpkAAAAAAAAAAA4ZooKPQBfXJs2bYpf/vKXOXu//vWvD4lf/aUZM2bE8OHDs+tt27bFLbfccsxmBAAAAAAAAAAAaAqzZs2KlStXxuTJkxuMX/2lFi1axJw5c+LUU0/N2b/77ruP1YgAAAAAAAAAAJCUABYF89BDD8WOHTuy6+HDh0dlZeURz2Qymbj22mtz9u65556or68/JjMCAAAAAAAAAAA0hTFjxkRxcXFeZ1q0aBHTp0/P2fv973/flGMBAAAAAAAAAEDBCGBRME8//XTOevLkyY06N3LkyKioqMiuP/zww3j55ZebdDYAAAAAAAAAAIDmYNiwYTnrzZs3x65duwo0DQAAAAAAAAAANB0BLApix44dsXjx4py9008/vVFnM5lMjBo1Kmdv3rx5TTYbAAAAAAAAAABAc9GxY8dD9rZt21aASQAAAAAAAAAAoGkJYFEQb7/9duzduze7rqioiO7duzf6/NChQ3PWb775ZlONBgAAAAAAAAAA0GysX7/+kL3OnTsXYBIAAAAAAAAAAGhaLQs9AJ8du3fvjvfffz82b94crVq1is6dO0ePHj2ibdu2eb9rxYoVOesBAwbkdf7g5w9+HwAAAAAAAAAAwOfBkiVLctbl5eVRXFxcoGkAAAAAAAAAAKDpCGDRKJdddlm8//77UVdXl7PfsmXLGDRoUJx55pkxderUOO644xr1vpUrV+ase/fundc8Bz+/Zs2aqKuri5KSkrzeAwAAAAAAAAAA0Jzdc889OeuzzjqrQJMAAAAAAAAAAEDTKir0AHw2LF++/JD4VUTEvn37YtmyZXHddddFeXl5XHPNNbF///6jvm/jxo056169euU1T7du3aJly//fbztw4EBs3rw5r3cAAAAAAAAAAAA0Z88++2wsXrw4Z++iiy4qzDAAAAAAAAAAANDEWh79EWic2tra+MlPfhJLliyJZ555JkpLSxt8dseOHTnrdu3a5XVXJpOJNm3axPbt2xt85ye1cePG2LRpU15nVq1a1SR3AwAAAAAAAAAARERs2bIlvvOd7+TsnXPOOfGVr3ylSe/xeykAAAAAAAAAAApFAIsGZTKZ+OpXvxpjxoyJr3zlK9G/f//o1KlTFBUVxebNm+P111+PefPmxX333Rd1dXXZc4sWLYoLLrggnn766WjRosVh331wrKqkpCTv+Y5VAGvOnDkxa9asJnkXAAAAAAAAAABAvg4cOBDf+ta3Yt26ddm9Dh06xOzZs5v8Lr+XAgAAAAAAAACgUIoKPQDN0+mnnx7vvPNOLF26NGbOnBmjRo2Knj17Rps2baJ169bRo0ePOPvss+OOO+6Id999N4YOHZpzfv78+TFnzpwG3/+XwayIiOLi4rxnbN26dc66trY273cAAAAAAAAAAAA0N9OmTYvf/va3OXt33nln9O7du0ATAQAAAAAAAABA0xPA4rCGDBkSf/M3f9OoZ3v16hULFiyIr371qzn7119/fezateuwZ0pKSnLWe/bsyXvG3bt3H/GdAAAAAAAAAAAAnzWzZ8+OX/ziFzl706dPj4kTJxZoIgAAAAAAAAAAODZaFnoAPh9KSkri/vvvj/79+8e+ffsiImLjxo3x3HPPxTnnnHPI86WlpTnrurq6vO+sra094js/qalTp8aECRPyOrNq1arDfk8AAAAAAAAAAIDG+o//+I/4wQ9+kLN30UUXxc9+9rNjdqffSwEAAAAAAAAAUCgCWDSZvn37xrhx4+KJJ57I7jU2gLVz58687qqvrz9mAayuXbtG165dm+RdAAAAAAAAAAAAjTFv3ryYNGlS1NfXZ/fOPffcuPvuuyOTyRyze/1eCgAAAAAAAACAQikq9AB8vlRWVuasV65cedjnDv7B1Lp16/K656OPPop9+/Zl10VFRdGlS5e83gEAAAAAAAAAANAcLFy4MCZMmJDzm6jRo0fHgw8+GC1atCjgZAAAAAAAAAAAcOwIYNGkevfunbPetGnTYZ876aSTctZr167N656Dny8vL4+SkpK83gEAAAAAAAAAAFBoy5Yti3HjxkVdXV12b8iQIfHkk09GcXFxAScDAAAAAAAAAIBjSwCLJtWqVauc9d69ew/7XL9+/XLWy5cvz+ueFStWHPF9AAAAAAAAAAAAzd1bb70VZ555ZuzYsSO7d8opp8Szzz4b7dq1K+BkAAAAAAAAAABw7Alg0aQ+/PDDnPVxxx132OdOPvnknFhWdXV1bNiwodH3LF26NGc9cODAxg8JAAAAAAAAAABQYCtXrozRo0fH1q1bs3v9+/eP3//+99GhQ4cCTgYAAAAAAAAAAGkIYNGkXnrppZx17969D/tc+/btY/jw4Tl7zz//fKPuqK+vjwULFuTsjR07No8pAQAAAAAAAAAACmfNmjUxatSo2LhxY3avoqIinn/++Qb/0UEAAAAAAAAAAPi8EcCiydTU1MTjjz+es1dZWdng8+PGjctZz507t1H3LFy4MFavXp1dd+vWLQYPHpzHpAAAAAAAAAAAAIWxYcOGqKysjHXr1mX3evbsGS+88EL07NmzgJMBAAAAAAAAAEBaAlg0mcsvvzxqamqy6+Li4jjzzDMbfP6CCy6Idu3aZdeLFy+OF1988Yh31NfXx6xZs3L2Lr744igq8r8yAAAAAAAAAADQvG3ZsiVGjx4d7733XnbvuOOOi+effz4qKioKOBkAAAAAAAAAAKSnGsQhfvazn8Vrr73W6Of37dsXP/rRj2Lu3Lk5+5dcckkcf/zxDZ7r2rVrfPe7383ZmzJlSnzwwQcNnrnhhhti8eLF2XWHDh1i2rRpjZ4VAAAAAAAAAACgELZv3x5nnHFGvP3229m9srKyeO6556J///4FnAwAAAAAAAAAAAqjZaEHoPn53e9+FzNmzIghQ4bE+eefH5WVldGvX79o2TL3f5dt27bFs88+GzfddFO8+eabOZ996Utfimuuueaod02fPj3uu++++PDDDyMiYvXq1TFkyJCYPXt2jB07NjKZTERErFu3Lq6//vq48847c85feeWV0alTp0/xbQEAAAAAAAAAAI69cePGxauvvpqz98Mf/jA+/vjjWLBgQV7vGjRoUHTs2LEpxwMAAAAAAAAAgOQEsGhQVVVVVFVVRURE69ato1evXtGhQ4do0aJFbN68Oaqrq+PAgQOHnOvevXv89re/jc6dOx/1jk6dOsXDDz8cX//616Ouri4iItasWRPjx4+PsrKyqKioiJqamli7dm3s378/5+z48ePj8ssvb4JvCgAAAAAAAAAAcGwtWrTokL3G/CODh7Nw4cIYMWLEpxsIAAAAAAAAAAAKTACLRtm9e3e89957R33urLPOit/85jfRtWvXRr97+PDhMX/+/JgwYUJs2bIlu19TUxNvvPHGYc9ceOGFcc8990Qmk2n0PQAAAAAAAAAAAAAAAAAAAAAAQPNQVOgBaH6uvPLKuOSSS+Lkk0+OFi1aHPX50tLSmDBhQvzhD3+I+fPn5xW/+l+nnXZaLF++PC699NJo27Ztg8+dcsop8fjjj8cDDzwQrVu3zvseAAAAAAAAAAAAAAAAAAAAAACg8FoWegCan9GjR8fo0aMjImLXrl2xfPnyqK6ujg0bNsSOHTviwIEDUVZWFh07dowBAwbE3/7t3zYqlHU03bp1izlz5sTPf/7zqKqqihUrVkRNTU0UFxdHz549Y/DgwdG3b99PfQ8AAAAAAAAAAEBq9fX1hR4BAAAAAAAAAACaFQEsjqht27Zx6qmnxqmnnprszjZt2kRlZWVUVlYmuxMAAAAAAAAAAAAAAAAAAAAAAEinqNADAAAAAAAAAAAAAAAAAAAAAAAA8MUigAUAAAAAAAAAAAAAAAAAAAAAAEBSAlgAAAAAAAAAAAAAAAAAAAAAAAAkJYAFAAAAAAAAAAAAAAAAAAAAAABAUgJYAAAAAAAAAAAAAAAAAAAAAAAAJCWABQAAAAAAAAAAAAAAAAAAAAAAQFICWAAAAAAAAAAAAAAAAAAAAAAAACQlgAUAAAAAAAAAAAAAAAAAAAAAAEBSAlgAAAAAAAAAAAAAAAAAAAAAAAAkJYAFAAAAAAAAAAAAAAAAAAAAAABAUgJYAAAAAAAAAAAAAAAAAAAAAAAAJCWABQAAAAAAAAAAAAAAAAAAAAAAQFICWAAAAAAAAAAAAAAAAAAAAAAAACQlgAUAAAAAAAAAAAAAAAAAAAAAAEBSAlgAAAAAAAAAAAAAAAAAAAAAAAAkJYAFAAAAAAAAAAAAAAAAAAAAAABAUgJYAAAAAAAAAAAAAAAAAAAAAAAAJCWABQAAAAAAAAAAAAAAAAAAAAAAQFICWAAAAAAAAAAAAAAAAAAAAAAAACQlgAUAAAAAAAAAAAAAAAAAAAAAAEBSAlgAAAAAAAAAAAAAAAAAAAAAAAAkJYAFAAAAAAAAAAAAAAAAAAAAAABAUgJYAAAAAAAAAAAAAAAAAAC3BG/SAAEAAElEQVQAAAAAJCWABQAAAAAAAAAAAAAAAAAAAAAAQFICWAAAAAAAAAAAAAAAAAAAAAAAACQlgAUAAAAAAAAAAAAAAAAAAAAAAEBSAlgAAAAAAAAAAAAAAAAAAAAAAAAkJYAFAAAAAAAAAAAAAAAAAAAAAABAUgJYAAAAAAAAAAAAAAAAAAAAAAAAJCWABQAAAAAAAAAAAAAAAAAAAAAAQFICWAAAAAAAAAAAAAAAAAAAAAAAACQlgAUAAAAAAAAAAAAAAAAAAAAAAEBSAlgAAAAAAAAAAAAAAAAAAAAAAAAkJYAFAAAAAAAAAAAAAAAAAAAAAABAUgJYAAAAAAAAAAAAAAAAAAAAAAAAJCWABQAAAAAAAAAAAAAAAAAAAAAAQFICWAAAAAAAAAAAAAAAAAAAAAAAACQlgAUAAAAAAAAAAAAAAAAAAAAAAEBSAlgAAAAAAAAAAAAAAAAAAAAAAAAkJYAFAAAAAAAAAAAAAAAAAAAAAABAUgJYAAAAAAAAAAAAAAAAAAAAAAAAJCWABQAAAAAAAAAAAAAAAAAAAAAAQFICWAAAAAAAAAAAAAAAAAAAAAAAACQlgAUAAAAAAAAAAAAAAAAAAAAAAEBSAlgAAAAAAAAAAAAAAAAAAAAAAAAkJYAFAAAAAAAAAAAAAAAAAAAAAABAUgJYAAAAAAAAAAAAAAAAAAAAAAAAJCWABQAAAAAAAAAAAAAAAAAAAAAAQFICWAAAAAAAAAAAAAAAAAAAAAAAACQlgAUAAAAAAAAAAAAAAAAAAAAAAEBSAlgAAAAAAAAAAAAAAAAAAAAAAAAkJYAFAAAAAAAAAAAAAAAAAAAAAABAUgJYAAAAAAAAAAAAAAAAAAAAAAAAJCWABQAAAAAAAAAAAAAAAAAAAAAAQFICWAAAAAAAAAAAAAAAAAAAAAAAACQlgAUAAAAAAAAAAAAAAAAAAAAAAEBSAlgAAAAAAAAAAAAAAAAAAAAAAAAkJYAFAAAAAAAAAAAAAAAAAAAAAABAUgJYAAAAAAAAAAAAAAAAAAAAAAAAJCWABQAAAAAAAAAAAAAAAAAAAAAAQFICWAAAAAAAAAAAAAAAAAAAAAAAACQlgAUAAAAAAAAAAAAAAAAAAAAAAEBSAlgAAAAAAAAAAAAAAAAAAAAAAAAkJYAFAAAAAAAAAAAAAAAAAAAAAABAUgJYAAAAAAAAAAAAAAAAAAAAAAAAJCWABQAAAAAAAAAAAAAAAAAAAAAAQFICWAAAAAAAAAAAAAAAAAAAAAAAACQlgAUAAAAAAAAAAAAAAAAAAAAAAEBSAlgAAAAAAAAAAAAAAAAAAAAAAAAkJYAFAAAAAAAAAAAAAAAAAAAAAABAUgJYAAAAAAAAAAAAAAAAAAAAAAAAJCWABQAAAAAAAAAAAAAAAAAAAAAAQFICWAAAAAAAAAAAAAAAAAAAAAAAACQlgAUAAAAAAAAAAAAAAAAAAAAAAEBSAlgAAAAAAAAAAAAAAAAAAAAAAAAkJYAFAAAAAAAAAAAAAAAAAAAAAABAUgJYAAAAAAAAAAAAAAAAAAAAAAAAJCWABQAAAAAAAAAAAAAAAAAAAAAAQFICWAAAAAAAAAAAAAAAAAAAAAAAACQlgAUAAAAAAAAAAAAAAAAAAAAAAEBSAlgAAAAAAAAA/4e9+wyQqyz/x/2Z2d10SqSDhI4UBQRpho708qUIIkUQERBUmoqCFKlCKFKUHnovggoIiNIR9CcgSu9FQk8h2WyZmf+L/HfIprGzJLuT5LresOfMmTPP7AtyP/t8nvsAAAAAAAAAAAAAANCjNMACAAAAAAAAAAAAAAAAAAAAAACgR2mABQAAAAAAAAAAAAAAAAAAAAAAQI/SAAsAAAAAAAAAAAAAAAAAAAAAAIAepQEWAAAAAAAAAAAAAAAAAAAAAAAAPUoDLAAAAAAAAAAAAAAAAAAAAAAAAHqUBlgAAAAAAAAAAAAAAAAAAAAAAAD0KA2wAAAAAAAAAAAAAAAAAAAAAAAA6FEaYAEAAAAAAAAAAAAAAAAAAAAAANCjNMACAAAAAAAAAAAAAAAAAAAAAACgR2mABQAAAAAAAAAAAAAAAAAAAAAAQI/SAAsAAAAAAAAAAAAAAAAAAAAAAIAepQEWAAAAAAAAAAAAAAAAAAAAAAAAPUoDLAAAAAAAAAAAAAAAAAAAAAAAAHqUBlgAAAAAAAAAAAAAAAAAAAAAAAD0KA2wAAAAAAAAAAAAAAAAAAAAAAAA6FEaYAEAAAAAAAAAAAAAAAAAAAAAANCjNMACAAAAAAAAAAAAAAAAAAAAAACgR2mABQAAAAAAAAAAAAAAAAAAAAAAQI/SAAsAAAAAAAAAAAAAAAAAAAAAAIAepQEWAAAAAAAAAAAAAAAAAAAAAAAAPUoDLAAAAAAAAAAAAAAAAAAAAAAAAHqUBlgAAAAAAAAAAAAAAAAAAAAAAAD0KA2wAAAAAAAAAAAAAAAAAAAAAAAA6FEaYAEAAAAAAAAAAAAAAAAAAAAAANCjNMACAAAAAAAAAAAAAAAAAAAAAACgR2mABQAAAAAAAAAAAAAAAAAAAAAAQI/SAAsAAAAAAAAAAAAAAAAAAAAAAIAepQEWAAAAAAAAAAAAAAAAAAAAAAAAPaqxtwcAU/Pyyy/n8ccfz1tvvZXW1tYMHjw4yy23XL7+9a+nX79+vT08AAAAAAAAAACA6UZeCgAAAAAAAACA2Y0GWNSdW2+9Nccff3z+9a9/TfH1QYMGZa+99soxxxyTeeedt4dHBwAAAAAAAAAAMP3ISwEAAAAAAAAAMLsq9vYAoENLS0t23333bL/99lMNcyXJJ598knPPPTcrrLBCHnjggR4cIQAAAAAAAAAAwPQhLwUAAAAAAAAAwOxOAyzqQrlczre+9a1cffXVnc43NDRkiSWWyCqrrJK55pqr02vvv/9+tthiizz66KM9OVQAAAAAAAAAAIDPRV4KAAAAAAAAAAA0wKJODBs2LLfddlunc/vvv3/eeOONvPLKK3niiSfy0Ucf5ZZbbsmQIUOq14wbNy4777xzRo0a1dNDBgAAAAAAAAAA6BZ5KQAAAAAAAAAA0ACLOvDhhx/mxBNP7HTu5JNPznnnnZeFF164eq5YLGb77bfPI488ksUXX7x6/q233soZZ5zRU8MFAAAAAAAAAADoNnkpAAAAAAAAAACYQAMset2pp56aMWPGVI/XW2+9HH744VO9fpFFFsnFF1/c6dyZZ56ZDz/8cIaNEQAAAAAAAAAAYHqQlwIAAAAAAAAAgAk0wKJXlcvlXHrppZ3OHXvssSkUCtN838Ybb5x11123ejxmzJjccMMNM2SMAAAAAAAAAAAA04O8FAAAAAAAAAAAfEoDLHrVI488kvfff796vOSSS2aDDTbo0nu/973vdTq+9dZbp+PIAAAAAAAAAAAApi95KQAAAAAAAAAA+JQGWPSq22+/vdPxJpts8plPM5z42ondd999GTt27HQbGwAAAAAAAAAAwPQkLwUAAAAAAAAAAJ/SAIte9eSTT3Y6/vrXv97l9y688MJZfPHFq8etra155plnptPIAAAAAAAAAAAApi95KQAAAAAAAAAA+JQGWPSqZ599ttPxCiusUNP7J71+0vsBAAAAAAAAAADUC3kpAAAAAAAAAAD4lAZY9Jrm5ua88cYbnc4tuuiiNd1j0uuff/75zz0uAAAAAAAAAACA6U1eCgAAAAAAAAAAOtMAi17zwQcfpFKpVI+bmpoy//zz13SPRRZZpNPxe++9N13GBgAAAAAAAAAAMD3JSwEAAAAAAAAAQGeNvT0AZl+ffPJJp+MBAwakUCjUdI+BAwdO857d8d577+X999+v6T3PPPNMp+OXXnrpc49jVtT8wVu9PQQAgB733//+t7eHwExOHQ0AzG7U0HxeamgAYHakjp6ySfMbLS0tvTQSmEBeavZjjgoAzI7MUfk81NAAwOxIDc3noYYGAGZHaugpm5mzUhpg0WsmDV/169ev5nv0799/mvfsjt/97nf51a9+9bnusd12233ucQAAMGv48mVH9vYQAABgpqKGBgCA2qmju+bNN9/Mqquu2tvDYDYmLwUAwOzAHBUAAGqjhgYAgNqoobtmZspKFXt7AMy+xo8f3+m4T58+Nd+jb9++nY6bm5s/15gAAAAAAAAAAABmBHkpAAAAAAAAAADoTAMses2kTzBsbW2t+R4tLS3TvCcAAAAAAAAAAEA9kJcCAAAAAAAAAIDOGnt7AMy+Bg0a1Ol40iccdsWkTzCc9J7dccABB2SnnXaq6T2jR4/OP//5z8w555yZe+65s+iii072tEUAesdLL72U7bbbrnp86623Zumll+69AQEAQJ1TQwMAQG3U0AD1q6WlJW+++Wb1eP311+/F0YC8FAAznjkqAADURg0NAAC1UUMD1K+ZOSulARa9ZtLw1bhx41KpVFIoFLp8j7Fjx07znt0x//zzZ/7556/5fWuvvfbn/mwAZryll146K664Ym8PAwAAZhpqaAAAqI0aGqC+rLrqqr09BKiSlwKgp5mjAgBAbdTQAABQGzU0QH2ZWbNSxd4eALOveeedt1N4q62tLe+9915N93j77bc7HXcniAUAAAAAAAAAADCjyUsBAAAAAAAAAEBnGmDRa/r3758hQ4Z0OvfGG2/UdI9Jr19uueU+97gAAAAAAAAAAACmN3kpAAAAAAAAAADoTAMsetWkAaxnnnmmpvc/++yz07wfAAAAAAAAAABAvZCXAgAAAAAAAACAT2mARa9aZZVVOh0/8sgjXX7vO++8k9dee6163NTUlBVWWGE6jQwAAAAAAAAAAGD6kpcCAAAAAAAAAIBPaYBFr9p66607Hf/lL39JpVLp0nvvvvvuTscbbrhhBg0aNN3GBgAAAAAAAAAAMD3JSwEAAAAAAAAAwKc0wKJXff3rX8+8885bPX7llVdy3333dem9l1xySafj//u//5ueQwMAAAAAAAAAAJiu5KUAAAAAAAAAAOBTGmDRq4rFYvbaa69O5371q1995lMN77333jz44IPV4znmmCM777zzjBgiAAAAAAAAAADAdCEvBQAAAAAAAAAAn9IAi153+OGHZ9CgQdXj+++/P6eccspUr3/77bezzz77dDp30EEHdXoyIgAAAAAAAAAAQD2SlwIAAAAAAAAAgAk0wKLXzTvvvDniiCM6nfvFL36RAw44IP/73/+q58rlcm699dZ8/etfz2uvvVY9v/DCC+ewww7rqeECAAAAAAAAAAB0m7wUAAAAAAAAAABMoAEWdeHwww/P1ltv3enceeedlyFDhmSppZbKqquumnnmmSfbb7993njjjeo1/fv3zw033JC55567h0cMAAAAAAAAAADQPfJSAAAAAAAAAACgARZ1olgs5sYbb8wuu+zS6XypVMorr7ySJ554IiNHjuz02jzzzJM77rgjQ4cO7cGRAgAAAAAAAAAAfD7yUgAAAAAAAAAAkDT29gCgQ79+/XLttdfmm9/8Zk444YQ8+eSTU7xu4MCB2XPPPXPMMcdk/vnn79lBAjDTmW+++XLMMcd0OgYAAKZODQ0AALVRQwMA3SUvBcD0Zo4KAAC1UUMDAEBt1NAAzAiFSqVS6e1BwJS89NJLeeyxx/L222+ntbU1c889d5ZffvkMHTo0/fr16+3hAQAAAAAAAAAATDfyUgAAAAAAAAAAzG40wAIAAAAAAAAAAAAAAAAAAAAAAKBHFXt7AAAAAAAAAAAAAAAAAAAAAAAAAMxeNMACAAAAAAAAAAAAAAAAAAAAAACgR2mABQAAAAAAAAAAAAAAAAAAAAAAQI/SAAsAAAAAAAAAAAAAAAAAAAAAAIAepQEWAAAAAAAAAAAAAAAAAAAAAAAAPUoDLAAAAAAAAAAAAAAAAAAAAAAAAHqUBlgAAAAAAAAAAAAAAAAAAAAAAAD0KA2wAAAAAAAAAAAAAAAAAAAAAAAA6FEaYAEAAAAAAAAAAAAAAAAAAAAAANCjNMACAAAAAAAAAAAAAAAAAAAAAACgR2mABQAAAAAAAAAAAAAAAAAAAAAAQI/SAAsAAAAAAAAAAAAAAAAAAAAAAIAepQEWAAAAAAAAAAAAAAAAAAAAAAAAPUoDLAAAAAAAAAAAAAAAAAAAAAAAAHqUBlgAAAAAAAAAAAAAAAAAAAAAAAD0KA2wAAAAAAAAAIBUKpXeHgIAAAAAAAAAAECPkJcCqA8aYAEAAAAAAADAbGriEFehUMi4cePywQcf5L777su4ceN6cWQAAAAAAAAAAADTl7wUQP3RAAsAAAAAAAAAZkOVSiWFQiFJ8vLLL+dPf/pTNtlkk6y99trZeeedc+qppwp1AQAAAAAAAAAAswR5KYD61NjbAwAAAAAAmJ7K5XKKxQm9/ydeoAIAADrrqJXPP//8XHnllXniiScyfvz4FIvFlMvlXHXVVWlvb88RRxyRAQMG9PJoAQAAAAAAmBJ5KQAA6Bp5KYD6VOztAQAAAAAAfB6VSqXTcalUSpKMGjUqH3/88RRfAwCA2VVH/VypVPLvf/87BxxwQA444IA8+uijGT9+fKdrR44cmQcffDD33HPPZHU3AAAAAAAAvUNeCgAAuk5eCqD+FSr+rwsAUBdKpVIaGho+8xwAAPCpiZ9eOGLEiDz77LM544wz8tZbb+Xtt99OW1tbtt9++6y22mo58MADk3jKIQAAs6+OWrhUKuXuu+/OueeemzvvvLP6+he+8IXMO++8+f73v5+llloqG220UQqFQgYMGOBv1QAAAExXslIAANA98lIAANB18lIAMwcNsAAA6sDEi1DXX399xowZk3322aeXRwUAAPVt4jr6D3/4Q6644or86U9/Smtra5KkoaGh0xMMd9ppp1x22WXp379/p/cCAMDspFQq5aabbsq5556bhx9+uHp+6NCh2X///bP++uvni1/8Yqf3qJ8BAACYnmSlAACge+SlAACgdvJSAPVPAywAgF428ZMLjzvuuBx77LFJknXWWSf77bdf1lxzzSy99NLV602cAQCgc118zjnn5Pjjj8/HH3+cUqlUfVphpVJJsVisHpdKpWyxxRa55ZZb0rdvX08RBwBgtlOpVHLnnXfmpJNOyiOPPJJkwkaInXfeOVdffXWn6zwFHAAAgBlBVgoAALpHXgoAAGonLwUwc9AACwCgTvzqV7/Kr371qyRJ375909LSkrnmmitzzDFHjj766Hzta1/LKqusUr3ehBoAgNnVxEGsk08+OUceeWSn1/v165clllgiH330UcaOHZtPPvkkffv2TXt7e0qlUr797W93WqwCAIBZXceGiJdffjmHHHJI/vSnPyVJBg4cmB/84Ac59dRTk8SmBwAAAHqMrBQAAHSdvBQAANRGXgpg5qIBFgBAHbj55puz0047JUmamprS3t6eQqGQSqWSjnJtueWWy2abbZaDDjoo8847bwYNGiTYBQDAbGfiJxmecMIJOfroo6uvLbXUUtlggw1ywAEHZPHFF88HH3yQf//73zn88MPzyiuvpG/fvmlra0uhUMgll1yS73znO731NQAAoMdM/Hfkgw8+OGeffXb1tf322y/nnXdeEmEuAAAAeo6sFAAAdJ28FAAA1EZeCmDm09jbAwAAIGlpaUmS9OnTJ21tbUmS/v37p729PS0tLSkWi3n++efz3HPP5Z577snyyy+fI488MksvvXQGDRqUxFMOAQCY9U0rzLXKKqvkyCOPzAYbbJB55pkn5XI5gwcPzjLLLJO11lorG220UV588cU0Njamvb09TzzxhEAXAACzhY6/G1977bWdwlxbbbWVMBcAAAC9QlYKAAC6Rl4KAABqJy8FMPMp9vYAAABIdt1112yzzTZpbW1Nksw555zZaKONsv/++2fw4MEpl8tJJky8n3vuudx8883ZYIMNcuCBB+baa6+tvpZMmHgDAMCsZlphrtVWWy1nnHFGttlmm8wzzzxJUr22VCplkUUWybXXXpv5558/7e3tSZK///3v+eSTT3r4WwAAQM8rl8v55JNPcscdd1Tr5KWXXjonn3xyEmEuAAAAep6sFAAAfDZ5KQAA6B55KYCZjwZYAAC9rCOEtdtuu2Xw4MEpFAr55JNPMmTIkBx33HG5//77s8suu2TFFVdMpVKpLmSNHj06V111VXbbbbfsvPPOOeecczJu3DgTbwAAZjnTCnOtuuqqOf3007POOuukT58+k723oaEh5XI5X/rSl7L66qt3Ot+3b9/Jrq9UKjPgGwAAQO8pFot5/fXX84c//KG6gXiNNdbIkCFDksTflAEAAOhRslIAAPDZ5KUAAKD75KUAZj4aYAEA9LKOyfJ6662X+eabL+VyOaVSKeeff36efPLJfPnLX85FF12U2267LYccckiWWmqp6ns7FqxuuummHHzwwVlrrbVy4YUX5t///nenz+iYpAMAwMymVCpNM8x1xhln5Otf/3oaGxuneZ+BAwdm4YUXTjKhjl5nnXXS1NSUlpaWNDc3p7m5OcmnTwtXQwMAMCvo2LBwxx13ZMyYMWlqakoyYZPxnHPO2ZtDAwAAYDYlKwUAANMmLwUAAN0nLwUwc9IACwCgDlQqlSy44II5/vjj069fvzQ0NKRUKuXMM8/MRx99lIEDB2aJJZbI6aefnquvvjrnnHNO5ptvvmogrKGhIY2NjfnPf/6TQw89NJtsskmGDRuWxx57LEmqC2AAADAzqVQq1Zr3pJNO6hTmWnPNNTNs2LCsvfbanxnm6qiHR40alSRpb2/PHHPMkcsvvzybbrppVllllay11lr5xje+keOOOy7PPfecGhoAgFlCx4aFp59+OsmEWrhfv35ZdNFFbWIAAACg18hKAQDAlMlLAQDA5yMvBTBzKlQ6WhgCANDr/vvf/+Zb3/pWnnnmmSTJUkstldtvvz3LLrtsWltbq08xTJIXXnghd955Z6677rpqeCuZ8HSW1tbWJMniiy+e9dZbL4ceemgWXXTRDB48OJVKJYVCofpfAACod0cccUR+/etfJ5lQ75bL5Vx00UXZc889u3yPv/71r9lhhx0yevTozDXXXFlppZXy4IMPVl9vampKW1tbkglPPzz77LOz9dZbZ7755pu+XwYAAHpQpVJJuVzO5ptvnnvvvTcNDQ1ZYIEF8sILL2TAgAG9PTwAAABmc7JSAAAwZfJSAADQPfJSADMnbbkBAOrIiiuumF122aV6/PLLL+eEE05Ikk6BrkqlkmWXXTYHHXRQHnnkkZx88snZZpttkqQa6EqSN954I1dccUV22GGH7LHHHnnooYcyevToJBHoAgBgptDe3p4XXnghyYSneVcqlbS3t+eQQw7Jc889lyQplUrTvMfbb7+d2267LWPHjk1jY2NGjRpVDXN1PLmwvb09SdKvX7+MHTs2BxxwQM4999y8+eabM+qrAQBAj2hpackHH3yQZMLfhUulUnriOVmemAgAAMBnkZUCAIDJyUsBAMDnIy8FMPPRAAsAoE50TG6/853vZNVVV02xWEyxWMzDDz9cXWzqmGR3BLJKpVIKhUIOP/zwXHPNNbn22muz9tprp1+/ftVrisViXnnlldxxxx3ZaKONstdee+X8889PqVSqfqaJNQAA9aqxsTGXX3559t5775RKpbS1taV///4ZOXJkvv71r+e///1vGhoaphrqGjlyZG644YZcdNFFKZVKaW9vT2NjY1ZcccV8//vfz+GHH57tttsuX/7yl5Mk48ePT79+/dLS0pJTTjklN9xwQ8rlco8seAEAwPRWKBQyYMCADB48OMmEjQzvvvtunn766Rn2mR2bMG655ZaMHTt2hn0OAAAAMzdZKQAAmDJ5KQAA6D55KYCZkwZYAAB1ouNJKgsttFBWXHHFatDq1VdfzQMPPJBk8icRNjQ0VK8bOHBgdt5556yxxhppaWlJY2NjyuVy9fWmpqa0t7fntttuywEHHJBtttkmp5xySkaOHFn9bAAAqEcDBw7M2Wefnb322itJ0tzcXA11rbvuunnmmWemGOoaNWpUrr766vzyl7/M+PHjk0x4YuE555yTG2+8MRdccEFOPPHE3HLLLbnpppvygx/8IMmnoa7W1tYceeSR+dvf/pZCoSDUBQDATKcjXDX33HMnmfB34mKxmHfeeaf6+vRWKBQycuTInHnmmTnppJMybty46f4ZAAAAzPxkpQAAYOrkpQAAoHvkpQBmToWKv0IAANSNSqWSQqGQV199Neutt17efvvtJMmgQYNy7733ZvXVV5/qe997771cfPHFOeqoo6qT8AUXXDDbbbddbrrppowcOTLt7e3p27dvWlpaqu/70pe+lG9/+9vZYIMNst56683YLwgAAJ/DuHHj8sMf/jCXXXZZkqR///5pbm7O3HPPnYceeigrrLBCyuVyisViRo0alauuuio/+9nP0tzcXL3+jjvuyPrrr1+9Z2tra/r06VM9/vnPf55TTz01yYTw1/jx47PqqqvmrrvuyjzzzNNzXxYAAKajU089NT//+c/Tp0+ftLa2ZoMNNsitt96aOeecc4Z83gcffJBll102gwcPzu67756f//zn6d+//wz5LAAAAGZeslIAADBt8lIAANA98lIAMxePrwEAqCMdT0mZb775summmyZJ+vbtm/b29vztb39Lksme0pIkH3744WSBrgUWWCCPPvpofve73+XGG2/M8ccfn7nnnrsa6CoWixk4cGCef/75HHvssfn444976FsCAED3DBgwIOeee+4Un2y4zjrr5JlnnkmxWMyHH344xTDX/fffn/XXX7/TU1s6wlwdTwP/9a9/nX333TfJhCcbdjztZcSIET34TQEAYPpacMEFk0zY0FAoFPLaa6/l+eefTzLlvzl3V0et/de//jUjR47Mq6++mosuuijPPvvsdPsMAAAAZh2yUgAAMG3yUgAA0D3yUgAzFw2wAADqTKFQyKBBg7LzzjsnSVpaWjJ+/PhccsklGT16dBoaGqqLTcmEQNcFF1wwWaDroYceymKLLZZKpZL1118/hx9+eP7xj3/k8MMPz2qrrZZyuZyxY8cmSS699NL83//9X89/WQAAqNFnhbr+/ve/584775wszHXffffla1/7WsrlcgqFwmT3LRaL1Xr6wAMPzPLLL59isZhCoZB33nknf/3rX5OkUxgMAABmFjvvvHOGDh1aPX7ttdcybNiwJJnsb86fR0et/dJLL1XPLbbYYllxxRWny/0BAACY9chKAQDAtMlLAQBA7eSlAGYuGmABANSpzTbbrLpI1djYmBdffDHDhg1Le3t7isUJZdy0Al1LLbVUSqVSdQJdLpez1FJL5dhjj83dd9+dww47LF/5yldyySWXZM8990xicQoAgJnDtEJd3/jGN7LvvvtOFuZaffXVUy6Xq7X0lHTUziuuuGIWWWSRTuGvvn37droGAABmJo2Njfnyl7+cZMJTvYvFYm666aaceOKJSTpvcPi8nn322Vx44YXV40UXXTRNTU3T5d4AAADMumSlAABg6uSlAACgNvJSADMXDbAAAOrYWmutleTTsNWjjz6a8ePHJ0nee++9zwx0NTQ0VO/VsXDVt2/fDB48OMOGDcudd96Z7373u0ky1Se7AABAPZpSqKtv374ZN25ctWbu379/7r333i6FuTqUSqUUi8UstdRS1WMAAJjZNTY25sgjj8yCCy6YlpaW6t+Or7766lx99dVJJmxe+Dyhro7a+YEHHsjHH3+cJJl33nnzs5/9bLoGxgAAAJh1yUoBAMDUyUsBAEDXyUsBzFw0wAIAqGP77rtv1ltvvepE+K9//Wsuu+yytLW15ZJLLulyoGtS5XI5SbLwwgsnmRAa68riFgAA1JNJQ10dC1PFYjGFQiHDhw/PWmutlZaWli5vYOioo5ubm1MoFNLY2Ji55547q6yyygz6FgAAMOOVSqV88YtfzPHHH58555wzbW1tSZLnnnsuF1xwQe64444k3Q91dfxNetSoUfnNb36TMWPGJElWX331DBkypHpvAAAAmBZZKQAAmDZ5KQAA6Bp5KYCZi5U7AIA61RG82muvvTJo0KD06dMnSXLllVfm0EMPzS9/+ctuBbqSTBbgMpEGAGBmNWmoq+OJhJVKJQceeGD+/e9/p2/fvtX6uiv+9a9/5dZbb02lUklbW1u++MUvZqWVVppB3wAAAGa8jr8Zr7feetloo43S1NRUfe2hhx7K7373u9x+++1JJvy9uJb6ueNv0s3Nzdlxxx3z/PPPV1/bb7/9Mv/880+nbwEAAMCsTFYKAAC6Rl4KAAA+m7wUwMylsbcHAADAlHUErzbccMPMNddcefvtt5MkTzzxRP75z392O9AFAACzmo5QV5JcdtllaW9vT//+/fPRRx9lgw02yEMPPZQVVlihS/Xyhx9+mBtuuKH6hJe55porP/3pT9OvXz/1NgAAM71lllkmP/rRj/Laa6/lqaeeSrFYTKlUyh133JFRo0Zl5MiR2W233arnP6v+7bhm/PjxOfDAA/O3v/2t+tqxxx6bbbfddkZ/JQAAAGYRslIAANB18lIAANA18lIAM4fiZ18CAEBvqVQqWWyxxXLUUUdVQ16lUimNjRP6mAp0AQDABJM+2bC5uTn9+/fPyJEjs8466+SZZ55JQ0NDSqXSVO8xfvz43HPPPbn66qvT3NycYrGYtdZaK2uvvXaSqLcBAJipdWwU3nDDDfOrX/0qCyywQKe/Kz/88MM54YQTctxxxyX5tP6d1tMNO55kuPvuu+e6666rfsauu+6a3XbbrdPnAgAAwGeRlQIAgK6TlwIAgGmTlwKYeWiABQBQxwqFQpJktdVWy2KLLZZkwtMO29rassACC+Sf//ynQBcAAPz/Pk+oq6WlJXfffXeOPPLI6hPF55prrhx88MFZeumle/JrAADADFEoFKrhqm222SZnnnlmFlpooU6BrRdeeCHHHntsdtxxxzz88MMZNWpUdcNxh457vPfee3nkkUey3nrr5ZZbbsn48eOTJFtssUX233//LLXUUtXPBQAAgK6QlQIAgNrISwEAwNTJSwHMPAoV7QMBAGYKP/nJT3LGGWdUj7fddtvceuutSSZMoE2KAQBggnHjxuWHP/xhLrvssiRJ//7909zcnLnnnjsPPfRQVlhhhbS3t1efFt7S0pK77rorhxxySF599dXqfa699tp861vf6o2vAAAAM8zEf0/+05/+lGOPPTZPP/102tra0tTUlFKplHK5nC9+8YsZMmRIDjzwwCy00EJZYYUV0tjYmBdffDEvvPBCbrrppvzjH//IiBEjqvfefPPN88Mf/jBbbrllb309AAAAZhGyUgAA0HXyUgAAMHXyUgD1TwMsAIA6Vy6XUywW89///jc77bRTnnvuuRSLxfTt2zdXXXVVtt9++94eIgAA1J1phboefPDBrLjiikmS8ePH5+67754szHXppZdmzz33TGITBQAAs56Ja9z77rsvv/3tb/OXv/wlo0aNSt++fdPa2ppCoZByuVx9EuLgwYPT0NCQUaNGpa2tbbJ77r777tlnn32y3nrrTfYZAAAA0FWyUgAA0D3yUgAAMHXyUgD1rdjbAwAAYNqKxQkl25JLLpkVVliheq65uTkPPvhgkgkTYwAA4FMDBgzIueeem7322itJ0tzcnP79+2fkyJFZd91189xzzyVJ7rzzTmEuAABmOx0hrSTZYIMNcsopp+Tss8/OwgsvnJaWllQqlZTL5fTp0ydNTU1JkjFjxmTkyJEplUrVp4N3/P36xBNPzEknnSTMBQAAwOcmKwUAAN0jLwUAAFMnLwVQ3woVK4AAADPE9Jywdtzr6aefzgYbbJCPP/64+tqDDz6YoUOHTpfPAQCAWc20nmx43HHH5eyzz85LL71UvX748OHVEFjHE8YBAGB28b///S/Dhg3Lv//97/ztb3+b5rWLLLJIttlmm2y//fbZZJNNemiEAAAA1CtZKQAAqA/yUgAA0HXyUgD1QQMsAIDPUCqV0tDQMNXjDh2LPe+9917mmmuu9O3bd7oHu0aPHp3vfe97ueWWW9KvX7+MHz8+3/ve93L66adnzjnnnC6fAwAAvWVGPfVkaqGuhoaGlEql6nXCXAAAzGymZw3d8bfvUqmUQqGQm2++Oe+++27+8Y9/5IMPPsioUaMyzzzzZMkll8yXvvSlbLvttvnCF76Qfv36TfexAAAA0HtkpQAAoOfISwEAQG3kpQBmTRpgAQBMQ8cE9qWXXso999yTH/zgB0kmX9zpOH7wwQdz8MEHZ5999sl3v/vd6kR2errhhhuyyy67VI+XWGKJ3H333VlqqaUsOgEAUBfqZWPExCYNdTU2NqahoSEtLS1JOoe5LEQBANDT6qmGnvR+HcelUinFYrHTa/4mDQAAMGuRlQIAgO6pp7WeDvJSAADUs3qqoeWlAHqf/7MCAExFuVxOQ0NDnnvuuay11lo59NBDc/bZZydJisViyuVy9bpisZhHHnkkG2+8cZ544omcffbZuf7666vXTA8dfUt33HHH7LjjjkkmLEK9+uqrOfLII1OpVEycAQDodRNvjDjvvPOSJA0NDZPVxhNvjNhiiy0yfPjwjB8/foYFqQYMGJBzzz23GtpKMsUwV7lcFuYCAKBH1VsNPen9Ov42XSwWqz9PfA4AAIBZg6wUAAB0T72t9XSQlwIAoF7VWw0tLwXQ+xp7ewAAAPWqWCzmpZdeygorrJAk6dOnT0455ZSUy+UcfPDBKRaLaW1tTZ8+ffLwww9nww03THt7e5Lk5ZdfzsCBA6drN+eOSXRDQ0PWXnvt3HzzzWlqakp7e3seffTRvPbaa1liiSWmy2cBAEB3TLwxYp111snYsWPT1taWH//4x9WNERP/t2NjRHt7e84+++wMGDAge+yxxwxbFOoIdTU0NOSSSy5Jklx22WX5zne+Ux2/BSkAAHpSvdfQyaehrUKhUP07tU0QAAAAsx5ZKQAAqF29r/XISwEAUG/qvYZO5KUAeoMGWAAA0zBgwIAMHDgwY8eOTblczjvvvJPTTjstlUolhxxySPr06ZMHHngg3/jGN6qBrjnnnDOnnHJKNt100zQ2zphy66CDDsqNN96Yxx57LElyzDHHCHQBANDr6m1jxJQMGDAgv/nNb/LJJ59k/fXXr4a5PCUcAIDeMDPU0AAAAMw+ZKUAAKA2M8Naj7wUAAD1ZGaooQHoeRpgAQBMRalUysILL5xnn302Q4cOzZtvvpnGxsb873//y2mnnZa55porK620UjbZZJPqBHqOOebIqaeemm9/+9uZY445Zti4Ghoass022+Sxxx7LpZdemj333DPJhEUonaQBAOhN9boxYmIDBw7MVVddlYaGhiSeZAgAQO+aGWpoAAAAZn2yUgAA0D0zw1qPvBQAAPVkZqihAehZhUqlUuntQQAA1KuOANXbb7+doUOH5o033khjY2Pa29szzzzzZOTIkSmVSkkmBLqGDRs2QwNdE3vqqafy+uuvZ9ttt01iEQoAgN7XUT+/9dZbnTZGtLe3Z6GFFsrxxx+flVZaKUOHDk1bW1uSnq+jAQCgnqihAQAAqCeyUgAAUBtrPQAAUBs1NABTogEWAMBnaG9vT2NjY958882su+66eeONN9LQ0JByuZyOUmqOOebImWeeme233z6DBw+e4WOa9OmFnmYIAEC9qOeNEQAAUI/U0AAAANQTWSkAAKiNtR4AAKiNGhqASWmABQDQBW1tbWlqakp7e3sWXXTRvPvuu0mSQqGQQqGQHXbYIVdffXWampo8XRAAgNlePW6MAACAeqaGBgAAoJ7ISgEAQG2s9QAAQG3U0ABMzGojAEAXNDY2JkleeOGFfPTRR0lSfYpguVzOQw89lN/+9rdJkmKxmHK53DsDBQCAOtDY2Ji2trYsuuiieemll7LAAgukVCpVn8ZdLBaz2WabZY899sjgwYPVzwAAzPbU0AAAANQTWSkAAKiNtR4AAKiNGhqAiWmABQDQBYVCIU8//XS+9rWvpa2trXquUqmksbExI0aMyLBhw3LGGWckEewCAAAbIwAAoDZqaAAAAOqFrBQAANTOWg8AANRGDQ1ABw2wAAC6qL29PSussEKSZODAgTnxxBPzxS9+Me3t7WlsbMw777yT008/PWeeeWYSE2oAAGZvNkYAAEBt1NAAAADUE1kpAACojbUeAACojRoagA4aYAEAdNFXv/rVXHDBBdlkk01y2mmn5fDDD89jjz2WIUOGdAp2nXbaaYJdAAAQGyMAAKBWamgAAADqhawUAADUzloPAADURg0NQJIUKpVKpbcHAQAwM6hUKikUCvnwww/Tv3//9O/fP4VCIW+99VbWWWedvPHGG2lsbEx7e3sWWmih/OQnP8khhxySJCmXyykWu9Z7tONzAABgVvD//t//yxFHHJEddtgh++23X955552svfba061+BgCAWY0aGgAAgHogKwUAAN1jrQcAAGqjhgZAAywAgM+hra0tTU1NefvttzN06NBuT6hbW1szYsSILLDAAunbt69gFwAAswQbIwAAoDZqaAAAAOqZrBQAAEybtR4AAKiNGhqAJNHSEABgEuVyucvnm5qa0t7enkUWWSQPP/xwhgwZkvb29jQ2Nuadd97JaaedljPPPDNJUiwWp3iPlpaW3H777dl///0zfPjwjB8/3kQaAIBZQkddO88882TAgAEpFAppa2vLF7/4xW7Xzx1aW1vzxhtvpKWlJYVCIfr8AwAwK1BDAwAA0NNkpQAAYPqx1gMAALVRQwOQaIAFAFDVMdHtmDC/9957efHFF/PWW291en3SSW5H9+iuBrva29ur721pacndd9+dww47LH/+859zzjnn5NJLL53mpBsAAOqNjREAAFAbNTQAAAC9TVYKAAC6z1oPAADURg0NwLQ09vYAAAB6U6VSqU5ai8VinnzyyQwfPjyPPPJIXn755YwaNSpzzz13vvSlL2W55ZbLAQcckC9/+cvp379/p/dPGuwaOnRo3njjjU4T6vb29vz0pz9NY+OEEmzMmDG59957c9hhh+W1115Lkjz33HNZZJFFUizqUwoAQP0rl8spFoudNkaMGjUq/fv3zxe/+MXq6xPX3cnkGyOmVD8nySGHHFLdGNFRR0+8MeK1116r1tL77befOhoAgLqnhgYAAKA3yUoBAMDnY60HAABqo4YGoCsKlUkfywMAMJuYeEL88ssv59Zbb82RRx6Z1tbWJJ92iW5oaKg+ibB///7ZZ599st1222XDDTdM8ukEPEl1kvz22293mlC3t7dn4MCB2WeffXLiiSfmxRdfzH333Zff/OY3ef3116tjGj58ePbaa68e/C0AAEBtJl1Y6u7GiGTa9fNCCy2Ugw8+OD/96U+rnzXxxohXX321ev7WW2/Ntttu20O/AQAAqI0aGgAAgHogKwUAAN1jrQcAAGqjhgagVhpgAQCzvX/84x+5+OKLM3z48JRKpSRJoVBIpVJJ375909LSUj1OJnSOXn755XPooYdmzz33TNK1YFepVEqlUsmXvvSlvPvuuymVShkzZkx1HJdeeukU7wcAAPXCxggAAKiNGhoAAIB6IysFAABdZ60HAABqo4YGoDs0wAIAZmvPPfdcTj311FxxxRUpl8tJki984QvZfffds+KKK2aeeebJG2+8kSeeeCLXX399Wltbq5PveeaZJ8ccc0wOPPDAye5bKpXS0NCQ//3vf9liiy3y9NNPp1gsplKpdJqYJ0m/fv1y0UUXZbfddksyeXdrAACoNzZGAABAbdTQAAAA1ANZKQAA6B5rPQAAUBs1NAC10AALAJgtVSqVjB8/PieeeGJOOeWUlEql9O3bN6uttlqGDx+eZZddttP148ePz7/+9a/ssssueeutt1IoFFIoFFIul3PllVdWA1kT6wh2vfvuuznwwAPz2GOP5e23365Oyuecc86suOKK+fnPf55tttmmOi6BLgAA6pmNEQAAUBs1NAAAAL1NVgoAALrPWg8AANRGDQ1ArTTAAgBmW3/5y1+yxRZbVLtHb7zxxrnkkksyZMiQ6kS4VCqlUChUuzr/5Cc/yRlnnJHGxsa0t7dnxRVXzNlnn50NNthgipPfjvuMHj069957b2699da88sorKRQK+f73v5/VVlstK6ywQhITaAAA6puNEQAAUBs1NAAAAPVEVgoAAGpjrQcAAGqjhgaguzTAAgBmSyNGjMhmm22Wp59+Okmy6KKL5v7778/iiy+ecrlcDXFN/PNpp52Wn/3sZ9V7fOUrX8kZZ5yR9dZbL01NTVP9rInvkSRtbW0pFotpaGionjOBBgBgZmBjBAAA1EYNDQAAQD2QlQIAgO6x1gMAALVRQwPQHRpgAQCzlY7J6lNPPZVNN900H3zwQfr165frr78+W2+9dXXim3QOY51xxhn5yU9+Ur1PVwNdU/rsqR0DAEA9szECAABqo4YGAACgt8lKAQBA91nrAQCA2qihAeiu4mdfAgAw67n66qvz/vvvp1KpZL755suyyy6bJF0KdH35y1+e4gS6XC5P8zMnnSibOAMAMDPo6J//7rvvZsSIESkUCunfv39++9vfZvHFF0+pVJriQtQZZ5zRrYWoJNV7dHx2U1NTGhoaMnEvf/U0AAD1Sg0NAABAvZGVAgCArrPWAwAAtVFDA/B5aYAFAMxWOiasI0eOrB6vvvrq1VBX8tmBrjPPPHOKE+iO97z33ntJklKpNMO+BwAA9DQbIwAAoDZqaAAAAHqbrBQAAHSftR4AAKiNGhqA7tIACwCYrXRMdl977bUk6dTNua2trduBro77PPbYY9l8883z9NNPp6GhQbALAICZno0RAABQGzU0AAAA9UJWCgAAametBwAAaqOGBuDz0gALAJgtzTHHHNWf33333SRJY2NjtybQyacT9BdeeCFPPvlk1llnnfz73/+udqYGAICZlY0RAABQGzU0AAAA9UZWCgAAus5aDwAA1EYNDcDnpQEWADBb6Zgkr7LKKkmShoaGvPfee3nppZeqwaxaA10dXnzxxQwbNiyFQiFjxozJ0UcfnaTzZB0AAGZWNkYAAEBt1NAAAAD0NlkpAADoPms9AABQGzU0AN2lARYAMFvpCFgNGTKkevzCCy/k+uuvT5KceeaZnSbQX/nKVz4z0NXRnfqhhx7KW2+9lUqlkvnnnz+HH354kk8n2QAAMDOyMQIAAGqjhgYAAKBeyEoBAEDtrPUAAEBt1NAAfF4aYAEAs5RJJ62THndMlnffffesssoq1UDWqaeeml133TWHHXZY9dqvfOUrOeOMM6Y5gS6VSikWi3nvvfdyyimnZOTIkSkWi1l33XWz5JJLTs+vBgAAvcLGCAAAqI0aGgAAgJ4iKwUAANOftR4AAKiNGhqAz6tQ0doQAJhFlMvlFIvFPPXUUxk1alTWW2+9JBMmyxNPZkulUpLk+OOPz7Bhw9La2lo91+ErX/lKTjvttGywwQbTDHQ1NDRk/Pjx2XrrrfPXv/61+trtt9+eLbbYYnp/RQAAmO4mrZcnPe5QKpWy+uqr58knn0ySzDHHHNlqq61y3XXXVa/p6saIjie6rLfeennhhRdSLBaz/fbb59xzz80CCywwfb8gAABMZ2poAAAA6oGsFAAAdI+1HgAAqI0aGoAZrdjbAwAAmB46Al2PPPJI1lprreyzzz554IEHkkzo5Dxxz8+GhoY0NDRk1113zYILLphSqZSmpqbqhHvRRRfNhRdemI033vgzJ9AtLS3Zd99987e//a362kknnSTQBQDATKFcLqdQKOSpp56aav2cfLoxYtttt03//v3T0NCQMWPGTLYQddppp3VpIWr8+PHZdddd88ILL1THsffee1uIAgCg7qmhAQAAqAeyUgAA0D3WegAAoDZqaAB6ggZYAMAsoVgs5sEHH8w666yTlpaWvPXWWzn00ENz//33J5l8Ql2pVLLsssvmwgsvTENDQ9ra2tLY2JhCoZC2trY888wzKRY/LZUmfuphpVKpTqD333///P73v6/e+zvf+U722muv6nUAAFCvbIwAAIDaqKEBAACoF7JSAABQO2s9AABQGzU0AD1FAywAYJbx9ttvV39ubW3NU089lcMOO2yKwa6OnzfeeONcfPHF1WBXQ0NDRowYkR/84Ac5+eST8/HHHyeZMPnuMGbMmDz33HPZZJNNcvnll2fs2LFJkq222ir77LNPFlxwwepnAABAvbIxAgAAaqOGBgAAoJ7ISgEAQG2s9QAAQG3U0AD0lELF/+EBgJlUpVKZLDj1+9//PjvuuGP1uKGhISuvvHJOP/30rL/++lN8X3Nzcy666KIcdthhKZVK6du3b1paWpIk6667bpZbbrlsvfXWGTduXD766KP8+c9/zhNPPJG33nqreo8tt9wyBxxwQLbccssZ+ZUBAGC6uu6667LrrrsmmbA4VSgUplk/d/x8+eWXZ5999kmpVEpjY2Pa29vTp0+fHHPMMdl///0zePDgTp8zevTo/O9//8v3v//9PPzww9XzW221VQ4//PCss846PfSNAQDg81FDAwAA0FtkpQAA4POz1gMAALVRQwPQEzTAAgBmKpMGsp5++uk8/vjjefDBB1MqlbLaaqvl0ksvzX/+858UCoWUy+UuBbva2tpyww03ZK+99kqpVEqxWEy5XK6+PunxxHbffffst99+GTp06BTvDQAA9cLGCAAAqI0aGgAAgN4kKwUAAJ+PtR4AAKiNGhqA3qABFgAw05h4AvzCCy/kzjvvzBFHHJFyuVyd+E6so5t0qVTq0oQ6SR5++OH84he/yHPPPZcPPvggDQ0N1cl1W1tbGhoa0tbWlqamphQKhRx33HHZbbfdssgii0z1ngAA0JtsjAAAgNqooQEAAKgHslIAANA91noAAKA2amgAepsGWADATOfxxx/P+eefn6uuuirt7e1JkgEDBmSRRRbJkksumTfffDOtra156aWXqu/pCHhNa0Ld8fObb76Zv//977nyyivzzDPP5PXXX09TU1PGjx+f+eabL/POO2++/e1vZ911163eBwAA6pGNEQAAUBs1NAAAAPVGVgoAALrOWg8AANRGDQ1APdAACwCYqbz88ss5+eSTc9lll1W7RC+99NI577zzsuSSS2bIkCEZNWpUyuVyLrjggjz44IO58847kyQNDQ1J0qVgV4c33ngj77zzTkqlUsaOHZshQ4ZkkUUWyaBBg6rXmDwDAFDvbIwAAIDaqKEBAACoB7JSAADQPdZ6AACgNmpoAHqTBlgAwEyhXC6nWCzm9NNPz89//vOUSqUkyWabbZbzzz8/iy22WPXaiSfHL730Uq677rocffTRSboW7Jr48z5rPAAAUO9sjAAAgNqooQEAAOhtslIAANB91noAAKA2amgAepsGWADATOOZZ57J6quvnubm5iTJkksumXvvvTeLLbbYZCGrSSe3w4cPzz777JOk68EuAACYmdkYAQAAtVFDAwAAUE9kpQAAoDbWegAAoDZqaADqhQZYAECPGjt2bAYOHFjTezomrWeeeWYOO+yw9OnTJ0ly7bXXZvvtt+/ypPbKK6/MnnvumSQpFospFAqCXQAAzNJsjAAAgNqooQEAAJieZKUAAKBnWesBAIDaqKEBqAfaHwIAPeaGG27IkUcemRdffLGm93VMkB988MEkSWtrawYOHJilllqq0+tT09Hvc4899siwYcOSTAiKlUqlPPXUUznssMNy//33J0kKhUL0BwUAoJ6MHTu25veUy+UkyV133ZXm5ub06dMnffr0ybBhw6a4EJVkskWlvffeO5dffnmSpFQqpVKpqJ8BAJgpqKEBAACoB7JSAADQPdZ6AACgNmpoAGZ2GmABAD3immuuyS677JKzzz47w4cPz8svv1zzPUaOHJlCoZBisZhFFlmkGur6LBNPqvfcc8/suuuuSSaEwQS7AACoZzZGAABAbdTQAAAA1ANZKQAA6B5rPQAAUBs1NACzAg2wAIAZ7umnn87uu+9ePT799NNzwQUXdDnYVSqVUiqVMnr06FQqlZTL5bzzzjv54IMPah7LvPPOm0022aQ6+Z402PXAAw8kmbwTNQAA9DQbIwAAoDZqaAAAAOqBrBQAAHSPtR4AAKiNGhqAWYUGWADADDdo0KD85Cc/yRxzzJEkaW9vz29+85suB7uKxWIaGhqy2mqrJUn69u1bDXYlE7pCd0XH5HjPPffMmmuumXK5XD3XMaE+6qij8o9//KPm7wgAANOTjREAAFAbNTQAAAD1QlYKAABqZ60HAABqo4YGYFaiARYAMMMtscQSOfDAA/OjH/0o/fr1S1JbsKtjUrvMMsskSVpaWvLxxx/n4osvTjJhMtyVzs+FQiFtbW1JksUXXzzJhIl1h0qlkn/84x855ZRT8uyzz9b2JQEAYDqyMQIAAGqjhgYAAKBeyEoBAEDtrPUAAEBt1NAAzEo0wAIAesRiiy2WffbZJ4ceemjNwa6Oye7WW2+dZZZZJk1NTSkWi7n77rtzyy23JOl65+eGhoYkyQILLJAk2XzzzXP11VcnmTAhHz9+fP7yl7/kxhtvzNixY7v3ZQEA4HOyMQIAAGqjhgYAAKCeyEoBAEBtrPUAAEBt1NAAzEo0wAIAesziiy/erWBXx0R6scUWy5JLLlmdDL/11lu56aab8uKLL3Z5DMXihPJn3LhxSZK77ror3/72t/O73/2ues3o0aNz8cUXV+/b1U7VAAAwPdkYAQAAtVFDAwAAUE9kpQAAoDbWegAAoDZqaABmFRpgAQA9qrvBrkqlkv79++ess87KF7/4xWrQ6rrrrssFF1yQd955p8tjeO6553L77bcnSRZZZJEkyf7775+jjjqqes1bb72Vn/70p2lpaakGwQAAoKfZGAEAALVRQwMAAFBPZKUAAKA21noAAKA2amgAZgVWKAGAHtedCXWhUEilUslSSy2VQw89NHPPPXf1tTPOOCNnnXVWXn311eq5qU1+x4wZkzvuuCOffPJJkmTuuedOqVRKkuy4445Ze+21UygU0tTUlJdeeinPPvtskk+7WQMAQE+zMQIAAGqjhgYAAKCeyEoBAEBtrPUAAEBt1NAAzOz8qwAA9IrFF1883//+92sOdjU0NGTbbbfNzjvvnIEDB1ZfO/XUU3PCCSfkr3/9a5IJHaMrlUqncNeoUaNy11135eyzz86oUaMyaNCg7L333mloaEiSrLTSSll99dVTqVTS1taW119/PQ888ED1swEAoLfYGAEAALVRQwMAAFBPZKUAAKA21noAAKA2amgAZmYaYAEAPa5SqaRSqWSxxRbL9773vRx00EHp379/kq51lV5yySVzwAEHZIsttsiAAQOq5y+99NIccsgh+elPf5r3338/zc3N1S7QTzzxRM4666wcdthheeONN6r3WXnllZN8OvHeYYcdMnDgwPTp0ydJ8uabb1bHDAAAvcnGCAAAqI0aGgAAgHogKwUAAN1jrQcAAGqjhgZgZtXY2wMAAGYvlUolhUIh48aNy4ABAzL33HNnq622St++fXPSSSelUqlUJ9RJst9++2WppZaa7D4rrbRSfvGLX2TOOefMTTfdlNGjR6dQKOQ///lPnn766dx2220ZOHBgFl988bS2tubBBx9MqVRKc3Nz9R5HH310vvzlLydJNfw1aNCglMvltLe3J0nefffdJBNCXx0TbgAA6Gkdmww6NkaUSqWcffbZaW5u7lL93LEx4qOPPsodd9yRcePGJZmwMeKf//xnNt100/zsZz/LwIEDqxsnnnjiifzxj3/MJZdcUt3sMOnGiGKxmB122CGXXHJJ2tra0tra2mljhAUpAAB6ixoaAACAeiArBQAA3WOtBwAAaqOGBmBmpgEWADDDTTwJbWtry6OPPpqzzjorL730Ut5+++1UKpXMM888KRQKKZVKaWxs7NKE+qtf/Wp+9rOfZbHFFst5552XESNGpE+fPmlra8urr76aUqmUp556KsViMeVyudNE+LLLLssOO+xQHV+lUkmxWMx7772XJNX3rLjiikki0AUAQK+xMQIAAGqjhgYAAKA3yUoBAMDnY60HAABqo4YGYGanARYAMMN1hKmefPLJXH/99Rk2bFjK5XKna0aOHFm9tr29PX379k1LS8tnTqiXXXbZHHLIIdlss83y4x//OC+88EJGjhxZ7VZdLBarAa2BAwdmiSWWyLHHHpvtt98+yacT+44x3nfffWlubq5OrBdZZJHp/vsAAIDPYmMEAADURg0NAABAvZCVAgCA2lnrAQCA2qihAZiVaIAFAPSIf/3rXznjjDNy/fXXVwNdc801V9Zdd90su+yyKRQKeeaZZ/LOO+/kySefTEtLS4rFYnVCXalUsv/++09xQj1o0KCsscYauffee3PPPffk3nvvzeOPP56XXnopjY2NGTx4cOaZZ57st99++epXv5qvfOUrSTpP8JPk4Ycfzh//+MckEzpHDx06NLvuumsP/HYAAKAzGyMAAKA2amgAAADqiawUAADUxloPAADURg0NwKykUOn4VwYAYAZ59913c/LJJ+fcc89NuVxOnz59suqqq+biiy/Osssum8bGT3tyfvzxxxk+fHguvPDCvPrqq2lvb0+SNDY25uCDD57qhLpcLlcnv0nS3Nyc0aNHp1QqZeDAgRk4cGCnz5k00PX222/n9NNPzznnnJNSqZQvfOELOeKII3LQQQelWCx2uhYAAHrCxBsjSqVSkmlvjEg+fSJKY2NjDjrooKlujOgwduzYz70xYt99982zzz6bJBk6dGjuv//+TrU5AAD0FDU0AAAA9UBWCgAAusdaDwAA1EYNDcCsovGzLwEA+Hwefvjh/Pa3v612j15zzTVz5ZVXZsiQIdXQVltbW5qamjJ48OAcdthhWXXVVXPllVfm2muvTUtLS/XphsmUu0p3THY7wl39+vVL//79O10z6cS5w3vvvZerrroq5557bnWS/5WvfCW77rprGhoapuvvAgAAuuLdd9/NFVdckeuuu67mjRHlcjnt7e0566yzUigUprkxYuDAgdluu+2y3XbbdWtjxM0335wXXnghSfKFL3wh22+/fSqVylRrbwAAmFHU0AAAANQLWSkAAKidtR4AAKiNGhqAWUmhUqlUensQAEB965hIdmdCOWLEiGy00UZ57rnnkiSDBw/O3//+9yyzzDKTPYkw6fx0wmeffTaXXnppzj333IwfPz7JZz/dsCsm/oynnnoq119/fU477bRqwGyJJZbIXXfdlaWXXrpb9wcAgM/rlltuybe+9a3qpoN1112308aIxsbG6saIDn/72986bYxIulY/d9THU6r3Jz438c/vvfdeLr300hx11FHVOnr99dfPtddemwUXXHD6/jIAAKAL1NAAAABML7JSAADQ86z1AABAbdTQAMxKGj/7EgBgdvfWW29l0UUX7Vawq6WlJSNHjkxTU1Pa2tryve99L8sss0xKpdIUnxg48SR4+eWXz3777ZeWlpZccMEFaW1trT7dsFKpZP/9968p2NUxye4IdF1yySW5+eabc88991Qn+fPNN1/+9Kc/CXQBAPC5fN6NEb/85S+rNergwYNz8cUXZ8iQISmXy9UnpHQsRHXUuRtuuGEWXHDBzDvvvNWNEZ/1dPDk0yeET2mcHee6sjHioosushAFAEC3qaEBAACoF7JSAABQO2s9AABQGzU0AHxKAywAYJquvfba7LXXXrnsssvy7W9/u+YJ9eOPP54RI0ZUA1xLLrlkkkwx0NVh4nsvtdRS2XvvvfP666/nT3/6UxoaGtLW1pazzjorSWoKdhWLxXz00Uf53e9+lyeffDK33HJLp++z9NJL57bbbstyyy3XpfsBAMDU2BgBAAC1UUMDAABQD2SlAACge6z1AABAbdTQAPCpYm8PAACoX9dee2122223tLW15aCDDspNN92UZMpdmqemY4La8Z655pqr5nGsvPLK2WOPPVIsFtPW1pY+ffqkvb09Z511Vs4///y8/PLLXb7XyJEjc8011+SWW26pTtoXWGCB/N///V/uvPNOgS4AAD63a6+9NksvvXSuvfbaJKkuSHVVx8aIcrmcpPsbIzbffPMUi8U0NTV1u37u2Bhxwgkn5Jvf/Ga+//3v56677kqpVEqhUMgyyyyT+++/P8svv3yX7wkAAJNSQwMAAFAPZKUAAKB7rPUAAEBt1NAA0JkGWADAZCqVSt5999384Ac/SJL069cvH3zwQfbff/9cccUVNd1rvvnmq06Ak+T9999P8mnYqytjSZIdd9wxBx54YJKktbU1jY2NNU+oK5VKllxyydxyyy1ZccUVUy6XM3To0Bx99NE5//zzq5N8AADoLhsjAACgNmpoAAAAepusFAAAdJ+1HgAAqI0aGgAmpwEWADCZQqGQBRZYINdff30WXXTRjB8/Pn369MlHH32U22+/vaZ7zTXXXCmXy2lubk6S3HzzzWlvb59mJ+lJx9LRhXqjjTZKQ0NDisVidYLe3t6e3/3udznnnHPy4osvduleyy23XG688cacdtppueOOO7Lvvvtm/vnnr+l7AQDAxGyMAACA2qihAQAAqBeyUgAAUDtrPQAAUBs1NABMnQZYAMBkOiavm222WYYPH56FF144ra2t2WabbXL99dfXdK9lllkma665ZgqFQhobG/Piiy/m7rvv7vQ5n6VYnFCybLjhhllggQVSLpez1FJLZcCAAUmS5ubmnH322Rk1alSX7tUR7Dr00EMzxxxzdDlgBgAAU2NjBAAA1EYNDQAAQL2QlQIAgNpZ6wEAgNqooQFg6jTAAgCqOkJWHRPOSqWSjTfeOBdccEF233333HbbbUkmTF4nfc/UAlpzzTVXvva1r6VSqaRUKmXEiBG55pprOn1OV7S3t6dYLGbgwIFJkjXXXDPHHXdc9fWLL744X/va17p0r46QGAAATC82RgAAQG3U0AAAAPQ2WSkAAOg+az0AAFAbNTQATJ0VTQAgSVIqlVIoFJIkY8eOrU44K5VKttpqq1xxxRVJJoSrGhsbq2Gsjz76KMmEgNakE+OOaw455JCsuOKK1devueaaHHPMMUk+ndh+lsbGxnz44YcZOXJkkmTuuefO7rvvnsMOOyyXX3559t577yRdn5wDAMD0YGMEAADURg0NAABAPZCVAgCA7rHWAwAAtVFDA8Bn868IAJBSqVTtpnzqqafmRz/6UT755JM0NDRUg14dOgJdxWIxDz30UJZbbrlcffXVSSYPdnVMWBdYYIFsv/32GTRoUBobG5Mkxx9/fE4//fTqdaVSaZrjS5LXX389LS0tSZKPP/44888/f4466qjsscceSSaEyCYdLwAAzCg2RgAAQG3U0AAAANQDWSkAAOgeaz0AAFAbNTQAdI0GWABANdB1wgkn5Oc//3keffTRvPDCC0kyxbBVR6Brk002yYcffphDDjkkN954Y5IpT6gHDhyYvffeOyuuuGLa29vTp0+fJMnhhx+eX//6153GMKmOwFlra2uOPPLIjB49On369MkGG2yQJJljjjk6jQsAAHqCjREAAFAbNTQAAAD1QlYKAABqZ60HAABqo4YGgK6z8gkAJEkuvvjiHH300UmS559/PqecckqSCWGriSfHlUolo0aNyq677pqWlpb0798/H3zwQfbdd9+pBrsqlUoWX3zxXHTRRVl44YXT2tqavn37plwu54gjjshhhx2Wd955J+3t7UnSqbN0Q0NDmpubs//+++ehhx5KkrS2tma55ZarfhYAAPQ0GyMAAKA2amgAAADqiawUAADUxloPAADURg0NAF3nXxsAIKVSKR988EEGDhyY/v37p1Ao5MYbb8xvfvObJJ2DU4VCIXPNNVcuvPDCLLroomlubk5DQ0NGjRo11WBXoVBIuVzOl7/85fzhD3/InHPOmZaWluqE+swzz8xee+2VU045JSNGjMi4ceOSJO+++26effbZbLvttrn66qur9/vFL36RddZZp6d+PQAAMEU2RgAAQG3U0AAAANQDWSkAAOgeaz0AAFAbNTQAdI0GWABAGhoa8v3vfz8rrrhimpub09TUlCS59dZb89RTT3W6tmOCvPnmm2f48OFZcMEFq92epxXsKhaLKZfLWXXVVXPfffdlySWXTGtra/W+99xzT4466qisvvrqWX/99bPddttlvfXWy8Ybb5x77703bW1tSZJtttkmO++8c6exAABAT7MxAgAAaqOGBgAAoF7ISgEAQO2s9QAAQG3U0ADQdYWK1VAAmO2Vy+UUi8X8+9//zje+8Y188MEH1ddOPvnkHH744alUKtUJ9cQ/33vvvdljjz0yYsSINDQ0pFQqVSfaO+2002TXd3zWs88+m1/84hd5/PHHq+8tFovV8FbHvRobG6sdprfccssccMAB2XLLLXvsdwMAAFPz4YcfZquttsrjjz+ePn36pLW1Neutt17OOuusrLzyytXrpkf9/OSTT+ab3/xmXnnllcnGscgii2T++efPoosummeffTZjxozJiBEjqq9vs802Oe6447Lyyit3ujcAAPQ0NTQAAAD1QFYKAAC6x1oPAADURg0NAF2jARYAkGTChLe1tTUnn3xyTj311LS0tFQnqg888ECGDh062fUdk9i//OUv+c53vlPzhHrEiBG58847c9lll+XBBx/sdP+OyXyH/fbbL3vuuWfWWmutye4HAAA9zcYIAACojRoaAACAeiIrBQAAtbHWAwAAtVFDA0DXaYAFAHTyj3/8I9/97nfzzDPPpH///mlubs5mm22WCy64IEOGDOl07eeZUE8ayrr44ovz/PPP54477sjo0aPTt2/fFIvFrL/++tlqq62y3XbbTfFzAQCgt9gYAQAAtVFDAwAAUG9kpQAAoOus9QAAQG3U0ADQNRpgAQCTGT58ePbZZ5/q8XzzzZdhw4blO9/5TnUS3OHzBLuSpFQqpaGhoXo8bty4agfpxsbGNDU1zeivCwAAn4uNEQAAUBs1NAAAAPVEVgoAAGpjrQcAAGqjhgaAadMACwComniCuu++++biiy+uvrbKKqvkgQceyKBBg6Z7sGtik9570mMAAKhHNkYAAEBt1NAAAAD0NlkpAADoPms9AABQGzU0AEydFVIAmIWVy+UkEyavXel5OfEEd8cdd8zyyy+fQqGQxsbGPPnkk/nRj36USqUyWciqUChU77/xxhvnyiuvzIILLlidJI8aNSr77rtvbrzxxsmun9Sk9xboAgCgnnXUtXvvvXenxaj3338/v/nNb/LJJ5+kWCxWa/Pk89fPEy9EJUm/fv0yxxxzpH///mlqaur0WQAAUG/U0AAAAMwoslIAADDjWesBAIDaqKEB4LNZJQWAWdTEHZ/HjBnTKbDVlYDXJptskg033LDa+blYLOb+++/PrbfeOsXrp2ewCwAAeouNEQAAUBs1NAAAAPVAVgoAALrHWg8AANRGDQ0A059/mQBgFjRxoOvII4/MwgsvnOuvvz6vv/56kgkT2Wl1aO54/+mnn57VVlstbW1tqVQqee2113Lrrbemra0tyeThsEkn1FdccYVgFwAAMw0bIwAAoDZqaAAAAOqBrBQAAHSPtR4AAKiNGhoAZgwNsABgFjPxBPqEE07IySefnHHjxuUHP/hBfvrTn+aPf/xjkk87NE9pMlssFlMqldK3b98cddRRWWihharXXXnllRk+fHiSzp2nO0w8Qf7GN75hQg0AwEzBxggAAKiNGhoAAIB6ICsFAADdY60HAABqo4YGgBlHAywAmMVMHOg6+uijkyT9+vXLyJEjc8stt2S77bbLsccem1dffbXaJbpUKk12n4aGhiTJGmuskQ022KB6nyT59a9/nUceeWSqY+jqhPrmm2+uXg8AAL3FxggAAKiNGhoAAIB6ISsFAAC1s9YDAAC1UUMDwIylARYAzII++eSTXHbZZUmS/v37Z/z48SkWiymXy6lUKjnuuOOy//7755xzzqlOcKdmwQUXzEEHHZQBAwZk/PjxaWhoyIgRI3Lbbbflk08+meokeNIJ9aTBrjFjxmS33XbLNddcM92/PwAA1MLGCAAAqI0aGgAAgHoiKwUAALWx1gMAALVRQwPAjKUBFgDMYiqVSgYNGpSrrroqc889d5qbm9PQ0JBFFlkkQ4YMqV53zz335Je//GW22GKLvPDCC2lubu50j4l/XmONNXLaaaclSUqlUlpaWnLppZfm+eefT6FQSLlcnuJYptZVulwup1wup7W1dUb8CgAAoGY2RgAAQG3U0AAAANQDWSkAAOgeaz0AAFAbNTQAzDgaYAHALKZjArvyyivn+9//fvr06ZNSqZQ+ffrk4osvzoEHHpiFF144yYQJ91/+8pdstdVWOf300/Pf//63eo+J75ckm2++ebbddtskSWNjYz744IPst99++eijj1IsFrs0od54441z1VVXZc4550ySXHrppdl1111nzC8CAAC6yMYIAACojRoaAACAeiErBQAAtbPWAwAAtVFDA8CMpQEWAMyCCoVC+vfvn2222SaLLrpokuTll1/Oueeem3POOScXXnhhvvWtb1Wvf/nllzNs2LB885vfzB/+8IdOE+NSqZQkWXzxxbPtttt2Cok999xzOf/889Pa2topCDal8XRMqDfaaKNcf/31ue6667LnnnsmyVQn4gAA0BNsjAAAgNqooQEAAKgnslIAAFAbaz0AAFAbNTQAzFiFytT+1QMAZgnnnHNODjrooOrxSSedlJ///Odpa2vLhRdemOOPPz6jRo1KS0tL9ZqDDjooW221Vb7xjW8kSdrb29PY2Jgk2XvvvXPZZZdVJ8hrr712Lr/88iy99NIplUppaGiY6lgqlcpk4a9yuZxiUU9OAADqw0MPPZTvfve7efnll5Mk2267bW699dbccccdufLKK3P99ddXr51jjjmy8MIL55RTTsnWW29drWsnrouHDx+eAw44IG1tbWlqakpjY2OOOOKI/OQnP0mfPn2mOZaJ6+e77747I0eOzM4775xEHQ0AQP1QQwMAAFBPZKUAAKA21noAAKA2amgAmP40wAKAWdTEE9c99tgjV199dZJkjTXWyFlnnZU111wzSfLAAw/khhtuyPXXX58PP/yw+v7ll18+2267bU4++eRO933zzTez00475fHHH6+e22+//XLeeedN9rkAADAzsjECAABqo4YGAACgt8lKAQBA91nrAQCA2qihAWD68q8WAMyiJp6w7rTTTllmmWWSJI8//nhuueWW6mvrrbdefvWrX+WGG27I8ssvXz3/7LPP5pRTTslmm22WP/zhD/noo4+SJPPMM0922GGHzDHHHNXJ9YUXXpgrrrhiss8FAICZSUef+B/96EfZbbfdqudvvfXWPPbYY2lqasqBBx6YG264Id/73vcyzzzzVK8566yzctBBB+UXv/hFklRr5ST51a9+lTXWWKN6/0cffTSnn356kqShoSHT6k8/pfraQhQAAPVCDQ0AAEC9kJUCAIDaWesBAIDaqKEBYMbwLxcAzESmNUmdli233DLrrLNO9XjYsGG5+eabq8fzzDNPNtxwwzz88MM59NBDs/LKK1dfu+eee3LIIYfkhz/8YZ5//vkMGDAge+65Z5Zbbrm0t7enT58+SZJbbrklr7zySje/GQAA9D4bIwAAoDZqaAAAAGYkWSkAAJixrPUAAEBt1NAAMGMUKt1dHQYAelSpVEpDQ0OSpLW1NX369Ol0bmrK5XKKxWLGjBmTtddeO88880ySZOjQobnggguywgordLr/+PHj869//SsXXHBBrrzyyhQKhWqY7Atf+EKGDRuWHXfcMW+++WaGDh2a0aNHJ5nQbfr888/P3nvvnUqlYkINAEBd6G5t2t7env322y+XXnpp9dyNN96YHXfcsdN1I0eOzAknnJB77703Tz31VPX8EksskTXXXDPHHHNMvvSlL+Xdd9/Ntttum3/84x/p06dP2trass022+SMM87Ikksu2f0vCAAA05kaGgAAgHogKwUAAN1jrQcAAGqjhgaA3qcBFgDMBCYOb51zzjl54okncuqpp2beeeet6f3XXXddDj744Lz33nuZc845c9xxx+XHP/5xNfg16UT97LPPzrXXXpv/9//+X9rb25Mkffv2zSabbJKdd9457777bo466qi0tLSkUqlk4MCBefjhh7PSSitN/18CAADUyMYIAACojRoaAACAeiArBQAA3WOtBwAAaqOGBoD6oAEWAMxETjjhhBx99NFJkmWWWSann356VltttSy00EJJPrvT9JtvvpmDDjoot912WyqVShZZZJE8+OCDWXzxxasT7iSdfn788cdz11135cQTT0xra2uSpFgspm/fvllppZXy2muv5d13301TU1Pa2tqy66675je/+U2XA2cAADAj2BgBAAC1UUMDAABQb2SlAACg66z1AABAbdTQAFA/NMACgJnEueeemx//+MdJkoEDB2bs2LEZPHhwttpqq+y+++7ZdNNNq9dOK9x13333ZeONN652h958881z4403ZuDAgZ2um/Qejz32WA4++OC8+OKL+eijjzpd23FdpVLJAgsskAsvvDDbbLPN5//SAADwOdkYAQAAtVFDAwAAUA9kpQAAoHus9QAAQG3U0ADQ+4q9PQAA4LONHz8+7e3tWXvttZMk48aNS7FYzMcff5xrr70222+/fYYNG5Z33nknyYSQValUmuK9NthggwwbNqx6/K9//SvXXHNNyuVyp+smnpCXy+WsueaaueGGG3LkkUdm1VVXTZLqZLtYLKapqSlJ8u67705zMg8AAD3l3HPPrS5EDRw4MC+++GL23HPPHH744bn77ruTdN6gMCWLLrpodXNFkrz99ts54IADMnbs2Go9nKT6ZJYkWWONNXLUUUfl/vvvz5prrpkvfOELKZfLaW5uzmOPPVatmTue1nLvvffm0Ucfnf6/AAAAqJEaGgAAgHogKwUAAN1jrQcAAGqjhgaA+qABFgDMBPr165cf/ehHuffee3PAAQdkwQUXrIawGhoa0tzcnMMPPzz77bdfLrzwwur5qU2ot9pqq2y++eZJkvfeey8333xzPv744ySZLNyVfDqxXnTRRXPggQfmj3/8Y3bZZZf079+/+p6OLtOXXnpptt566+n7CwAAgBrZGAEAALVRQwMAAFAvZKUAAKB21noAAKA2amgAqB+FytRWewGAulKpVKoT1FtuuSV/+tOfctlllyVJ+vTpUw1VzTnnnNloo41yzjnnZL755kufPn2meL/f/va3Ofjgg6sT7p///Oc56aSTJvusabnoooty++235w9/+EOS5LLLLst3vvOdJBMm3xN3pwYAgJ5WKpXS1taWn/zkJ/n9739fXXiauH7eeuuts/XWW2ffffdNMvVa+Pnnn88hhxySP//5z0mSTTfdNFdffXXmmWeeqda+HfdqbW3Nhx9+mMMOOyx//OMfM3bs2BQKheomjEsvvTR77rnnDPkdAABALdTQAAAA1AtZKQAAqJ21HgAAqI0aGgDqgwZYADATmXhiPHr06Nxxxx057LDD8tFHH6WlpSXFYrHaRXr55ZfPXnvtle233z5LL7109b2lUikNDQ1Jkp133jk33XRTkmSOOebIZZddlu233/4zxzHxPd54443ccMMNGTx4cL73ve9NNk4AAOgtNkYAAEBt1NAAAADUE1kpAACojbUeAACojRoaAOqDBlgAMJOZdJL7xBNP5Kqrrsrvf//7vPbaa2lqakq5XE6pVMpcc82VpZZaKr/+9a/zjW98o/qe1tbW9OnTJ88//3x22WWXPPXUU2loaMi3v/3tnHLKKVlooYVqHkcHE2gAAOqJjREAAFAbNTQAAAD1RFYKAABqY60HAABqo4YGgN6nARYAzAJGjRqVl156KQcffHAeeeSRdPzzXiwWUy6XkySHH354ttxyy6y77rpJJkx2m5ubc9ppp+X000/PmDFj0qdPn1x11VX55je/KZwFAMAsw8YIAACojRoaAACAeiYrBQAA02atBwAAaqOGBoDepQEWAMxC2tvb8+tf/zp33XVXHn744SRJv379Mn78+CTJyiuvnB133DG//OUvq+959dVXs+WWW+b5559Pksw777x55JFHsvTSS/f8FwAAgB5iYwQAANRGDQ0AAEC9kZUCAICus9YDAAC1UUMDQM/RAAsAZhGlUikNDQ2pVCr597//nWuuuSbDhg3rdE2hUEilUsm2226bH/zgB1lzzTUz99xz5957780222yT8ePHp1gs5nvf+15OOeWUzD333L3zZQAAoIfYGAEAALVRQwMAAFAPZKUAAKB7rPUAAEBt1NAAMONpgAUAs5BKpZJCoVA9vvHGGzN8+PA8/PDD+eSTT9KvX7+0tLSkUqlkmWWWybrrrptf/vKXWXzxxfOzn/0sZ511Vtra2rL00kvnvPPOy8Ybb1wNiwEAwKzGxggAAKiNGhoAAIB6IisFAAC1sdYDAAC1UUMDQM/QAAsAZkETh7teeOGFPPjggzniiCPy/vvvJ/l0Qp0kCy64YM4777yMGjUqZ5xxRv7zn/+kXC5n0003zZ///OckSblcTrFY7J0vAwAAM5CNEQAAUBs1NAAAAPVGVgoAALrOWg8AANRGDQ0AM54GWAAwi5p0Uv3aa6/lZz/7WR5//PG88cYbSZJ+/fpl/PjxmXPOObPLLrvkySefzP/7f/8vlUol5XI5v/zlL3Pcccf11lcAAIAeY2MEAADURg0NAABAPZGVAgCA2ljrAQCA2qihAWDG0QALAGYDHd2gR48enbvuuiuXX3557rjjjiRJsVhMuVxO3759M3DgwHz00UfVc1/96ldz5plnZr311uvlbwAAADOejREAAFAbNTQAAAD1SFYKAAC6xloPAADURg0NADOGBlgAMJuYeGJdqVRyzDHH5Oqrr85rr72WSqWShoaGlEqlFAqF6nXlcjk//vGPM2zYsDQ1NfXm8AEAoEfZGAEAALVRQwMAAFBPZKUAAKA21noAAKA2amgAmH6KvT0AAKBnTBzoKhQKOe6443LeeeflRz/6UZIJk+1icUJp0NjYmHK5nCRZaaWVBLoAAJjtNDQ0pFKpZM4558xOO+2UP/7xj/nlL3+ZJZZYIh395Nvb2/PRRx9Va+1isZgnnngit9xyS9ra2npz+AAA0OPU0AAAANQTWSkAAKiNtR4AAKiNGhoAph8NsABgNlMoFKqBrU033TSnnvr/sXff4VGU39/HP6lAQk3oNfSqSO8QmgJKEQSkCAgIiqgIoqLSFAUsoF/FQpGmiAgoIAgiXTqC9Ca9SU0IJEDaPH/4wI8ws8m2bDbwfl0X1+Wemfueszs7uytzOPeHWrJkiUqWLKlMmTLJMAzFxsZKkqZNm6aePXumZboAAABAmuEfRgAAAACO4Tc0AAAAAMDbUCsFAAAA2I97PQAAAIBj+A0NAIB7+Bi320cCAIAH0u3/sT58+LBmzZqlmTNn6ujRo5o6daq6d+8uSUpMTLzzP9kAAADAg+ju38SxsbFauXKlXnnlFZ09e1bR0dF39ps2bZq6deuWVmkCAAAAXoPf0AAAAAAAb0StFAAAAGAf7vUAAAAAjuE3NAAAzqMBFgAAuFPYdePGDZ0+fVpHjhxRs2bNkmwDAAAA8B/+YQQAAADgGH5DAwAAAAC8CbVSAAAAgGO41wMAAAA4ht/QAAA4hgZYAADAJv4HGgAAALDGP4wAAAAAHMNvaAAAAACAt6NWCgAAALCNez0AAACAY/gNDQCA/WiABQAAAAAAALgJ/zACAAAAcAy/oQEAAAAAAAAAANIv7vUAAAAAjuE3NAAAZjTAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgEfRGhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeRQMsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeBQNsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBRNMACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAR9EACwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB5FAywAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4FA2wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4FE0wAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBH0QALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHkUDLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHgUDbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgUTTAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgEfRAAsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeRQMsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeBQNsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBRNMACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAR9EACwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB5FAywAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4FA2wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4FE0wAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBH0QALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHkUDLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHgUDbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgUTTAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgEfRAAsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeRQMsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeBQNsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOBRNMACAAAAAAAAkKLjx4/Lx8fnzp8ePXqkdUoAAAAAAAAAAAAAAAAA4HbUSgEAAAAAAHgODbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgUf5pnQAAAAAAAADgKWFhYTpx4kSy+/j6+ipbtmzKkSOHypYtq2rVqql9+/YqV66ch7IEAAAAAAAAAAAAAAAAANdQKwUAAAAAAID0wDetEwAAAAAAAAC8SWJioiIiInT06FEtXrxYI0aMUPny5dWkSRMdPnw4rdODB40YMUI+Pj53/qxevTqtUwIAAAAAAAAAAAAAAADchlop3EatFAAAAAAASCs0wAIAAAAAAADssGLFCj3yyCP67bff0joVAAAAAAAAAAAAAAAAAEg11EoBAAAAAADAU/zTOgEAAAAAAAAgrXz88ceqWLFiklhCQoIuX76s7du3a/bs2Tpz5sydbTExMWrfvr02bNighx9+2NPpAgAAAAAAAAAAAAAAAIBTqJUCAAAAAACAN6IBFgAAAAAAAB5YVapUUXh4uOW2zp0764MPPtDrr7+uzz777E48OjpagwYN0vLlyz2UJQAAAAAAAAAAAAAAAAC4hlopAAAAAAAAeCPftE4AAAAAAAAA8FaBgYH69NNP1aVLlyTxP/74Q3v27EmjrAAAAAAAAAAAAAAAAADAvaiVAgAAAAAAQFqgARYAAAAAAACQgjFjxsjXN+lfpf3+++9plA0AAAAAAAAAAAAAAAAApA5qpQAAAAAAAOBJ/mmdAAAAAAAAAODtChYsqIoVK2rHjh13Yrt373ZojsuXL2vTpk06e/asLl68qMyZM6tZs2YqVapUsuMOHjyoHTt26MKFC4qOjlbOnDmVP39+1a1bV9myZXPq+dwtMTFRGzZs0KFDh/Tvv/8qY8aMKlasmOrVq6fQ0FCX508rhmFo165dOnDggC5evKirV68qKChIefPmVdmyZfXQQw/Jz88vrdMEAAAAAAAAAAAAAAAAvAq1UukPtVIAAAAAACA9owEWAAAAAAAAYIdixYolKeq6dOlSku1hYWE6ceKEJKlIkSI6fvy4JGnjxo0aPXq0li5dqri4uCRjxo8fb1nUdevWLX3++ef6+uuvdeTIEct8/P391aBBA40YMUJ169Z1+PkkJCRo/PjxGj9+vM6ePWva7ufnp7Zt2+rDDz9UWFiYQ3MfP35cRYsWvfO4e/fumjZtmt3jw8PDtWbNmjuPDcOwe+zJkyf1wQcf6Oeff9aFCxds7pcjRw61aNFCffv2Vb169e7EV69erYYNG1qOsRV3Jk8AAAAAAAAAAAAAAADAW1ErZT9qpQAAAAAAAFxDAywAAAAAAADADgEBAUkex8fHpzjmww8/1JtvvulQsc/evXvVqlUrHT16NNn94uPjtWLFCq1YsULPPvusvvnmG1OOtly5ckXNmzfXli1bbO6TkJCgn376ScuWLdMvv/ySpEjLGxmGoXfffVcffPCBYmNjU9w/IiJC33//vb7//nuKsQAAAAAAAAAAAAAAAIC7UCtFrRQAAAAAAICn0AALAAAAAAAAsMO9K/+FhoYmu/8333yjN954487jwMBAhYWFKVu2bDp79qzlSoLbtm3To48+qoiIiCTxgICAZMdOnTpV586d04IFCxQYGJhsXteuXdOjjz6qv/76K0ncx8dHRYoUUc6cOXXp0qU7qzJGRUWpdevW+vHHH5OdNy3FxcWpc+fOmjt3rmlbYGCgChUqpNDQUEVHR+vMmTOKjIz0fJIAAAAAAAAAAAAAAABAOkGtFLVSAAAAAAAAnkIDLAAAAAAAACAFMTEx2rp1a5JYcqv8XblyRa+++qokKV++fBo1apTat2+vLFmy3Nnn2LFjio6OvvP42rVrat++fZKCrqCgII0YMUK9evVSSEjInfiuXbs0fPhw/fLLL3diS5cu1bBhwzRmzJhkn8vgwYOTFHT5+PjoxRdf1ODBg1W4cOEk+Y0dO1bffPONrl27pn79+iU7b1p6/fXXTQVdjzzyiIYOHarHHntMwcHBSbb9888/Wrx4sb7//nvTea1YsaKWL18uSZoxY4Zmzpx5Z9vHH3+sihUrptKzAAAAAAAAAAAAAAAAANIetVLUSknUSgEAAAAAAM+hARYAAAAAAACQgs8//1w3btxIEmvUqJHN/a9duyZJKlu2rFauXKm8efOa9rm3KOytt966s5KgJGXLlk2rVq1SpUqVTGMffvhh/fzzz3rnnXf0/vvv34l/9NFH6tChgypXrmyZ16ZNmzRx4sQ7j318fDRjxgx17drVMr+vv/5aVapUUZ8+fZLk5k2WLVumTz/9NEns5Zdf1vjx4+Xr62s5pkSJEnrllVf0yiuvaMWKFUm25ciRQ02aNJEk/fnnn0m2ValSReHh4W7LHQAAAAAAAAAAAAAAAPA21EpRKyVRKwUAAAAAADzH+m81AAAAAAAAAEiSFi1apKFDhyaJFS1aVHXr1k12XEBAgObMmWNZ0HWvyMhIffvtt0liU6ZMsSzoutuoUaPUvHnzO48TExM1fvx4m/t/9tlnMgzjzuMXX3zRsqDrbs8995x69+6d7D5paeTIkUked+7cWZ999pnNgq57NW7cODXSAgAAAAAAAAAAAAAAANIdaqWolQIAAAAAAPA0GmABAAAAAAAAd0lISNClS5e0bNkyde7cWa1bt1ZcXFySfUaNGqWAgIBk5+nYsaMqVKhg1zFnzZqlmJiYO4/r1Kmjdu3a2TV23LhxSR7PmTNHV69eNe0XGRmpn3/++c7jjBkzmgqibPnggw8UGBho176etGXLFm3cuPHO4yxZsmjChAlpmBEAAAAAAAAAAAAAAACQflArZUatFAAAAAAAgGfRAAsAAAAAAAAPrIYNG8rHxyfJH39/f+XKlUvNmjXTDz/8kGQVQEkaOHCgOnfunOLcnTp1sjuPNWvWJHncs2dPu8eWKVNGtWvXvvM4NjZWmzZtMu23ceNG3bp1687jxx9/XCEhIXYdI1euXGrRooXdOXnK77//nuRxt27dlD179rRJBgAAAAAAAAAAAAAAAPBi1EpRKwUAAAAAAOCNaIAFAAAAAAAA2CE4OFhffvmlPvnkE7v2r169ut1zb968OcnjRo0aOZRb48aNkzy2KurasmVLksfh4eEOHcPR/T1h3bp1SR57Y+EZAAAAAAAAAAAAAAAAkN5QK+XY/p5ArRQAAAAAALhf+ad1AgAAAAAAAIC3ypgxoypVqqS2bduqR48eypkzp13jMmfObPe+hmHo1KlTdx5nzZpVYWFhDuVZsWLFJI9Pnjxp2ufYsWNJHleoUMGhYzz00EMO7e8JR44cSfK4atWqaZQJAAAAAAAAAAAAAAAAkL5RK/V/qJUCAAAAAADwHBpgAQAAAAAA4IH18ccfmwqi/Pz8lCVLFmXPnl1hYWHy93f8r9CyZs1q975Xr15VYmLincehoaEOH+/eArKIiAjTPpGRkUkeO3ocZ/JKbVeuXLnz3z4+PnYX0gEAAAAAAAAAAAAAAAAPGmql7EetFAAAAAAAgOfQAAsAAAAAAAAPrCpVqig8PNzt8wYEBNi97/Xr15M8Dg4Odvh49465du1aiscJCgpy6Rje4O7nGRQUJF9f3zTMBgAAAAAAAAAAAAAAAPBe1Eo5fwxvQK0UAAAAAAC4X/G3HAAAAAAAAEAaypw5c5LH0dHRDs9x75gsWbKY9rm3KCsmJsalY3iDu59nTExMktUhAQAAAAAAAAAAAAAAAHgXaqWcR60UAAAAAAC4X9EACwAAAAAAAEhD2bJlS7Ia3+XLlx2e49KlS0ke58iRw7RP9uzZkx2TEkfy8vHxcWjue9lbcBYSEnLnvw3DcPg5AQAAAAAAAAAAAAAAAPAcaqXMqJUCAAAAAAAPOhpgAQAAAAAAAGnIx8dHhQoVuvM4KipKx48fd2iOnTt3JnlcpEgR0z7FihVL8njPnj0OHWPXrl1275sxY8Ykj2/cuOHQsS5evGjXfiVLlkzyeNu2bQ4dBwAAAAAAAAAAAAAAAIDnUCtlRq0UAAAAAAB40NEACwAAAAAAAEhjNWvWTPJ45cqVDo2/d/9755OkatWqJXm8Zs0ah47hyP5Zs2ZN8vj8+fN2j7106ZLdRW316tVL8njJkiV2H8ced682Kf23ciIAAAAAAAAAAAAAAAAA51Er9X+olQIAAAAAAKABFgAAAAAAAJDmGjRokOTxtGnT7B578OBBrV+//s7jDBkyqEaNGqb9ateurcDAwDuPFy9erCtXrth1jAsXLjhUMJUpUyblypXrzuNdu3YpMTHRrrE//vij3cdp1qxZksczZ85UZGSk3eNTEhwcnORxTEyM2+YGAAAAAAAAAAAAAAAAHkTUSv0faqUAAAAAAABogAUAAAAAAACkuU6dOiUpIFq3bp1++eUXu8YOGjQoyeMOHTooW7Zspv2yZ8+uJ5988s7jmzdvavjw4XYd4+2331ZsbKxd+95WuXLlO/8dERGh5cuXpzjm6tWrGjt2rEPHqFu37p3HUVFRevHFFx3KMzkhISFJHh87dsxtcwMAAAAAAAAAAAAAAAAPImql/kOtFAAAAAAAwH9ogAUAAAAAAACksezZs6tnz55JYj179tSuXbuSHTd8+HAtXrz4zmNfX1+9+uqrNvd/5ZVX5OPjc+fxhAkT9P333yd7jMmTJ2vy5MnJ7mOlRYsWSR6/8cYbya4KGB0drY4dO+rUqVMOHWf48OFJntOsWbM0YMAAGYZh1/gVK1bY3Fa+fPkkj+fNm+dQbgAAAAAAAAAAAAAAAACSolaKWikAAAAAAIC70QALAAAAAAAA8ALvv/++wsLC7jyOiIhQ7dq19cknnygiIiLJvnv27FG7du307rvvJokPHjxYlSpVsnmMWrVqqVevXnceG4ahZ555Ri+//LKpmOr48eN64YUX1KdPH0lKkps9unTpoqCgoDuPd+7cqSZNmmjHjh1J9rt586bmz5+vatWqadmyZQoMDFTBggXtPk6TJk00cODAJLHPPvtMVapU0fz58xUdHW0a888//+izzz5T1apV1aRJE5tzV6pUSTlz5rzzePXq1WrUqJG+/vprLVmyRH/88UeSPwAAAAAAAAAAAAAAAABSRq0UtVIAAAAAAAC3+Rj2tvcGAAAAAAAA0rmwsDCdOHHizuNVq1YpPDzc7XMXKVJEx48fd3iObdu26dFHHzUVcQUEBKho0aLKmjWrzp07pzNnzpjGNmvWTAsWLFBgYGCyx4iKilJ4eLipuMrHx0dFixZVaGioLl26pGPHjt3ZliVLFv34449JVirs3r27pk2bluyxPvnkE7322mumeIECBZQ/f35FR0fr2LFjunHjxp1tX3/9tX744QetWbPmTiylv8KMj49Xly5dNGfOHNO2wMBAFSlSRCEhIYqOjtbp06cVGRmZZJ/k5n/vvfc0bNiwZI9vb54AAAAAAAAAAAAAAACAp1ArRa0UtVIAAAAAACA98E3rBAAAAAAAAAD8p2rVqlq7dq2KFSuWJB4XF6dDhw5p27ZtlgVdPXr00MKFC1Ms6JKkrFmz6vfff1fVqlWTxA3D0NGjR7V169YkBV1Zs2bVwoULVbZsWYefz6uvvqrnnnvOFD9z5oy2bt2qffv23Sno8vX11aeffqq+ffs6fBx/f3/Nnj1b77zzjgICApJsi42N1eHDh7V582bt2bPHVNCVkrfeektdu3Z1OCcAAAAAAAAAAAAAAAAAtlErRa0UAAAAAACARAMsAAAAAAAAwKtUqFBB+/bt00cffWQq7rqbv7+/GjdurHXr1mnq1KmmYqbk5MyZUxs3btTYsWOVL18+y338/Pz01FNPaefOnU6v/Ojr66uJEydq2rRpKly4sM396tWrpw0bNuiVV15x6jjSf6syvvfee9q/f7969Oih7NmzJ7t/njx51Lt3b23ZsiXZ/fz8/DRz5kz9+eefevHFF1W9enXlzJlTGTJkcDpXAAAAAAAAAAAAAAAAANRKOYtaKQAAAAAAcD/xMQzDSOskAAAAAAAAAFg7cOCAduzYoQsXLigmJkahoaEqUKCA6tatq2zZsrk8f2Jiov78808dOnRIFy5cUIYMGVSsWDHVq1dPOXPmdMMz+I9hGNqxY4d27NihS5cuyTAMFSpUSLVr11bRokXddpzbEhIStGXLFh05ckQXL15UTEyMMmfOrAIFCqh8+fIqU6aMfHx83H5cAAAAAAAAAAAAAAAAAM6hVso51EoBAAAAAID0jAZYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8CjftE4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADxYaYAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCjaIAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj6IBFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyKBlgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwKBpgAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwKNogAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACPogEWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPIoGWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPAoGmABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAo2iABQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI+iARYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8igZYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8CgaYAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCjaIAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj6IBFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyKBlgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwKBpgAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwKNogAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACPogEWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPIoGWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPAoGmABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAo2iABQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI+iARYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8igZYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8CgaYAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCjaIAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj6IBFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyKBlgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwKBpgAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwKNogAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACPogEWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPIoGWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPAoGmABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAo2iABQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI+iARYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8igZYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8CgaYAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCjaIAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj6IBFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyKBlgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwKBpgAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwKNogAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACPogEWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPIoGWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPAoGmABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAo2iABQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI+iARYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8igZYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8CgaYAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCjaIAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj6IBFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADyKBlgAAAAAACDdCw8Pl4+PT5I/I0aMsHv8iBEjTOPDw8NTLV8AAGDbtGnTTN/LYWFhaZ0WAAAAAAAAAAAAAACwwH1+pDVvrAFdvXq1KScfH580ycUqj9WrV6dJLoC3CwsLM10v06ZNS+u0AAAAgPuef1onAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMdFR0drx44d+vfffxUZGanIyEgZhqHg4GAFBwcrT548Klq0qIoUKaKMGTOmdboAAAAAAABJ0AALAAAAAIA0tnr1ajVs2NChMYGBgcqYMaMyZsyonDlzKk+ePMqfP79Kly6tsmXLqlq1aipSpEgqZYwHxahRoxwekzFjRmXNmlVZs2ZVzpw5VbFiReXKlSsVsgPgLb744gtFRkamdRp3vPTSS8qWLVtapwEAAAAAAAAAAACk6MSJE5o5c6ZDY3x8fBQUFKRs2bIpa9asyp8/vypWrKjg4OBUyhIA7n8jRozQyJEjTfFVq1YpPDzcrccKDw/XmjVrTHHDMNx6HNz/9u7dq8mTJ2vFihXat2+fEhISUhzj4+OjokWLqmrVqqpWrZpq166tGjVqyM/PzwMZA/e3Xbt2aeHChQ6N8fX1VebMmZU9e3Zly5ZNxYoVU7ly5bgmAQAAADxwaIAFAAAAAEA6FBsbq9jYWEVFRenChQvat2+faZ9ChQqpcePG6tChg5o0aaKAgIA0yBTp2dChQ90yT4ECBVSnTh1169ZNzZo148Y8cJ/5+OOPdeLEibRO446uXbvSAAsAAAAAAAAAAADpwrFjx9xyb97X11elSpVS48aN1bNnT1WuXNkN2QEA4BmRkZH69NNPTfEBAwYoe/bsHs/H223btk0DBw7UunXrHB5rGIaOHj2qo0ePas6cOZKk7Nmzq0mTJnrjjTdUtWpVd6cLPDC2b9/ult/2wcHBqly5sp566il169aNz0Gke9OmTdPx48eTxMLDw93eZBQAAADpGw2wAAAAAAC4T506dUrTpk3TtGnTlDt3br300kvq16+fQkJC0jo1PGDOnDmjOXPmaM6cOcqfP78+/PBDdenSJa3TAgAAAAAAAAAAAADgvpCYmKgDBw7owIEDmjBhgqpUqaKvv/6aJhYAgHQhMjJSI0eONMV79OhB45e7xMXFadiwYfroo4+UkJDgtnkjIyM1d+5c1alTh98OgBeIjo7WunXrtG7dOg0ZMkS9e/fW6NGjFRQUlNapAU6ZNm2a1qxZY4rTAAsAAAB3803rBAAAAAAAQOq7cOGChg4dqhIlSuirr75SYmJiWqeEB9TZs2fVtWtXtWzZUtevX0/rdAAAAAAAAAAAAAAAuO/89ddfqlmzpoYOHZrWqQAAADdISEhQ586dNWbMGLc2vwLg3WJiYvS///1PjzzyiP7666+0TgcAAAAAUo1/WicAAAAAAACsNWzYUI0aNbLcZhiGbt68qRs3bujChQs6c+aM9u7dq4sXLyY7Z0REhPr166d58+Zp9uzZypkzZ2qkDqTo119/VZs2bbRkyRIFBgamdToAAAAAAAAAAAAAANxXEhISNGrUKEnSe++9l8bZAAAAV/Tu3Vtz5861ub1GjRp68sknValSJZUpU0bZsmVTcHCwrl27pitXrujcuXPatm2btm7dqnXr1unUqVMezB6Aqw4fPqwmTZpo/fr1KleuXFqnAwAAAABuRwMsAAAAAAC8VP369fXOO+84NObMmTNasWKFfvnlF/3666+Ki4uz3G/FihWqWrWq1qxZoyJFirgj3TS1evXqtE7hgdGgQYNkX+8bN24oMjJShw4d0oYNGzR16lQdPnzYct8VK1Zo0KBB+vzzz1MpWwCecPz4cafHhoeHa82aNaa4YRguZAQAAAAAAAAAAACkb8OHD9eIESNsbr/dzGLXrl1atWqVpk+fritXrljuO2rUKFWsWFFPPfVUKmULAHjQ9ejRQz169EjrNO5bv/32m6ZNm2a5rX79+vrss8/0yCOPWG7PkSOHcuTIoeLFi6tu3bp34lu2bNHcuXP1448/6uTJk6mQNYDbpk6davMz0jAMRUZG6vz589q0aZPmz5+vX3/91bJ+LjIyUs2aNdPff/+tkJCQVM4aAAAAADzLN60TAAAAAAAA7lOgQAF169ZN8+fP16lTp/Tqq68qMDDQct8TJ06oUaNGOn/+vIezxP0sU6ZMypcvnxo0aKAhQ4bo4MGDmjBhgjJmzGi5/9dff22zQRYAAAAAAAAAAAAAADDLkiWLihQpopYtW2rcuHE6deqU+vbta3P/IUOGKD4+3oMZAgAAd0hISNCAAQMst/Xp00erVq2y2fwqOdWrV9eHH36oo0eP6qefflKdOnXk4+PjWrIAHObj46McOXKoTJky6tGjhxYuXKjt27erVKlSlvufOnVKo0eP9nCWAAAAAJD6aIAFAAAAAMB9Kk+ePBo3bpy2bdum8uXLW+5z9OhRde3aVYmJiR7ODg8KHx8f9evXTz/99JN8fc1/FRUfH6+xY8emQWYAAAAAAAAAAAAAANwfgoKC9PXXX+v111+33P7PP/9o9uzZHs4KAAC4at26dTp06JApXrt2bX311VeWNXmO8PPz01NPPaU///wz2WaaADznkUce0ZYtW1SmTBnL7V988YXOnTvn4awAAAAAIHXRAAsAAAAAgPvcQw89pPXr16tevXqW2//44w9NmDDBw1nhQfPEE0+oT58+ltt+++03D2cDAAAAAAAAAAAAAMD9Z/To0SpXrpzltiVLlng4GwAA4KpffvnFMv7++++73PzqXhkzZnTrfACcly1bNpsLz968eVMLFy5Mg6wAAAAAIPXQAAsAAAAAgAdAtmzZtHDhQpUqVcpy+4gRIxQREeHhrPCgee211yzjZ8+e1d69ez2cDQAAAAAAAAAAAAAA9xdfX18NHDjQctsff/whwzA8nBEAAHDFxo0bTbEcOXKofv36aZANAE+qUKGC2rZta7lt+fLlHs4GAAAAAFKXf1onAAAAAAAAPCN79uyaOXOmateurYSEhCTbrly5oq+++kpvvfWWU3MnJiZqx44dWrdunfbu3asDBw7o5MmTioqK0vXr1xUUFKSQkBCFhISoXLlyql+/vho0aGCzIVd68Mknn+jatWtJYhUqVNBTTz3ltmMsWbJEW7ZsSRILDAzUkCFD5OPj47bjeErx4sVVtGhRHTt2zLTt4MGDKl++vMvHOHPmjBYtWqQ///xT+/fv18mTJ3Xt2jUlJCQoc+bMKliw4J33YNu2bZUvXz6Xj5keJCQkaNWqVVqxYoW2bdumI0eO6NKlS4qJiVFgYKBCQ0NVrFgxVa9eXY899pgaNWrk9hUCbYmJidGCBQu0ZMkS/f333zp16pSio6OVLVs25cqVS6VLl1bz5s3VsmVL5c+f3yM5eQtvPm/p1Z49e7Rw4UKtX79eBw8e1IULFxQTE6OsWbOqVKlS+uKLL1S1alW75zt8+LAWL16sDRs26MCBAzp9+rSio6NlGIayZMmiwoUL66GHHlJ4eLjatGmjkJCQVHx2SW3atEnz58/Xxo0bdejQIUVGRiogIEC5cuVSgQIF1LBhQz3++OOqWbNmqhz/xo0bmjt3rpYsWaIdO3bozJkzunHjhjJnzqy8efPqoYceUtOmTdWuXTuFhoamSg4AAAAAAAAAAAAPoqZNm1rGL168qIiICLfcs/r777+1dOlSbdq0SYcOHdLZs2cVHR0tX19fZcuWTUWKFFGlSpXUqFEjtWzZUsHBwS4fMz24du2alixZojVr1mjnzp06fvy4IiMjdevWLWXKlEl58uRRqVKlVLt2bbVu3VoPPfSQx3I7d+6c5s6dqz/++EN79uzRhQsXdOvWLYWGhip37tyqUqWKmjdvrhYtWjww5+s2bz5v6dmmTZu0fPly7dixQ/v27VNkZKSioqIUFxenTJkyKSgoSHny5FFYWJiKFSumqlWrqmbNmipevHhap35fSevageSMGjXqzn9HRkZa7vPFF18oe/bsKc6VPXt29e/f367jxsXF6bffftP69eu1Y8cOHTlyRFevXlVUVJR8fHwUFBSk4OBgFShQQGFhYSpZsqRq1KihmjVrKleuXHYdw53+/fdfU6xIkSJeXSMUGRmpBQsWaM2aNdq9e7dOnDihqKioOzV8BQoUUOnSpVWnTh21adNGxYoVS+uUbYqPj9fChQu1aNEi/fXXXzpx4oSio6MVFBSk3Llzq1y5cmrcuLGeeuopFShQIK3TddnZs2c1b948rVixQnv37tX58+cVExOjoKAgFS5cWJUqVdLjjz+uJ598UhkyZHBo7iNHjmjmzJmmeNeuXVWiRAm35G8YhsaMGaNbt24liVerVk2PP/64W47haW3atNHcuXNNcavmeI4yDEOrVq3Sb7/9pm3btunw4cOKiIhQbGyscubMqQoVKmjBggUKCgqya749e/bo119/1YYNG3To0CGdO3dO0dHRCggIULZs2RQWFqZHHnlEDRs21BNPPJGqvzl37dqlOXPmaO3atTp48KAiIiLk5+enbNmyqVSpUqpevbratGmjunXrploO6UV8fLxWr16t1atXa9u2bTp27JjOnz+v6Oho+fv7K0uWLMqVK5fKli17pxaydu3aCggIsDnnokWLtHPnzjuPT5w4Ydpn7dq1SX4LJOeZZ55RkSJFHH9yAAAASF8MAAAAAACQplatWmVIMv0ZPnx4qhyve/fulscrVKiQER8fb/c8N27cMObNm2e0b9/eyJ49u+WcKf1p1KiRsWLFCpefU4MGDVx6/YYPH24a36BBg2TH9O3b1zQmNDTUuHnzpmtP5v9LSEgwwsLCTMdo3769W+a3h9U5S+l1SUmzZs0s5/3mm29cmnfNmjXGY489Zvj4+Nj9/vP19TU6dOhgHDx40KFjlS9f3jRXkyZNXMr/Xq1btzYdo2jRokZiYqJD80RGRhrvvvuukTt3boeuzcKFCxtfffWVQ58J97Kad9WqVXe2x8fHG5988omRM2dOu3LKkCGD8frrrxtXr151Kh9bn7WucvXzx0panjdPs3r9HD0vU6dONY0vUqRIkn02b95s1K9fP8XX8Oeff7brmAsWLDBq1arl0PkJDAw0+vTpY5w5c8ah53c3q+/w7t27J9lnw4YNRo0aNezOq2HDhsb27dudzule8fHxxvjx442QkBC7jh8UFGQMHjzYiI6OvjOHPecUAAAAAAAAAADgfpBaNSMZM2a0nNfR++N3S0hIMKZPn25UqFDBoftkmTNnNl5//XUjIiLC7mOdO3fO8PPzM801atQop/O/V2xsrJErV64U77/Z48iRI0bv3r2NTJkyOfTa1KhRw/j999+dfg723Ae/cuWK8fzzzxuBgYF25ZQnTx5j4sSJRkJCglM5OVODYw+rXO+uQXBGWp03V3j7tZGYmGh88803RqlSpRx6Te/+U7x4ceOtt94yzp8/77bnZA+r96473mdWXK2V8MbaAWfu8zv7HrH6Y09NQVRUlPHGG28YoaGhTh3Dx8fHqFWrlvHpp596tDbH6ju9Ro0aHju+I44fP2706tXL7u+c238aNWpkrFu3zqVjp8b3z4wZM4yCBQva9RwCAgKMXr16GZcvX74zPrXq1ZyR0ufb5cuXjeeee87uc5c7d27jyy+/dOj3QkxMjJEjRw7TXC+++KLbnueKFSss8128eLHbjpEcq89CScbUqVOdnvOff/6xnNPf39/mGHu+J7777jujRIkSKZ5re37D//rrr0a1atUcuu6Dg4ONV1991bhw4YLTr42Vffv2GY899pjdeVSuXNlYu3ZtkjmKFCni9DlMrbo3V3Ky5fz588aQIUOc+l7MnDmz0b17d+PPP/+0nNvWv1Vw9k9q/B4DAACA9/HeVt8AAAAAACBVvPnmm5bxU6dOacOGDXbNceLECeXJk0ft2rXTTz/9ZHMFtpSsXLlSjRs3VufOnXXjxg2n5kgrzz//vCl2+fJlzZs3zy3zL1++XMePHzfF+/Tp45b504qtlWQvX77s1HxXrlxRp06d1KBBAy1btkyGYdg9NjExUXPmzNHDDz+scePG2T2ue/fuptjKlSt1+vRpu+dIzqVLl7RkyRJTvFu3bvLx8bF7nvnz56tMmTIaNmyYLly44FAOJ0+e1AsvvKBatWpZvg9d9e+//6pu3boaNGiQLl26ZNeYW7du6cMPP1Tt2rV17tw5t+fkLbz5vKVXI0eOVK1atbR27VqX5zp58qSaNm2q1q1bO7yKXmxsrCZOnKhy5cpp1qxZLudyL8MwNGLECNWtW1ebN2+2e9yqVatUo0YNy5UCHXXhwgU1bNhQr776qq5cuWLXmJiYGH300UeqXLmyjh075nIOAAAAAAAAAAAAcP+9+d27d6t69erq3r279uzZ49DY69ev68MPP1S5cuX0xx9/2DUmb968euyxx0zxGTNmOHTs5CxZskQXL140xXv06GH3HAkJCXrvvfdUrlw5TZ482eHal82bN+vRRx9V9+7dFRMT49BYe2zcuFHlypXT119/rdjYWLvGnD9/Xn369FGnTp0UFxfn9py8gbeft+R487Vx9uxZ1a5dW3379tWhQ4ecPv6RI0f0wQcfaMuWLU7P8SDzhtoBb7R27VqVK1dOY8eOdfq70DAMbdy4UQMGDPBoraO/v78pdubMGY8d314TJkxQuXLlNGXKFLu/c25buXKl6tWrpz59+nhFHWl0dLTatWunbt262V0TGBcXpylTpqh8+fL666+/UjlD99q+fbsqVKigSZMm2X3uLly4oH79+umxxx6zu0YoU6ZM6tatmyn+/fffu+28T5o0yRQrXLiwmjVr5pb500KuXLks4/Hx8U7Vbl+/fl2tW7dW165d9c8//7iUW0REhJ588kk98cQT2rp1q0Njo6OjNX78eJUpU0Zz5sxxKY/bpk6dqsqVK2vZsmV2j9m+fbsaNGig999/3y05pBcTJkxQqVKlNHr0aKe+F69fv67p06erbt26OnHiRCpkCAAAgAcRDbAAAAAAAHjAlClTRrVr17bc9uuvv9o1x40bNxQVFeW2nH744QfVr1/f6eKStPDII4+oZs2aprjVDXRnTJw40RQrXry4Gjdu7Jb504qtwr+AgACH59q7d6+qVq2q2bNnu5TTrVu3NGjQIPXp08euBlrPPPOM/Pz8ksQSExM1c+ZMl/K4bdasWaYiUh8fH8vGW7a88cYbateunf7991+Xctm6dauqVaumv//+26V57nb69GnVqlVLmzZtcmr83r17Va9ePV29etVtOXkLbz5v6dXLL7+sESNGKDEx0eW51q5dqypVqthdlG/L1atX1aVLF7333nsu53S3vn37auTIkU4917i4OD399NNasGCB08c/d+6c6tWrp3Xr1jk1/uDBg6pbt65OnTrldA4AAAAAAAAAAAD4jzvvzc+dO1c1a9Z0uZnDuXPn1KxZM02bNs2u/a2a7Rw6dMjhhWpsmT59uilWtGhRNWjQwK7xUVFRatasmYYNG6Zbt265lMuMGTPUoEEDRUREuDTP3VasWKFGjRo5ff95zpw56ty5s9vy8Rbeft7s4Y3XxpkzZ9SgQQOna0HgPmldO+CNVq1apebNm7ttcUNPy5kzpyl2+vRp7du3Lw2yMTMMQ3379lX//v1dbgo4adIkNWjQwO6GSqnh+vXratq0qebPn+/U+H///VcNGzZMN3Vbf//9t8LDw51ekPKPP/5QgwYN7F4E02rh2cjISLc0QLp06ZJ+/vlnU7xXr17y9U2//4w6Y8aMNrc52jgsJiZGTZs21cKFC11NSydOnFD16tX1yy+/uDTPlStX1LFjR5dr6caNG6eePXvq5s2bDo81DEPvvPOOhg4d6lIO6cHNmzf11FNPqX///m6rwXVk4WIAAAAgOeYW4AAAAAAA4L7XsmVLbdiwwRRfs2aNS/P6+fmpdOnSqlChgkJDQ5UtWzYFBATo6tWrOnPmjLZt22ZzpZdt27bp2WefdcuNVU95/vnnTYVbq1ev1uHDh1WyZEmn5z1//rwWLVpkivfu3Vs+Pj5Oz+sNzp8/bxm3tfqsLfv27VPDhg0tV5yUJF9fX1WsWFGVKlVSaGioMmTIoAsXLmjv3r3atGmTEhISTGMmTZqk0NBQjR49Otlj315Nc8mSJUni06dP15AhQxx6HlasCgnr16+vokWL2jW+f//+mjBhgs3toaGhqlu3rgoWLKiQkBBFR0frzJkzWr16teX5uXTpkpo2baq///5bBQoUsP+JWIiOjlazZs10/PjxJPHcuXOrQYMGyp8/v7Jly6bLly9r9+7dWr9+veW5OnLkiAYPHmzZKC698ubzll5NnDhRn3/+uSn+0EMPqVKlSsqTJ48yZsyoS5cuaceOHcmuHrtmzRq1aNEi2X8oULVqVZUvX16hoaHy9/fX+fPn9ddff+nvv/+2LPIYNmyYcufOrb59+zr/JP+/kSNHmhowBgYGqk6dOipZsqRy586tGzdu6OTJk1qxYoVloWBCQoL69u2r+vXrK0eOHA4d/9atW2rZsqXNVXx9fHxUo0YNlS9fXnnz5tXVq1d14sQJrVixIslrevbsWT355JOWxW4AAAAAAAAAAACwz82bN23+Y2ZH783Pnj1bXbt2tbxvK0mZMmVSzZo1VbJkSYWGhsowDJ0/f14bN27UgQMHTPsnJCSoV69eypMnj5o3b57ssVu1aqWQkBDTva3p06erVq1aDj2Pe12+fFmLFy82xbt162ZXXcb169f16KOPavPmzTb3KVq0qGrVqqXcuXMra9asunLlio4dO6bVq1crOjratP+2bdvUqlUrrV692rQol6P27t2rNm3amBoAlC5dWjVq1FDu3Lnv1FGsX7/eZhOVuXPnatasWfdNIyxvP2/28sZro2fPnvrnn38st/n7+6tq1aoqXbq0cufOreDg4DufU+fPn9fu3bt15MgRtyxs9aBL69oBbxQZGamnn37aZr1HlixZVL16dZUoUUI5cuRQxowZdf36dUVFRenkyZPauXOn042B3KVEiRKmWitJGjp0qObNm+f5hO7x6quvJlvDlTt3boWHh6tAgQLKmDGjzpw5o+3bt2vPnj2W+2/dulWPPfaY/vzzT2XIkCG10rZkGIY6deqUbEPBhx9+WJUqVVKBAgUUHR2tU6dOadWqVUmaIV67dk2tWrWyrFvyJlevXlW3bt107dq1JPGQkBA1atRIBQsWVFBQ0J1ztnv3bst59uzZo1atWmnNmjUpNlstU6aMwsPDtXr16iTxSZMmObRAqJUZM2aYmlv6+fmpV69eLs2b1pJrCOfob/vevXubap79/f1Vu3ZtlSpVSnny5JFhGDpz5ow2bdqkgwcP2sypUaNGOnr0qM1jVa5cWQ8//LDy58+v6OhonT59WitXrrTZOHTYsGEKCgrSoEGDHHpOkvTTTz/ptddes7k9NDRUDRs2vPOePn36tOXn0KhRo1SpUiWHj59e3Lp1Sy1atNCqVats7uPn56caNWqoRIkSyp07tzJlyqQrV67cqYU8duyYBzMGAADAA8cAAAAAAABpatWqVYYk05/hw4en2jE3btxoecxMmTIZ8fHxKY7fv3//nTGFChUyXnrpJWP16tXGjRs3Uhy7a9cuo0+fPoavr69lDhMmTHD4+TRo0MCl12/48OGm8Q0aNEhx3I0bN4wcOXKYxg4ePNjh53C30aNHm+YMCAgw/v33X5fmdZTV+bHndbHlxo0bRoYMGSzn3bRpk93zXL582ShWrJjlPLlz5zY++OAD4/LlyzbHX7x40Rg0aJARGBhoGu/r62usWrUqxRzmzJnj8vOwsnv3bst5v/32W7vGjx8/3nK8JKNFixbGmjVrjMTERMuxiYmJxrJly4yKFStajm/cuLHNsVas5ihXrlySxzVr1jRWrVplc94zZ84YTz/9tOVcPj4+xl9//WV3PrY+a13l6uePYXjXefM0q9fP0fMydepU0/hs2bIZmTNnTnJt9+7d2zh+/LjNeY4fP24cPXrUFD9y5IgREhJimWdYWJgxYcIE4/r16zbnPXnypPHss89afu9lypTJ2L9/v93PtXv37qY5ypQpk2Tu0NBQY/z48ca1a9cs54iPjze++OILI0uWLJbP6eWXX7Y7n9veeecdm+/h7t27G8eOHbMcd/36deOLL75Icq4kGeXLlzfNU6RIEYfzAgAAAAAAAAAA8HapUTOycuVKyzmDg4ONhIQEu+fZtGmTzXv8FSpUML777jvj1q1bNsfv27fPePLJJy3H58mTx7hw4UKKOfTr1880Nnv27MbNmzftfh5WPv/8c8t70EeOHElxbGJiotGmTRvL55UhQwbj+eefNw4dOmRz/M2bN42vv/7ayJ07t+UcI0eOtPt52Hr/3H1v3sfHx+jcubNx8OBBm/Ns3brVqFKliuVcuXPnduj1drYGJyVWudlT33GbN503d/Cma2PRokWWr0loaKjx2WefGVevXk3xuNevXzd+/vln49lnnzWyZ89uSDIWLVrk0nNxlNV719H3mb1crZXwxtoBq9oNR+7zHzt2zDIPW/UG9ho0aJDlvOXLlzd+/vlnIzY2NsU5zp07Z0yePNlo1aqV4e/vb0iy+bqmhg8++MDyOUgyXnjhBbtqNlPL4sWLbeZWtGhRY8GCBTbrUXfu3Gk0bdrU5viBAwc6lIs7vn8mT55sM5/mzZsbe/bssRx369Yt4/vvvzd9R1jVvzhyrbtTSr8XJBn58uUzfvzxR5vXxe7du41mzZrZfI1GjRplVy6zZ8+2HL93716XnmOZMmVMc7Zs2dKlOR1l9VkoyZg6darTc65bt85yzsyZM9scY/U9UaBAgSSPs2TJYowdO9aIiIiwOc+GDRssf1t06NDB5vugffv2Nn933r5W8uTJYzk2ICDAoZpQwzCMCxcu2Kzty5cvnzFnzhyb7+mdO3caTZo0STImT548RmhoqNPn0NXvQ1uKFCni8vuqS5cuNs9bgQIFjIkTJxpXrlxJdo4LFy4YEydONBo1amT4+PjY/V3tjjpbAAAA3P9ogAUAAAAAQBpLiwZY0dHRNhtQHThwIMXx+/fvN6pXr27MmzfPoeLIu/3555+WNwnz589vxMXFOTRXWjXAMgzDePXVV01jc+fObVdxjJXExESjePHipjnbtWvn1HyusHp/uFKU+N1331nOGRwc7FAhTseOHS3nefTRR+0qkL1t/fr1lu/BQoUKGdHR0cmOvXnzpuVN8xdeeMHu41t57bXXLF8fe4qmdu7caQQEBFiO/+677+zOITY21njmmWcsX+P//e9/ds9j60b57T9vvfWW3XNZXWeSjOeff97uOby1AZa3nTdPS60GWPe+ln/88YdT+SUkJBi1a9e2nLdr167JNr661/z5841MmTKZ5qlSpYrdTcqsipPu/lO5cmW7myVu2LDBCAoKMs2RI0cOhz6T9+3bZ9lQ0M/Pz5g1a5Zdcxw9etQoWrRoss+NBlgAAAAAAAAAAOB+lBo1I71797acs3HjxnbPER0dbXNhqtdee82huo4JEyZY1qi0bds2xbFbtmyxzOHHH3+0+/hWqlatapqzfv36do396quvLHMqVqyYQ/9g/+zZs0alSpVM8/j7+xvbt2+3aw5b75/bfzJlymQsWLDArrmuX79u1K1b13Ke2bNn2/28vLUBljedN3fwpmujU6dOpjG5c+e2XIDKHteuXTPGjx/v8iJ0jkrvDbDSunbAGxtgJSYmGvnz57f8TEqpNsyWEydOGAMHDjRiYmKczstRBw8etFnrKf23eNu4ceOM8+fPeywnw/hvEct8+fJZ5tSyZUu76t0SExNtNvjy9fU1Vq9ebXc+rn7/JNdEZ+zYsXbPYfU56uy17k4p5VSnTp1kFx29m61zljFjRuPw4cMpjo+NjbVsgDRgwACnn9/atWstc/J0M8XUaID17rvvWs75yCOP2ByT0vdEyZIljRMnTjiVz6xZs2xes/Yu9Hrx4kWjVq1alvOUK1fOoe+frl27uvSeTkxMNEaMGJHiNZLeG2DNmDHD5nPr06ePU9+Lu3btMtq3b2/Xe4kGWAAAALCHrwAAAAAAwAMnKChIhQsXttx26tSpFMeXKlVKmzdvVtu2beXr69xfL9SpU0fLli1TYGBgkvjZs2c1f/58p+ZMC3379jXFLly4oAULFjg138qVK3XkyBFT/LnnnnNqPm9x/fp1jRw50nJb27ZtlTFjRrvmWbFihX788UdTvHnz5lqyZIly5cpld061a9fWkiVLFBAQkCR+6tQpzZgxI9mxGTJk0NNPP22Kz549W7du3bI7h7slJCTo+++/N8XbtWunzJkzpzj+xRdfVFxcXJJYYGCgFi9erC5dutidR0BAgGbMmKE2bdqYtn344YeKj4+3ey5b3nrrLb3//vt27//hhx/qoYceMsVnz56t2NhYl/NJS+npvKVHvr6+WrRokRo3buzU+KlTp2rDhg2meJ8+fTRz5kwFBwfbPdeTTz5peY3/9ddfWrZsmVP53a106dJavXq18uTJY9f+tWrV0vDhw03xiIgILVy40O7jvvnmm5bX4RdffKFOnTrZNUfRokW1bNkyhYaG2n1cAAAAAAAAAAAAmO3evVvTp0+33Na5c2e75xk9erSOHj1qin/wwQf66KOP5O/vb/dc/fr10yeffGKK//zzz9q/f3+yY6tVq6by5cub4tOmTbP7+Pfat2+ftm3bZor36NEjxbFXrlzRm2++aYoXLlxY69evV+XKle3OI1++fFq5cqXCwsKSxOPj4zV27Fi757HFx8dHP//8s1q1amXX/sHBwZo5c6YyZcpk2mbrPZVepKfzZi9vujaWL19uio0ePVpFixZ1Ko/MmTNrwIABqlGjhlPjH3RpVTvgjfbt26ezZ88mifn4+GjKlCkKCgpyas7ChQvrk08+sfysTC2lSpWyrFO77fjx4xo4cKDy5cunOnXqaMiQIVq4cKHOnz+fqnl9/PHHOnfunClep04dzZkzx656Nx8fHw0ZMkRvvPGGaVtiYqIGDx7sllztMWrUKF25csUUf+ONN/T666/bNUeuXLm0ZMkSFS9e3N3ppaoyZcpo0aJFCgkJsWv/IUOGaODAgab4zZs3NWTIkBTHBwQEqGfPnqb4zJkzna69nDhxoilWsGBBNW/e3Kn5vEVcXJwmT55suc3Zerh8+fJpzZo1NmvIk5OQkGB5vUrSZ599pmeffdaueXLmzKlff/1VZcuWNW3bt2+fpkyZYtc8O3bs0HfffWeKO/Ke9vHx0fDhw/XSSy/Zdcz06Nq1axo0aJDltjfffFPffPONU9+LDz30kObMmePUewkAAACwQgMsAAAAAAAeUPny5bOMnzlzJsWxzja9uleVKlX08ssvm+JWNyS9VenSpdWwYUNT3OqGuj0mTZpkioWFhenRRx91aj5vcP36dbVv316HDx82bfPz87O7QESShg0bZooVKVJEc+bMkZ+fn8O5Va9e3XLO//3vfymOtSrwc6X46/fff7csCrKnyHb58uX6888/TfGPP/5YDRo0cCqfb7/91tRQ7PTp05o3b55T891WrVo1m83QbPH399dbb71likdGRmr37t0u5ZOW0tN5S69efPFFy89oe8THx+vdd981xatXr64JEyY4NeeTTz6pXr16meKfffaZU/Pd5ufnpx9++EFZsmRxaNwrr7yibNmymeLr1q2za/zZs2e1ePFiU7xJkyZ6/vnnHcqlZMmSHi0IBwAAAAAAAAAAuN/8888/atmypWkBHum/++r2NsC6cuWKPv30U1O8Xbt2djU1sDJgwAA1adIkScwwDLvuzXfv3t0U+/333/Xvv/86lYtVM6fg4GC1b98+xbGffPKJrl69miTm5+enBQsWKG/evA7nkj17ds2cOdMUnzdvnk6fPu3wfHcbMGCAHnvsMYfGhIWFqVu3bqb4+vXrZRiGS/mkpfR03hzhDdfGzZs3denSJVP88ccfdyoHuCatage8ldVCoKVLl053zYmk/2qJChQokOw+iYmJ2rBhg8aMGaPWrVsrb968KlKkiNq3b6+PP/5YW7ZscdsCerdu3bJsypMxY0bNnDnT7sUwb3v//fctF0fcunWrNm/e7HSe9rp586bl53rZsmU1atQoh+bKlSuXvvnmG3el5hGTJ09Wjhw5HBozZswYlSxZ0hRfsGCBXc3X+vTpY6pDvnz5slM1bhEREZo7d64p3rNnT6dqSr3JmDFjdPLkScttztYUf/HFFzbrx1OycOFCy8/Wxx57TP3793dorpCQEE2dOlU+Pj6mbfbW5tmq03bmPf3xxx+ny+8He3zxxRe6ePGiKf7oo49q9OjRaZARAAAAYI0GWAAAAAAAPKBy585tGY+KivJoHs8995wptmnTJo/m4KoXXnjBFPvjjz907Ngxh+a5dOmSfv75Z1O8d+/eljd5vV1cXJxmz56tSpUqaenSpZb7vPbaa6pQoYJd8+3cuVMbNmwwxT/44AO7VoyzxaqIa//+/dq4cWOy46pVq6Zy5cqZ4s6ufGo1rkiRIgoPD09x7JdffmmKlS1bVv369XMqF0nKkSOHZVHCt99+6/SckjRixAiHVgO+rVWrVparJ+7YscOlfNJSejpv6VFgYKDlKqX2Wrx4sWUB0bhx45x6D9/29ttvm4qrli1bZlp11BFt27ZVpUqVHB6XIUMGtWnTxhS397qaOnWqEhISTPFx48Y5nIskPfvss3r44YedGgsAAAAAAAAAAPCgioiI0EcffaTKlSvrxIkTpu2+vr768ssv7W5GMXPmTF2/fj1JLDAwUB999JFLeQ4dOtTyWFYNu+7WtWtX0/21hIQEpxZXszWubdu2KdYdxMXFWTb76Nmzpx555BGHc7mtbt26pkV94uPjLRtx2CtTpkx6++23nRr79NNPm2JRUVE6cuSI0/mkpfR03hzlDdfGlStXLOOONp2Ae6RV7YC3snp/ptf3Zr58+bRw4ULlzJnToXEnT57U3LlzNXjwYNWoUUM5cuRQy5YtNWfOHN26dcvpfH766SfLZioDBw5U0aJFHZ7Pz8/PsvmmZH8jHFfMmzdPERERpvjYsWOdqhFq3LixnnjiCXekluratm2rOnXqODwuICDAcqG7uLg4TZs2LcXxYWFhatasmSlutYBsSmbOnKmbN28mifn6+qp3794Oz+VNJk+erBEjRlhue+ihh9S0aVOH56xSpYratm3rdE5W16Ovr6/N6zclNWrUUNeuXU3x/fv3a+XKlcmOjYmJ0Q8//GCKO/ueDgwMvC8Xb0xMTLRsyhcUFKQpU6akQUYAAACAbTTAAgAAAADgAWWrsPHGjRsezaNUqVLKnz9/ktjFixcdbh6Vltq0aWNaEdIwDIdvDk6fPl2xsbFJYv7+/urZs6fLObrLiRMnNGrUKJt/3nnnHfXv31+PPvqocuXKpU6dOumff/6xnOupp57SBx98YPexZ82aZYrlyZPHsvjSEVmyZNGTTz5pituziqHVaprLli2zaxWzu129elULFiwwxbt165Zi87OoqCgtXrzYFO/fv7/LK5hZPb+NGzdaNryxR1hYmJo3b+7U2KCgIMtmaXv37nVqvrSWns5betW6dWuFhoY6Pd7qM6datWpOFcjcrWjRoqpXr16SmGEY+vPPP52e06oRo72qV69uitl7XVk1baxRo4blqpz2uB+KzwAAAAAAAAAAANxh7dq1yd6bf/PNN9W3b1/VrFlTefPm1euvv65r166Z5vHx8dG4cePUokULu49tdZ+sdevWTjW0uFv9+vUVFhaWJBYdHZ1ig5V8+fLp0UcfNcWdWZzqjz/+sFyYpkePHnaNvXDhgik+YMAAh/O4l9U9XntqFmxp37690/dKq1atalmnkF7vzaen8+Yob7g2bDXH2rdvn8M5wHVpVTvgrazen4cOHVJ8fHwaZOO6ypUra/v27apVq5bTc1y/fl2//vqrOnbsqHz58mnkyJGKiYlxeJ5FixaZYj4+Purbt6/TuTVq1EilS5c2xRcvXizDMJye1x5W9S/58uXT448/7vScffr0cSUlj7FawNZerVq1Up48eUzxefPm2TX++eefN8VWr16tw4cPO5SHVdOsZs2aqVChQg7N4y12796tDh066LnnnlNiYqLlPqNGjXJqUV1XapGvX7+u1atXm+INGzZUmTJlnJ7X1neX1efM3VauXKmrV6+a4q68p1u3bm1zcen0avPmzZZNkjt16qSCBQumQUYAAACAbc4vUw8AAAAAANK1wMBAy7grK3s5K1++fKYiqr1797pcPOkpAQEB6tmzp6mZ09SpUzVixAi7VwGzuhH/xBNPKF++fG7J0x2OHz9uuSqrIwICAvTGG29o5MiR8vW1vz/70qVLTbG2bds6NIct9evXN608tmHDhhTHPfPMM3rrrbeSNBaKj4/X999/r4EDB9p9/B9//NG0CpmPj49lseS9VqxYYVoR19fX16WVum4rUqSIChcurJMnT96JXbt2Tbt373ZqJdTw8HCnCi9uK1u2rLZu3ZokZms1UW+Xns5beuVKEVpCQoKWL19uij/11FOupHRH/fr1TQVBGzZsUIcOHRyeK0OGDKpdu7bTuZQtW9YUu3r1qhITE5P9fL1165Z27dplinfs2NHpXG6PHzBggM0CLgAAAAAAAAAAgAfBqlWrtGrVKpfmCA0N1TfffKN27drZPebSpUvatm2bKe7O+2THjx9PEtuwYYNl45W79ejRQ7/99luS2J49e7R9+3ZVrlzZ7uNbNQYqUqSIGjZsmOJYq5qFsmXLqly5cnYf35b69eubYps2bZJhGE7dY2/UqJHTuWTOnFmFChVKcr9ZSr/35tPTeXNGWl8bWbNmVY4cORQREZEkPnz4cP38889uqemBfdKqdsCbFSlSxBS7fPmyPvvsMw0aNCgNMnJdoUKFtH79es2ZM0fDhw/XwYMHnZ4rIiJCI0aM0MSJEzVx4kSH6mw2bdpkitWrV0+FCxd2Oh9J6tKli4YNG5YkduXKFR06dMiyOZa7bNmyxRRr3769S+/9Zs2aWX4+epPQ0FA1adLE6fF+fn7q0KGDPv/88yTxnTt3KjY21maN8m0tWrRQoUKFdOrUqSTxSZMm6cMPP7Qrh40bN2rPnj2muLc1IFu0aJFOnz5tuc0wDF29elXnz5/Xpk2bbC44e9sLL7ygVq1aOZWHK/V0W7dutVyAs0uXLk7PKUm1atVS8eLFdeTIkSRxq8+Zu1ldt66+p/39/dWhQwd98cUXTs/hbax+C0tyqWEhAAAAkFpogAUAAAAAwAPKVqOrDBkyuDz3iRMntG/fPl25ckVRUVG6du2aYmNjbe5/+fJlU8ybb/xb6dOnj8aMGZOkYcfZs2e1ePFitW7dOsXxa9eutSxI8bYb8a7Ili2bOnTooMGDB6tkyZIOjb1+/bp2795tirtSuHU3q3y2b9+e4rjbq2neW0w4ffp0hxpgWRUS1q1bV8WLF09xrFWjrqJFiypv3rx2Hz85JUuWNBW2bt++3alGStWqVXMplxw5cphiVqt4pQfp6bylV44U897rwIEDlt9Daf2ZY+Xhhx926bvb6royDENRUVHKnj27zXF///23qYmbJNWpU8fpXCQpd+7cKlmypEtFmgAAAAAAAAAAAA+ysLAwde/eXa+++qqyZcvm0NjNmzdbLlSS1vfJWrdubdlEYvr06XbfF4yKitIvv/xiinfr1s2uZkVW93jd9boULVpU/v7+io+PvxOLiIjQsWPHVKxYMYfnc8e9+XvvN99P9+a99bw5wxuujQYNGpjGL1y4UI8//rjGjx+vMmXK2JUHXJNWtQPe7KGHHlJISIipgd/gwYN19uxZvfXWWwoNDU2j7Jzn4+Ojjh07qkOHDlqzZo1mzpypX375xelGhWfPnlWrVq00duxYvfbaaynuf+7cOdN3hGTdFNBRDRo0sIxv2rQp1RpgnT9/3tSASXK9/iUgIEDVq1fXsmXLXJonNVWvXt3uxV1tqV27tqkBVmxsrHbu3Jni7xE/Pz8999xzpqZn06dP1/vvv6+AgIAUj2+16Gz+/Pn1xBNP2JG958yfP1/z5893eZ62bduaXm97hYaGWjYGtJethlTuuPbr169vaoC1Y8eOZBup3buQquSe93SdOnXuqwZYVo3CsmXLpqpVq6ZBNgAAAEDy0mcLdgAAAAAA4LKbN29axjNlyuTwXFevXtW3336rRx99VNmzZ1dYWJhatGihrl27ql+/fnrjjTc0dOhQm3/uXd1TkiIjIx3OIy0VKVJEzZs3N8WtbrBbsdqvcOHCeuyxx1zOzVsUL15c7du3d7j5lSTt3r1bhmGY4u4qkrMqZrp48aJdY3v06GGK7dq1Szt27LBr/OHDhy0LLrt3727X+F27dpli7iwedOW1uVfu3LldyiVr1qym2LVr11yaM62kp/OWXrnyelqdH1fnvJu3X1dSyteW1Wvk6+urChUquJSPJFWsWNHlOQAAAAAAAAAAAB5UlSpVUteuXR1ufiVZ3wPKnDmzChYs6I7UnL5PliFDBj399NOm+KxZsywXbbEyZ84c3bhxwxS35958YmKi9uzZY4q78x5vSEiIKeZN9xDT47359HbenJHW14Zke3G/pUuXqly5cmrUqJG+/PJLy/owuE9a1Q54M19fX/Xu3dsUNwxD48aNU8GCBdWpUyfNmTMn3S3WKf3XCCs8PFxTpkzRxYsX9ffff+uzzz5Thw4dVLx4cbsa2N2WmJiowYMH65tvvklxX6vPVUluWZSvYsWKlnnbOqY72KoRckftirfXv6Tmc9y5c6dd43v37m1qWHThwgUtWLAgxbFRUVGaM2eOKf7ss8/Kz8/PruOnFxkzZtT48eM1d+5cp5+bq79/rK7DrFmzuqXpp9Xnx61bt3T48GGbY6yu3QfhunXU3r17TbFq1ao59B0BAAAAeAoNsAAAAAAAeEBduHDBMu7Iim03btzQ0KFDlTdvXvXq1UvLly9324qP6XHlyOeff94UW7p0qeUKYXeLiIjQ3LlzTfFevXrJ1/f++eub7du369FHH9Wbb77p8NgTJ05Yxm/fiHX1T7ly5Uxz37x502ajuLvdXk3zXtOnT7fruc2YMcMUCwoKUocOHewab/XaLF682C2vi4+Pj2WRiLNFX66uCGl1PSQkJLg0Z1pJT+ctPQoODrZrFUBbbH3m5MqVyy3np0WLFqa5vem6klK+ti5fvmyKFShQQEFBQS7lI1mv/A0AAAAAAAAAAAD7/Pzzz3r44Yc1f/58h8da3Se7fv262+5j9uvXzzS/vffJrBanunTpkhYvXmzXeKt7+HXr1lXx4sVTHHvhwgXL+oHBgwe77bWxquPxpnuI6fHefHo7b85Ky2tDkpo3b265aKD0X6OhVatW6cUXX1TRokVVtGhRde/eXRMnTtShQ4fsmh/2SavaAW/3+uuv22ziePPmTc2ePVsdO3ZUzpw5ValSJb300kv68ccfdf78eQ9n6hpfX19VrFhRL7/8sn788Uf9888/ioiI0KpVq/Tee++pSZMmdtXRvPzyy9q+fXuy+1y5csUyXrp0aadyv1u2bNmUN29eu4/pDlb1L5JUokQJl+f29voXd+Rnaw5br+u98uXLp9atW5viEydOTHHs999/r+jo6CQxW43v0quQkBC9+uqr2rt3rwYMGOBS0yJXvyesrsOSJUu6pZGSreZcyV37Vu+x1HxPp0eJiYk6d+6cKV6+fPk0yAYAAABI2f3zLygBAAAAAIBDzp49axkvUKCAXeP379+v8uXLa9SoUXY1CXJUfHy82+dMbS1atFDhwoWTxBISEvTtt98mO27mzJmm19DPz0+9evVye46uatCggQzDsPxz69Yt/fvvv1q9erVGjhypokWLWs4xduxYDRw40KHj/vvvv+5I32H2FCW6spqmYRiaOXOmKd62bVtlyZLFrhzT4rVxtljz3tXaHmTp6bylR86sZn239HR+0uq6ioyMNMVsrQjrKHfNAwAAAAAAAAAAkF4NHz7c5r3569ev68SJE1q8eLH69etneW/sxo0b6tChg37++WeHjuvN98mqV69uubiVPYtTHTlyRH/++acpbtU4yIo31yxY4d78f9LbeXNWWl4bt82aNUvVq1dPcb/jx49rxowZ6tu3r0qXLq2CBQuqd+/eWrVqlQzDcOiYSIrr3lpoaKgWLlyoPHnyJLtfYmKi/v77b33xxRd6+umnlTdvXlWoUEFvvfWW9u3b56Fs3StbtmwKDw/XO++8o+XLl+vcuXP6/PPPbTYEk6TY2Fi9/fbbyc5rVS9y+3juYNWkJzU/V62eT3BwsPz8/Fye29vrX9yRn7+/vzJlymSK23qfWLFaePaPP/7QsWPHkh03adIkU6xp06YKCwuz+9jeInPmzCpQoIDKly+vli1b6t1339Vvv/2mM2fOaNy4cSpWrJjLx3D1GrU6p6l53Uu2r/2bN2/q1q1bpnhqvqfTo4iICMtafFeboQEAAACphQZYAAAAAAA8gK5fv65Tp05ZbitUqFCK4/fv36+GDRumeIP5QePr66s+ffqY4t9++60SExNtjrO6Ed+iRQu7m5F5i8DAQOXJk0cNGjTQsGHDdPDgQY0cOdJyhafx48en2BjsbjExMe5M1W5WN8mtWBX+Xbx4Ub/99luy41avXm25gq4jhYRp8drY+7rANs5b6rJn1crkpMX5iY2N9fgxXZGaDbDcVRwFAAAAAAAAAABwPwoODlbhwoXVokULTZgwQf/884/atm1r2i8hIUFdu3bVnj177J7b2+9jdu/e3RRbvHixLl26lOy4GTNmmGJBQUHq0KGDXcf19poFWHuQzltaXRu3Zc+eXWvXrtWgQYMUGBho97gzZ85oypQpatSokUqUKKHp06crISHBoWOntuRqvrxpTthWqVIl/fXXX2rZsqVD4/bu3avRo0erfPnyql+/vtauXZtKGXpGaGio+vfvr3/++UevvPKKzf2WLl2qnTt32txuqyFNai6a5ukGWA9K/UtqPk9HGmA1btxYJUuWTBIzDENTpkyxOWbbtm3asWOHKW5Vv+sNpk6darO5rWEYunbtmk6fPq09e/Zo4cKFGjp0qJo1a6aMGTO6LQdX6+msrsPUXizR1rVv6/31oFy79rpx44ZlnAZYAAAA8FY0wAIAAAAA4AG0a9cuy1XzgoODVbx48WTHJiQk6Omnn9b58+ctt+fPn19du3bVV199pWXLlmnfvn26ePGioqKiFBsba3nztkGDBm55Xt6gV69ephvFJ0+e1NKlSy3337hxo2WxqbfeiHdEQECAhg0bpq+//tpy+0svvaQjR47YNZe3Fbfdq3r16ipbtqwpntJqmlbbCxUqpIYNG9p9bG9/bWCN8+bdOD8AAAAAAAAAAABIL3LmzKmffvpJXbp0MW2LiYlR586d7V6Mxdvvkz3zzDPy8/NLEouLi9MPP/xgc4xhGJZNfp588kllyZLFruN6++sCaw/SeUura+NuGTJk0Mcff6yDBw/qtddeU968eR0af/ToUfXo0UN169a1ubBjavL397eMR0dHu/1Y169ft/v4cI8CBQpo4cKFWr9+vbp27aqgoCCHxq9bt04NGjRQ7969dfPmzVTK0jMyZMigTz/9VCNHjrS5z5IlSxye12qRTGe4ax6kHz4+Purbt68pPnXqVMXHx1uOsVp0Nm/evGrVqpXb84NtXPfpE683AAAAvBV/OwYAAAAAwANo1apVlvGKFSvK1zf5ftkTJ07Url27TPFcuXLpf//7n5566imHC3LsLbRMD/LmzavWrVtr7ty5SeKTJk1SixYtTPtPnDjRFCtYsKCaN2+eajl6Wp8+fbRz5059+eWXSeIxMTHq06ePVqxYkeIctlayevXVVxUSEuKWPK3kyJHD7n27d++uN998M0ns119/1ZUrVyxzjI6O1rx580zxbt26pXgd3i1jxoymVUsrVqyop556yu45HFWxYsVUm/tBwXnzbrY+c0aOHOnQ9Xk/s1rpLioqyi1zX7161S3zAAAAAAAAAAAAPCh8fX01efJk7d+/X9u3b0+ybffu3Ro7dqyGDh2a4jxW98myZs2qwYMHuy3Xe2XPnt3uffPly6emTZuaFiGbPn26XnrpJcsxa9eu1fHjx03xHj162H1cW/cP27RpoypVqtg9j6MqV66canM/CB6k85ZW14aVsLAwffTRRxozZoy2bt2qFStWaPXq1dq4caNdzaQ2bdqkGjVqaMuWLSpYsKBLuTjC1vvFqlmVq6zmtHV8uFft2rVVu3Ztff3111q3bp1WrFihNWvWaMeOHTYb7dxtypQpOnbsmJYuXWpaJDO9GTp0qH755Rft2LHDtG3VqlUaMmSI5Thb39tRUVHKmjWry3lZ1Yw4UsPnqAe5/iU1n6cjv++k/7573nnnnSQN5s6ePavFixerdevWSfa9fv26ZYPHZ599lmaCqcjqnKb2tWLr2re6bj2RT3qTKVMmy3hkZKRnEwEAAADsxP/RAQAAAADwAFq4cKFlvGHDhimOtWrYlDNnTm3btk2FCxd2Kp8rV644Nc5bvfDCC6YGWL/++qv+/fffJKsbRkVFac6cOabxPXv2NK3KmN59+OGHWrJkialwbuXKlZo3b57atWuX7HhbN7K7du3qNQWfzzzzjN5+++0kK4jGxsZq1qxZ6t+/v2n/efPmWRa0OVpImCNHDlMjpcKFC+udd95xaB44x57iNyucN+9m6zOnf//+qdp0Lz1JzaImd80DAAAAAAAAAADwIMmYMaO+/fZbVa1a1XQfc8yYMerRo4cKFSqU7BxW98kMw/Cq+5g9evQwNfn566+/tGfPHlWoUMG0//Tp002xQoUKqVGjRnYf09b9w3r16mngwIF2zwPnuHJf3sr9et7S4tpIjp+fn2rWrKmaNWvq7bffVnx8vLZv3641a9bojz/+0OrVq20umnju3Dl17NhR69evd0su9rD1fkmN+9dWc6Zmgx+YBQcHq1mzZmrWrJmk/xYyXL9+vdauXavffvvN1EzybitXrtSIESP0/vvveyrdVOHj46P+/furV69epm1Hjx61Oc7WezUyMtItTes83QDLqv4lOjpaCQkJLtdwenv9izvyi4+P140bN0xxRxtghYaGqn379po5c2aS+KRJk0wNsGbPnq1r164lifn4+Kh3794OHROOsboO3dVIydEGWJkyZVKGDBl069atJPHUfE+nNWd+D2fPnl3+/v6msREREe5KCwAAAHArlqoHAAAAAOABs2/fPm3ZssVy2xNPPJHs2FOnTunvv/82xT/66COnm19J0qVLl5we640aNWqkUqVKJYnFx8fr22+/TRL77rvvTA1wfH1978sb8cHBwRo/frzltnubRlmx9f66fPmyy7m5S/78+dW0aVNT3Kpg0Fa8Tp06KlGihEPHtXptvOl18Ra+vtZ/FZqYmOjSvM428OO8ebf08JmT1kJDQ02xM2fOmL7XnHH48GGX5wAAAAAAAAAAAHgQVaxYUS+++KIpHhMTo5EjR6Y43uo+2bVr1xQXF+eW/NyhTZs2lk0VrO7Bx8TEmBYwk6Ru3brZvIdspVChQvLx8THFuX9oZvW6ptV9+QftvKXFteEIf39/Va9eXYMHD9ayZct06dIlff311ypdurTl/hs2bNCSJUtSJRcr+fPnt4z/888/bj1OVFSUzp8/b/fx4RnBwcF69NFHNWrUKP311186efKkhg0bZrP5yqeffqqLFy96OEv3a9CggWU8uXpOWwvHuaPW49q1azp37pwpnpoNsKzqXyT3XPveXv/ijvxszWHrdU3O888/b4otXbpUp06dShKzWsS3cePGKlasmMPHhP2srn13fUcePHjQMp7ctW+VT2q+p+2VGr+FJed+D/v5+Vn+vti3b5/L+QAAAACpgQZYAAAAAAA8YEaPHm0ZL1asmKpXr57s2L/++ssUy5gxo9q3b+90PidPnrwvC8v69u1rik2ZMkWGYdx5PGnSJNM+zZo1S3HF1fSqTZs2qlmzpil+8OBBzZgxI9mx5cqVs4wfOHDALbm5S48ePUyxbdu2mW4Ynzx5UqtWrTLt2717d4ePafXaHDp0KMl7DVKWLFks49evX3dpXmeL2Thv3i29fOakpYceesgUS0xM1J49e1yee+fOnS7PAQAAAAAAAAAA8KB6++23Le+PTp8+PcV/0J0e7pNlyJBBTz/9tCn+/fffmxbfmj9/vq5du2ba19F78xkyZLBsquBNr4u3sHrvpdV9+QftvKXFteGKLFmyqG/fvtq9e7eee+45y31++uknj+Vja8G6vXv3uvU4tppO3LvYItJWoUKFNHLkSB08eFDVqlUzbY+JifFog7bUYqvxWnR0tM0x5cuXt4xbLazqqJ07d1rWTlWoUMHluW2xqn+5nYurvL3+xR357dq1yzL+8MMPOzxX7dq1TeMSEhKSLDy7c+dObd261TS2T58+Dh8PjrG69q9evapjx465PLfV50dgYKBKlixpc4zVtesN121q/BaOjo7WjRs3nBpr9fm5detW6lQBAADglWiABQAAAADAA2Tz5s2aNWuW5bYXXnghxRX8rFafK1q0qIKDg53OacOGDU6P9WY9evRQxowZk8SOHj2qFStWSPrvBqLVTdv7/Ub8+++/bxkfNWqU4uPjbY4rWLCgChQoYIqvXr3aXam5hb2rac6cOdN0AzlTpkzq2LGjw8e0aip26dIltzShuZ9kzZrVMu7sSrGSdOzYsWRXPEwO5827Va5cWQEBAaa4t33mpKVKlSrJ39/fFF+/fr1L8164cMHrV8AEAAAAAAAAAADwZrly5dKAAQNM8fj4eL333nvJjrW6jyl5330yq8Wpzp07p99//z1J7N579dJ/zRWS+8f0tli9NmvXruUfj9/D6t68K/flJWnLli1Oj33QzltaXBuuCggI0JdffqnSpUubtnmyrqx48eLKnDmzKb5jxw63vl+sFqCUpIoVK7rtGOmRrbrFtL5Wc+XKpR9//NGyPuJ+qHuMi4uzjAcFBdkckz9/fhUuXNgUX7t2rcv52JqjVq1aLs9tS758+VSwYEFT3NX6l7i4OJe+vzxhy5YtydZs2sPqdQoMDHT6M+355583xb799lslJiZKkiZOnGjanjt3brVp08ap48F+tq7D1Lr2K1eurAwZMtgcY7Xgc2q9px1h9Vs4KirK1IzUEa58ltSoUcMUi4yMtPl7JLVYfc+n9Xc8AAAAvA8NsAAAAAAAeEBERkaqW7dud24E3y137tx2NV66fPmyKZYjRw6X8po5c6ZL471VSEiIOnToYIrfvgE/adIk07b8+fPriSeeSPXc0lKjRo1Ur149U/zo0aOWxXV3a9GihSm2YsUKRUVFuS0/V9laTfO7775LcgN7xowZpn2efPJJm02aktO8eXP5+PiY4vPnz3d4rvtZSEiIZXz//v1Oz+lKkTfnzbsFBQUpPDzcFF+wYIFLxSj3k4wZM1qu1vjjjz+6NO+PP/5o+VsFAAAAAAAAAAAA9nv11Vct7z/PmjVLhw4dsjmuRIkSlg1wvO0+Zo0aNVS2bFlT/O66g9OnT2vlypWmfawaBNnDqmbh0qVLbvlH//cTq3vzJ0+eVHR0tNNzunJv/kE7b2lxbbiDv7+/ZZ2V1WKNqcXX19eypunff/91uRnG3ebOnWsZt6pReJBYNR+TpBs3bng4E7OiRYtaNn7x5PsztZw+fdoybtUQ6m62mgueOXPGpXy+//57UywkJESlSpVyad6UWDXSmTt3rkv1K0uXLlVERIQraaW6y5cv648//nB6fEJCgubMmWOKP/zww8k2LkpO165dTZ8HJ0+e1NKlSxUTE2P5HunRo4flQodwr2rVqsnPz88Ut7Uos722bNliuViirca8t1ldt6n1nnaE1W/hhISEZP8fLCWu/BZu1qyZZfybb75xek5nWH3Pe8N3PAAAALwLDbAAAAAAAHgAREVFqVWrVjZvoI0aNcquxjvBwcGmmFVTLHsdOnRIv/32m9PjvZ3ValQLFizQ0aNH9cMPP5i29ezZ0/IG8f1m+PDhlvFRo0bZXFVOkjp37myKXb16VV988YXbcnMHq4LAs2fP3rmxvnHjRstr0dlCwgIFCqh+/fqm+P/+9z9dv37dqTnvRzly5FC+fPlM8c2bNzs955dffun0WM6b97P6zDly5IjLDZ7uJ1arJ27evFm7d+92ar7ExERNmTLFxawAAAAAAAAAAACQI0cOvfzyy6Z4QkKC3n333WTHWt0nW716tTZu3Oi2/Nyhe/fuptiCBQt09epVSf8tyHZv44pMmTKpY8eOTh2vZcuWypIliyn+/vvvOzXf/ap8+fKmmGEY2rp1q1PzXbp0yaVGBA/iefP0teEuVg13bt265dEcbC1caNVwxRmnT5+2bL6WL18+VapUyS3HSK+srlNJunLlioczseYN78/UsHTpUsu41Wf53Vq2bGmKJSYm3lkc1Blr1qzRvn37TPHHH3/ccpFBd7Kqfzl79qwWL17s9JxWC6R6I1fyXLRokWUjuLZt2zo9Z5YsWSx/i06aNElz5sy58112m4+Pj5577jmnjwf7Zc6c2bJZ44oVK/TPP/84Pe9XX31lGbf6nLlbo0aNLL87XHlPL1iwQBcuXHB6vCSVKVPGsg7c2TrVuLg4TZ482el8qlWrpmLFipnis2bNcrlpoSOszpW3fMcDAADAe9AACwAAAACA+9yePXtUp04drVu3znL7448/rt69e9s1V65cuUyxw4cPO3XDzzAM9enTR4ZhODw2vahVq5YqVqyYJBYbG6u2bduaGtz4+vqqV69enkwvzTRu3NhyxcTjx49r2rRpNseFh4froYceMsU//PBDl1ZHcrcaNWqoTJkypvjt53b3qpq3FSxYUI0bN3b6mFaFy1euXNHgwYOdnvN+VKVKFVPM2WZGCxcu1LZt21zKh/Pm3Z5++mnL770hQ4bo4sWLaZCR93n22WctC3YGDRrk1HxTp07Vzp07XU0LAAAAAAAAAAAAkgYOHGi5GNoPP/yggwcP2hzXt29fZciQwRTv37+/bty44dYcXfHMM8/I1zfpP4m5efOmZs+eLcn63nybNm3sWiDOSpYsWSwXtlq+fDmL6NylZMmSlq+xs6/RBx98oJs3bzqdz4N43jx9bbiLVROV/PnzezSHp59+2vLzb8qUKTpw4IDL8w8ePNjUfEyyPmcPmoCAAIWEhJjiyX1feVJavj9XrFihhIQEt8978+ZNff3115bbGjVqlOzY9u3bW9bUfPzxxzp16pTDuSQmJmrAgAGW21588UWH53PUU089pezZs5vib7zxhuLj4x2eb+XKlVq0aJEbMkt98+fP1/r16x0eFxcXpzfeeMMU9/f317PPPutSTi+88IIp9uuvv+rjjz82xcPDw1WiRAmXjgf7WV2PCQkJevXVV52ab9u2bZoxY4YpXrZs2RQ/h4KDg9WpUydT3Nn3dGxsrOV72lGZMmVS2bJlTXFnf3d+9dVXOnv2rNP5+Pj4WC7mHBMTY/e/HXCHvHnzmmLe8h0PAAAA7/Fg/+0YAAAAAAD3sQsXLmjQoEGqUqWK9uzZY7lP6dKlNX36dLtXyKpcubIplpiYqP/9738O5zdixAitWbPG4XHpjdWNQ6vmHk2bNlVYWJgHMvIOw4cPt4x/8MEHiouLszlu9OjRptjVq1fVsmVLtzakcXbl0dusVtP85ZdfdP78ecsb2a4Wsj355JOqVq2aKf711187dX3aEhERoSNHjrhtPk+rX7++KXbgwAH99NNPDs1z5swZt9z857x5t4wZM1p+Vp08eVJt27ZVdHS0W45jGIb++usvt8zlaQULFlTz5s1N8eXLl9sskrTl8OHDbikiAgAAAAAAAAAAwH9y5MhhuShPYmKi3n33XZvj8uXLp5deeskU3759u7p37+5UIwgrcXFx+vvvv50enz9/fjVt2tQUnz59ujZv3mz5D6qtGiE54q233lLmzJlN8WeffVabNm1yae67HT58WJGRkW6bz5N8fHxUt25dU3zGjBk6ceKEQ3MtXbpUn376qcs5PWjnzZPXxp49e9yyaF1iYqLmzZtnipcqVcrluR0REhJi2bglLi5OvXr1UkxMjNNz//TTT3eakN0tQ4YMlp+5D6J7F5qUpMWLFzs93+rVq3XlyhVXUpIknTt3Tn/++acp7qn35yuvvKIKFSpo9uzZlg3UnDVo0CAdPnzYFA8MDNRTTz2V7NgMGTJY1k7FxMSoe/fuio2NdSiXYcOGWf4mqFq1qmrUqOHQXM7IlCmTunbtaorv379f77zzjkNzXbx4UX369HFXah7Ru3dvRUREODTmzTfftPz8b9mypWWjG0c88sgjpvMeHx+vvXv3mvZNb691eteqVSsVKlTIFP/11181adIkh+aKjIxUjx49LD/X7G18Z+v8O/OeHjx4sP755x+HxthiVae6bNkybdmyxaF5du7c6ZZ6un79+ilPnjym+NKlSzV06FCX57eH1Xf85s2bdenSJY8cHwAAAOkDDbAAAAAAALiPnDt3Tt99953atWunQoUKady4cTaLCUqVKqWVK1cqNDTU7vnLlCljefPyww8/1LJly+yaIzExUW+++WayxZT3ky5dulgW0d3rQbsR37hxY8uCx+PHj2vq1Kk2xz3++ONq3769KX7o0CFVqlTJstjIXrGxsfrxxx9VtWpVtWzZ0ul5JNuraXbr1s2y2NHVIlsfHx998803CgwMNG175ZVX9Pzzz7u0IuqRI0f08ssvq1ChQlq+fLkrqaapLl26yM/PzxR/+eWX7S5eOHjwoOrWreuWhmucN+/3/PPPq1atWqb4n3/+qWrVqmnfvn1Ozx0TE6OJEyeqbNmyHlmtMrWMGTNGAQEBpnj//v0ti3etHDt2TM2aNdPly5fdnR4AAAAAAAAAAMADbeDAgcqaNaspPnv2bO3fv9/muGHDhqlYsWKm+E8//aTw8HCdPn3a6ZwiIiL08ccfq1ixYhozZozT80jW99o3btxo+Q+5CxYsqCZNmrh0vLx582rs2LGm+I0bNxQeHu7wIjH3+vPPP/Xkk0+qTJky+vfff12aKy1ZLRoWExOjZ555xu4GQr/88ovatm0rwzBczudBPG+euja2bdumsmXLql27dlq/fr1Tc0jSkCFDLBcUTKkJT2oYOnSo5efmhg0b1LRpU6fqRaZOnarOnTtbbnv55ZdVsGBBh+e8H1k1Ovrll1/07bffOjXftGnTVLhwYQ0YMMDpheOio6PVpUsXyxpMT74/Dxw4oE6dOqlChQoaN26czp8/7/RcUVFR6tGjh7788kvL7b169VLOnDlTnOe1115Tvnz5TPFVq1apc+fOunHjhl35fPTRR3r//fdNcV9fX3300Ud2zeEO77zzjnLkyGGKjx071u48Ll26pMcffzzdLVR44MABtWzZ0u6GQWPGjNG4ceNM8QwZMrj82+42q4Vn75UzZ061bdvWLceDffz8/Cx/U0nSCy+8oB9++MGuea5cuaKWLVtaNjUrV66cevXqZdc8VapUUadOnUxxR97ThmHovffec+uCpVa/hQ3DUPfu3e3+HbFx40Y1btzYpfrR24KDg202lR01apT69etn92f23Xbt2qWOHTvq5MmTKe5r9R0fFxennj176urVqw4fGwAAAPcnGmABAAAAAOCl1q5dq1GjRln+ee+99zR06FC99tpr6tatmxo1aqS8efMqf/78euaZZzR//vxkV9Fq0aKFNm3apPz58zucV79+/UyxuLg4tWzZUiNHjrR5IyohIUG///67qlSpkuQGaNasWVWyZEmH80gvsmTJYrk62N3y5s2rVq1aeSgj7zF8+HDL+Pvvv5/s+/ebb76xXEHvzJkzql+/vlq1aqXVq1fbtersxYsX9csvv6hbt27KnTu3nn76af3111/2PwkbChQoYLma5u+//26K1apVyy0rAlaqVEnjx4+33PbNN9+oWLFiGjt2rF3FlvHx8dq1a5dGjx6tqlWrqkSJEvr8888VHR3tcp5pKX/+/HriiSdM8X///Vf169fXnDlzbBbPXr58WcOGDVOVKlV0/PhxSVJQUJDCwsJcyonz5t38/Pw0a9Ys5c6d27Rt//79qlixop555hlt3brVrlU2z5w5ox9++EHt2rVTrly51LdvX8vVddOT8uXLa/DgwaZ4QkKCOnXqpB49ety5Zu4VHR2tL7/8UhUrVtTRo0eTzAkAAAAAAAAAAADX5ciRQy+99JIpnpiYmOzCZVmyZNHs2bMVFBRk2rZ+/XqVLl1a/fv3t3vBmGPHjmny5Mlq3ry58uTJo8GDB7vUROu2Nm3aKHv27Ka41QJBVgtZOaNfv37q0KGDKX7r1i298MILqlSpkmbNmqXr16+nOFd0dLTWrl2rQYMGKSwsTPXq1dMvv/xi171Hb9a6dWvlyZPHFF+3bp3Cw8OTrcs4dOiQunTporZt2975h/jlypVzOacH7bx58tpITEzU/PnzVbduXRUtWlRvvvmmNm7caFfDhk2bNqlZs2b68MMPTdvy5s1ruUheasufP7/NJhEbNmxQiRIlNHLkyBQ/w+Li4rR8+XLVq1dPPXv2tKxjKlu2rEaOHOmOtO8LVjV2hmGoV69eKlasmJ555hkNGTJE7733nqme8osvvrCcMzo6Wp999plKlCih6tWr65NPPtG+fftSvF7j4uI0b948Va1aVatWrTJtb9GihYoXL+7cE3XB/v37NWjQIBUsWFAtW7bU1KlTderUKbvGHj9+XGPGjFHJkiU1ffp0y33y5cunUaNG2TVfSEiIJk+ebLlt3rx5qlixopYsWaKEhATLfXbv3q1mzZrp9ddft9w+YMAAhYeH25WLO+TJk8dmY5/XX39djz/+uM3fPbGxsfrhhx9UoUIFbd269U7c2+tf7v5+Xb9+vcqXL6+ffvpJcXFxlvvv3btXzZs315AhQyy3v/32226pg5Skjh07WjYku1v37t0tF55E6urUqZPl93NCQoI6d+6srl272mwCFxsbq9mzZ6t8+fKWi90GBARo5syZypgxo935jB8/3vK9sn79elWoUCHZ9/SuXbv02GOPadiwYXdiefLkcWhhaSvVq1dXxYoVTfEDBw6obt26+uOPP2yOPXPmjPr3768GDRrcWUwyT548CgkJcSmnp59+2rIxlyR99dVXKlWqlKZMmWK5wO/dLl68qEmTJqlhw4Z65JFHNGfOHLt+A5cuXVpVq1Y1xRctWqT8+fPr8ccf18CBAzVixAjLfzdx4sQJu54nAAAA0jf/tE4AAAAAAABYW7VqlWXxhCty5syp0aNHq1evXvLx8XFqjpdeekmff/65zp49myQeFxenESNG6KOPPlKdOnVUrlw5ZcuWTZGRkTpz5oxWr16tS5cumeabMGGCJk+erMOHDzuVT3rw/PPPJ7ta5LPPPit//wfvr2maNGmiunXrmm5knzx5Ut9++63NVbxy5MihZcuWKTw83HRT0zAMLVq0SIsWLVJwcLBq1qypsLAwhYSEKCgoSFFRUYqMjNT58+e1c+dOnTlzJtWeX48ePbRs2bIU97N1U9kZ/fr10/nz5y0Llc+dO6c333xTb775pkqWLKkqVaooZ86cCgkJUVxcnCIjIxUZGalDhw5pz549unXrltvy8ibjxo3T8uXLTavKnjt3Th07dtTAgQPVqFEj5c+fX/7+/rpw4YL27t2rzZs3mwqyJkyYoGnTptls7mMvzpt3CwsL05IlS9S0aVPTqnDx8fH67rvv9N133yl79uyqVauWChYsqJCQEGXIkEFXr15VZGSkzp49q7///tuplWDTg6FDh+q3337Tjh07TNumT5+uGTNmqGbNmipfvrzy5s2rqKgoHT9+XCtWrDA1aKtcubJeeOEFPffcc55KHwAAAAAAAAAA4L42cOBAff7554qKikoSnzNnjoYOHWqzuVC1atX0008/qV27dqZGNjExMZowYYImTJig3Llzq1atWsqXL59CQkLk5+d35z7myZMntXPnzhT/IbWzMmbMqI4dO+qbb75JcV933pufMWOGIiMjLRfB+vvvv9WlSxf5+/urUqVKKleunEJCQpQ1a1bFxMQoMjJSly9f1t69e3X48GGvaprkLhkyZNCnn36qTp06mbZt3bpVVatW1UMPPaRatWrp/7F33/FV1/f+wN8ng72XDGUpS1AQEFSmA+dt9bqq1lacddTaWmdvb9Xa9mrVWrW1aq2i1rZu6t4yHAgICqjI3sreYQRyfn/489RDAiSQnBPg+Xw88mg++3VIcqDNp+9vkyZNYsOGDbFo0aIYNWpUsQcI1axZM5544ok44IADdjrXnvR1y9bPxqxZs+LWW2+NW2+9NfLy8qJLly7RsWPHaNCgQTRo0CASiUSsXr06Zs6cGWPHjt3mvZ377rsv6tSpU27ZyuLcc8+NSZMmxR/+8IdiY6tWrYobb7wxbrzxxmjfvn107949dY9j/fr1sXTp0pgzZ068//7723xgWZMmTeKFF16I6tWrV+RL2aV07tw5TjjhhHjppZeKjc2cOTNmzpy51bWtWrWKH//4x9vcf8yYMTFmzJi46qqrolatWnHQQQel7pXVq1cvdQ9nypQpMXr06GJ/b36jdu3a27wLmAmbNm2KF198MV588cWI+Lo4ygEHHBCtWrWKxo0bR/Xq1WP9+vWxevXqmDNnTkyYMGG795tq1KgRzz77bJmKrBx//PFxxRVXxF133VVsbOrUqXHCCSdE06ZNY8CAAdGiRYuoVq1aLFiwID766KOYOHHiVvft2bNn/Pa3vy11jvJywQUXxNChQ+Pll18uNvbyyy/Hyy+/HN26dYuDDjoomjdvHgUFBTF37tx4++23Y9myZWnz99lnn/jtb38bJ510UobSl93vfve7uPzyy1NF1L788ss4/fTTo2HDhnHEEUfE3nvvHdWrV48vv/wyxo0bF5988slW9+rdu3dce+215ZatevXqcc4552y1IGFExEUXXVRu51E2f/nLX+Kjjz5Ke+DhNx5//PF4/PHH4+CDD44DDjggmjVrts2flW/7v//7v+jevXuZsuy1115x7733lvjvzgULFsTpp58ejRo1isMPPzz22Wef7b4P3XvvvXHllVemik/tqHvvvTf69etX7N+MU6ZMiUGDBsW+++4bAwYMiKZNm0ZRUVEsWrQoxo0bFx9//HHa/Nzc3Pj73/8eF1xwwTb/7Erj/vvvj3nz5sVbb71VbGzevHlxwQUXxMUXXxyHHHJI7LffftGkSZOoWrVqLF++PBYuXLjVr3lpXXvttSUWTysoKEi9x25N3759o1WrVjt8NgAAu4Y97/9ZCQAAAHugZs2axU9+8pO45JJLom7duju1V82aNeO5556LAQMGlPikvrVr18brr79e4mWxLd1www1x9tlnb/VJYLuLrl27xiGHHBKjRo0qNpZIJOKCCy7IQqrK4YYbbohBgwYV6//d734X55133laf0NW6det4//3348QTT4yxY8eWOGft2rUl/qI2U755mua2LvJWq1YtzjjjjHI996abborGjRvHlVdeudUnV02dOnW3Ljq3LW3bto3bb789Lr300hLH58+fH4899th297npppti8ODBMWTIkHLJ5etWufXo0SPefffdOPHEE2PatGklzlmxYkW88sorGU5WOVSrVi1efPHFGDBgQIl/PslkMj744IP44IMPtrlPs2bNYujQoVl97wYAAAAAANjdNGjQIC6//PJihSSKioripptuiieeeGKra48//vh4/fXX49RTT41FixaVOGfRokXx73//u1wzl8XgwYO3W+TnkEMOiQ4dOpTbmVWrVo0XXnghLrroonjkkUdKnLNp06ZUsZU90RlnnBFDhw7d6vfXxIkTt1n8JOLrP+fnnnsuunTpUi6Z9rSvWzZ+Nr5t06ZN8fHHHxcr5LA9iUQi7rrrrjjxxBMrJFdp3XHHHVG1atX4v//7v63OmTJlSkyZMqXMe7dp0yZeffXV2HfffXcm4m7poYceil69ehV7KGJ5W7NmTYwcOTJGjhxZpnV169aNF198MfbZZ58KSrZjFi5cGAsXLtzh9XvttVc899xzccghh5R57Z133hkFBQXx17/+tcTxr776apv/1thSz54947XXXotq1aqVOcvOSiQS8a9//SsGDRoUH374YYlzSvO+Vrt27Xj++ecrrABoealbt248//zz0b9//1i9enWqf+nSpfHUU0+Vep9OnTrF888/v9W7njvq4osv3moBrAEDBkT79u3L9TxKr2HDhvHWW2/FUUcdFdOnTy9xTln/PXXjjTfGz3/+8x3Kc8YZZ8ScOXO2WoRtyZIlpfqe/uUvfxknn3xyXHnllTuU49sOO+ywuPrqq+PWW28tcXz69Olb/bP7RiKRiAcffDCOOuqonc4T8Z9/C5911lkxdOjQEuds2rQp3n333WIPNi4Pp556alxyySXxl7/8pdz3BgBg95CT7QAAAABAxWjZsmWcf/758dprr8WcOXPiuuuu2+niV9/o1atX/Pvf/y7T076+LT8/P+6+++648cYbyyXPruCSSy4psf/II4+Mtm3bZjhN5XHUUUdF3759i/XPnTt3u4XRmjdvHu+//3788pe/LNcLL1WqVImjjz56p/f55mma23LSSSeV28/lt/34xz+ODz74oMxPw9qetm3bRqdOncp1z2y45JJL4p577olEIlHmtXl5efGnP/0pfvWrX5V7Ll+3ym3//feP8ePHx8UXXxy5ubnltm+NGjXi8MMPL7f9sqV58+YxcuTIOOyww3ZofYcOHeK9996rdJdEAQAAAAAAdgdXXnll1KlTp1j/U089FZMmTdrm2n79+sWECRPitNNOK9dM9evXjz59+uz0Poccckh07Nhxm3MGDx680+dsqUqVKjFkyJD4xz/+EU2bNi3XvQ899NAdvpNTmfz973+PM888c4fWNm7cON58880SH6q2M/akr1smfjZ25N7FtjRt2jSeeuqpuPzyy8t13x31u9/9Ll588cVo2bJlueyXSCRi8ODBMX78eIVbtqJJkyYxbty4OOuss3b6bkZ5f3927949RowYUeJdt4p03nnnRefOnStk75ycnLjkkkti8uTJceihh+7QHolEIh544IG4++67o0aNGjuV5/zzz48RI0Zk9b20du3a8eabb+5wEb6mTZvGO++8E926dSvfYBWkW7du8c4770SzZs12aP3hhx8eI0aMiCZNmpRzsq/vEm3tTtWFF15Y7udRNq1bt47Ro0fvdMHKBg0axL/+9a+44YYbdmqfa665Jv76179G1apVy7w2kUjEzTffHDfffPNOZdjSLbfcEldfffUOra1Zs2Y8/fTT5f7fY6pXrx7PPvts/OEPf4iaNWuWy545OaUvU3DvvffGX/7yl2jcuHG5nA0AwO5FASwAAADYBeXn50etWrWicePG0alTpxgwYECcddZZ8etf/zqeeuqpmD17dsyePTsefPDBOProoyMvL6/cMxx99NHx0Ucfxcknn1zqyyKJRCKOOeaYGDduXKW5qJQpW3ti30UXXZThJJXP1n5x/X//93+xYcOGba7Nz8+Pm2++Ob744ov46U9/GvXq1duhDFWrVo0jjjgi7rnnnliwYEE8+uijO7TPlrb3y+eKuGT7jR49esTYsWPjiSee2OGCNBFfX1T40Y9+FCNGjIjp06fHgAEDyjFl9vz4xz+O4cOHR8+ePUu9ZsCAATF27Ni47LLLKiyXr1vlVqtWrfjLX/4SEyZMiPPOO2+HL+7VqlUrTjjhhHjooYdi4cKF23xi7K6kadOmMXz48Ljjjjuifv36pVpTo0aNuOqqq2LcuHHRpk2bCk4IAAAAAACwZ2rQoEGJ9zSSyWTcdNNN212/1157xZNPPhkffPBBnHbaaZGfn7/DOU499dR48skn48svvyy3uyPnnHPOVsdK8/CqnXHmmWfG1KlT4/bbb9/hB6AlEok46KCD4pe//GVMmTIl3n///QopJJFpeXl58fjjj8dDDz0UzZs3L/WawYMHx6efflqhRWb2lK9bRf9s/OAHP4h33303rrvuujjwwAN3uOBQs2bN4vrrr48vvvgiTjnllJ3KVN5OOOGE+OKLL+Luu+/e4YePVatWLb7//e/HRx99FA8//HCFPCxvd9KgQYN4/PHHY+7cuXHXXXfFD37wg+jatWs0a9YsatWqVervsz//+c/x73//Oy688MKdehjXgQceGPfff3+MGTMmDjzwwB3eZ0ddeeWVMWnSpJgyZUr8/ve/j2OOOabEopZl0axZs/jZz34Wn3zySdx77707fOfu2y6//PKYNGlSnHvuuVGlSpUyrT388MNj+PDh8eCDD0b16tV3OsvOqlWrVgwdOjQefvjhaNGiRanW5Ofnx/nnnx+TJk2KHj16VHDC8tWjR4+YNGlSXHDBBaX+N17jxo3jnnvuiTfffDMaNWpUYdlKunf7zb8nyb4GDRrE0KFD4/nnn4+DDz64TGtr1qwZV1xxRXz++efl9m/1Cy64ID766KMyFVDt3r17DB8+PH75y1+WS4Yt/f73v4+hQ4eWuvBlIpGIE088MSZOnBgnn3xyhWRKJBLxs5/9LCZPnhw/+clPonbt2mXeo169enHRRRfF+PHjy1wo9OKLL4758+fHs88+G1dccUUMGDAgWrZsGfXr16+Q/78DAAC7jkQymUxmOwQAAACwa5s8eXI8++yzMWzYsJg6dWosWbIk1q1bFzVr1oymTZtGx44do2/fvnHiiSeW+Eu8OXPmREFBQVpfo0aNKvQX45l2wQUXxN/+9re0viZNmsS8efN2+GIoxRUWFsawYcNi+PDhMW7cuJgxY0Z89dVXsXbt2oj4+gltderUiaZNm0aHDh2iY8eO0bNnz+jbt2+luDxTkebMmROvvPJKfPjhh/Hpp5/G3LlzY8WKFbFhw4aoXr161K5dO+rVqxdt27aNjh07RufOnaN///6x3377ZTt6hUomkzFixIh46aWXYsSIEfHll1/G4sWLY/PmzVG/fv3o0KFD9OnTJ0455ZSsXE7ydavc1q1bF2+88UaMHDkyPv7445g5c2YsXrw4CgoKIicnJ/We07x58+jYsWN06tQpevXqFYcccshu/95fUFAQTz31VLz88svx8ccfx7x582LDhg1Ro0aNaNasWRxwwAExaNCgOPXUU6Nhw4bZjgsAAAAAAEAZrFy5Ml599dV47733YsKECTF79uzUXZH8/PzU78n22Wef1O/JDj300OjRo0fk5Ozez3EfN25cvPnmmzFmzJiYOnVqzJs3L9asWRObNm2KmjVrRu3ataNhw4bRvn376NixY3Tt2jUGDhy4W92RKUlBQUG88sor8corr8TYsWNj4cKFsXTp0sjPz4/GjRtH586d44gjjojTTz99pwrV7Chft/KxYsWK+OCDD2LMmDExZcqUmDZtWsyfPz9Wr14da9asiSpVqkSdOnWiXr160bFjx+jWrVv07ds3Dj/88MjNzc12/FL57LPP4vXXX4+PPvooJk+eHPPnz4+VK1fG+vXrIzc3N2rUqBF77bVXtGrVKrp27Rp9+vSJQYMGRc2aNbMdfY83d+7ceP/992PcuHExbdq0mD59eixcuDDWrFkTBQUFUaNGjahbt240bNgwDjjggDjooINi0KBBWSl6tT1FRUUxYcKE1M/a1KlTY8aMGbFs2bJYvXp1rF27NqpWrZr6+7hhw4bRpUuX6NatWxx00EHRu3fvCv2ZW758eQwdOjSGDx8eEydOjDlz5sSqVati8+bNUbNmzWjRokV07Ngx+vTpEyeddNJWHy5aGRQWFsa///3veOGFF+Kjjz6KOXPmxNq1a6NGjRrRpEmT6Ny5cxx++OFx2mmnxd57753tuDtt/vz58fTTT8fbb78dn376aSxcuDD187HPPvtE9+7d4/jjj4+TTz45qlWrVqFZCgoKolmzZrFq1aq0/p/+9Kdx5513VujZO+rjjz+OoUOHFus/6aSTolu3bhnPk2kTJ06MF154Id5///2YMmVKfPXVV1FQUBB5eXlRt27daN26dXTt2jWOOOKI+M53vlOhfzd+8skn8cQTT8SIESNiypQpsWLFisjJyYm6detG+/bto1evXnHSSSdFv379KizDt23atClef/31eOWVV+L999+PhQsXxpIlSyKRSETDhg2jU6dO0b9//zj99NOjQ4cOGcn0jXXr1sWrr74aw4YNi/Hjx8fMmTNj2bJlsX79+tQd1b322is6duwYXbp0iSOOOKLC/x4BAGDPpAAWAAAAQAVbs2ZNNGvWLNasWZPWf80118Stt96apVQAAAAAAAAAAAAAULk88sgjMXjw4GL9n332WXTq1CnzgQAAAKhQu/ejMwAAAAAqgccff7xY8atEIhEXXnhhlhIBAAAAAAAAAAAAQOVz3333Fevr27ev4lcAAAC7KQWwAAAAACpQMpmMe++9t1j/oEGDYr/99stCIgAAAAAAAAAAAACofMaNGxejRo0q1n/ppZdmIQ0AAACZoAAWAAAAQAV6/vnnY8KECcX6f/zjH2chDQAAAAAAAAAAAABUTjfffHOxvqZNm8app56ahTQAAABkggJYAAAAABVk3bp18fOf/7xYf7t27eKEE07IQiIAAAAAAAAAAAAAqHxef/31GDp0aLH+yy67LPLz8zMfCAAAgIxQAAsAAACgAixfvjxOPfXUmD59erGxG2+8MXJy/M8yAAAAAAAAAAAAAPD+++/HWWedVay/YcOGccUVV2QhEQAAAJmSl+0AAAAAALuylStXxj333JNqr1+/PqZOnRqvvPJKrF69utj8rl27xhlnnJHJiAAAAAAAAAAAAACQdSNGjIgRI0ZEREQymYwVK1bE6NGj49133y1x/i9+8YuoXbt2JiMCAACQYYlkMpnMdggAAACAXdWsWbOiTZs2pZqbl5cXH374YXTv3r2CUwEAAAAAAAAAAABA5XLjjTfGTTfdVKq5Bx98cHzwwQeRm5tbwakAAADIppxsBwAAAADYU9x9992KXwEAAAAAAAAAAADANjRr1iz+9a9/KX4FAACwB1AACwAAAKCC1a1bNx555JG45JJLsh0FAAAAAAAAAAAAACqtXr16xfDhw6Nt27bZjgIAAEAG5GU7AAAAAMDupmrVqtGgQYPo0qVLHHPMMTF48OBo2LBhtmMBAAAAAAAAAAAAQKVSq1ataNasWfTq1Su+973vxQknnBA5OTnZjgUAAECGJJLJZDLbIQAAAAAAAAAAAAAAAAAAAAAAANhzKIEMAAAAAAAAAAAAAAAAAAAAAABARimABQAAAAAAAAAAAAAAAAAAAAAAQEYpgAUAAAAAAAAAAAAAAAAAAAAAAEBGKYAFAAAAAAAAAAAAAAAAAAAAAABARimABQAAAAAAAAAAAAAAAAAAAAAAQEYpgAUAAAAAAAAAAAAAAAAAAAAAAEBGKYAFAAAAAAAAAAAAAAAAAAAAAABARimABQAAAAAAAAAAAAAAAAAAAAAAQEYpgAUAAAAAAAAAAAAAAAAAAAAAAEBGKYAFAAAAAAAAAAAAAAAAAAAAAABARuVlOwDsDlasWBHDhw9PtffZZ5+oWrVqFhMBAAAAAAAAAOzZNmzYEHPnzk21BwwYEPXq1cteINiNuC8FAAAAAAAAAFB57Mp3pRTAgnIwfPjwOOmkk7IdAwAAAAAAAACArRg6dGiceOKJ2Y4BuwX3pQAAAAAAAAAAKq9d6a5UTrYDAAAAAAAAAAAAAAAAAAAAAAAAsGdRAAsAAAAAAAAAAAAAAAAAAAAAAICMyst2ANgd7LPPPmntoUOHxn777ZelNAAAAAAAAAAATJs2LU466aRUe8v7HcCOc18KAAAAAAAAAKDy2JXvSimABeWgatWqae399tsvOnfunKU0AAAAAAAAAABsacv7HcCOc18KAAAAAAAAAKDy2pXuSuVkOwAAAAAAAAAAAAAAAAAAAAAAAAB7FgWwAAAAAAAAAAAAAAAAAAAAAAAAyCgFsAAAAAAAAAAAAAAAAAAAAAAAAMgoBbAAAAAAAAAAAAAAAAAAAAAAAADIKAWwAAAAAAAAAAAAAAAAAAAAAAAAyCgFsAAAAAAAAAAAAAAAAAAAAAAAAMgoBbAAAAAAAAAAAAAAAAAAAAAAAADIKAWwAAAAAAAAAAAAAAAAAAAAAAAAyCgFsAAAAAAAAAAAAAAAAAAAAAAAAMgoBbAAAAAAAAAAAAAAAAAAAAAAAADIKAWwAAAAAAAAAAAAAAAAAAAAAAAAyCgFsAAAAAAAAAAAAAAAAAAAAAAAAMgoBbAAAAAAAAAAAAAAAAAAAAAAAADIKAWwAAAAAAAAAAAAAAAAAAAAAAAAyKi8bAcAAAAAAAAAAAAA2JZkMhlFRUWRTCazHQUgqxKJROTk5EQikch2FAAAAAAAAICdpgAWAAAAAAAAAAAAUKls3rw51q5dG6tXr461a9fG5s2bsx0JoFKpUqVK1K5dO2rXrh3VqlVTEAsAAAAAAADYJSmABQAAAAAAAAAAAFQKmzdvji+//DJWr16d7SgAldrGjRtj6dKlsXTp0sjPz4/mzZtHjRo1sh0LAAAAAAAAoExysh0AAAAAAAAAAAAAoLCwMGbPnq34FUAZFRYWxpw5c6KgoCDbUQAAAAAAAADKRAEsAAAAAAAAAAAAIKs2bNgQs2bNig0bNmQ7CsAuKZlMKoIFAAAAAAAA7HLysh0AAAAAAAAAAAAA2LMtXLgwNm3alNaXSCSiRo0aUbt27ahevXrk5uZGIpHIUkKAyiGZTEZhYWGsWbMmVq1aFYWFhWljCxYsiH333df7JQAAAAAAALBLUAALAAAAAAAAAAAAyJrCwsJYu3ZtWl+VKlVin332iSpVqmQpFUDllZ+fHzVq1IjGjRvH/PnzY/Xq1amxwsLC2LBhQ1SrVi2LCQEAAAAAAABKJyfbAQAAAAAAAAAAAIA918qVK9PaOTk50apVK8WvALYjkUhEixYtIj8/P61/1apVWUoEAAAAAAAAUDYKYAEAAAAAAAAAAABZs2UBrDp16kReXl6W0gDsWhKJRNSpUyetb/Xq1VlKAwAAAAAAAFA2CmABAAAAAAAAAAAAWZFMJmPjxo1pfVsWcgFg22rVqpXW3rhxYySTySylAQAAAAAAACg9BbAAAAAAAAAAAACArCgqKirWl5+fn4UkALuuvLy8Yn0lvb8CAAAAAAAAVDYKYAEAAAAAAAAAAABZkUwmi/Xl5LjaCFAWJb1vlvT+CgAAAAAAAFDZuCUCAAAAAAAAAAAAAAAAAAAAAABARimABQAAAAAAAAAAAAAAAAAAAAAAQEYpgAUAAAAAAAAAAAAAAAAAAAAAAEBGKYAFAAAAAAAAAAAAAAAAAAAAAABARimABQAAAAAAAAAAAAAAAAAAAAAAQEYpgAUAAAAAAAAAAAAAAAAAAAAAAEBGKYAFAAAAAAAAAAAAAAAAAAAAAABARimABQAAAAAAAAAAAAAAAAAAAAAAQEYpgAUAAAAAAAAAAAAAO2DWrFmRSCRSH4MHD852JAAAAAAAAADYZeRlOwAAAAAAAAAAAAAAAAAAAAAAAFC5bdxUFJO/WhWT5q+MSfNXxdK1G2JDYVHk5SaiZtW86Ni0dnRpUTcO3Lte1K2en+247AIUwAIAAAAAAAAAAADYg7Vu3Tpmz569zTk5OTlRt27dqF+/fnTq1CkOPvjgOO2002L//ffPUEoAAAAAAAAAsuXdqUvisVGz453Ji2Lj5qKtzvv3tz7v3LxOfL93yzjpoBZRo4oyR5QsJ9sBAAAAAAAAAAAAAKjcioqKYvny5TFjxox46aWX4sYbb4zOnTvHUUcdFVOnTs12PDLoxhtvjEQikfoYNmxYtiMBAAAAAAAAFeTJsXPjyDuGxdl/+zBe+/SrbRa/2tKnC1bFL56bFL1/+1bc/OJnsWpdYQUmZVelABYAAAAAAAAAAAAAO+Stt96Kbt26xSuvvJLt7WuY7gABAABJREFUKAAAAAAAAACUk3nLC+L7D46Ka56eENMXr92pvVZv2BR/e3dmHH3niHhn8qJySsjuIi/bAQDKUzKZjDUbNkXh5mTk5yaiVtW8SCQS2Y4FAAAAAAAAAACwy7j99tuja9euaX2bN2+OpUuXxrhx4+Jf//pXzJ8/PzVWUFAQp512Wrz//vtx4IEHZjouAAAAAAAAAOXomY/mxQ3PfxprNmwq132/WrU+zh0yJk7rsXf85qQuUTU/t1z3Z9ekABawy5v81ap4/uMF8cm8FTFp/qpYua4wNVa3en50aVEnuu5dL07s1iI6NK2dxaQAAAAAAAAAAACVX48ePWLgwIEljp111lnxu9/9Lq655pq46667Uv1r166Nn//85/HGG29kKCUAAAAAAAAA5e0vw6bFra9+UaFnPPXRvJi3fF389ZyeUauq8kd7Ot8BwC7r7ckL475hM2L0rGVbnbNyXWG8N21pvDdtadw7bHr0at0gLhm4bxzesUkGkwIAAAAAAAAAAOw+qlSpEn/84x9jyZIl8fjjj6f633zzzZg0aVJ06dIli+kAAAAAAAAA2BH3DZ9e4cWvvvHBjKVxwSNj4pFze0XV/NyMnEnllJPtAABltXztxvjJP8fHeUPGbrP4VUlGz1oW5w4ZE1f8a3wsX7uxghICAAAAAAAAAADs/m655ZbIyUm/ivr6669nKQ0AAAAAAAAAO+rVSV/FLa9MzuiZo2Ysi2uemZDRM6l88rIdAKAsPv9yVQx+eHQsXLVhp/b598cLYtSMpfHIeb2iY9M65ZQOAAAAAAAAAABgz7H33ntH165dY/z48am+iRMnlmmPpUuXxqhRo2LBggWxePHiqFWrVhx77LHRvn37ba774osvYvz48bFo0aJYu3ZtNGrUKJo3bx59+/aNunXr7tDr+baioqJ4//33Y8qUKfHVV19FtWrVom3bttGvX79o2LDhTu+fLclkMiZMmBCTJ0+OxYsXx8qVK6NGjRrRtGnT6NSpUxxwwAGRm+vpygAAAAAAALAnWbpmQ/zPc2X7XW95+ffHC+K4Ls3i2C5Ns3I+2acAFrDL+PzLVXHGA6Ni5brCctlv4aoN8b37R8UTPzpEESwAAAAAAAAAAIAd0LZt27QCWEuWLEkbb926dcyePTsiIlq1ahWzZs2KiIgPPvgg/u///i9effXVKCxMvxN25513llgAa8OGDXHPPffEfffdF9OnTy8xT15eXgwYMCBuvPHG6Nu3b5lfz+bNm+POO++MO++8MxYsWFBsPDc3N04++eT4/e9/H61bty7T3rNmzYo2bdqk2uecc04MGTKk1OsHDhwYw4cPT7WTyWSp186ZMyd+97vfxXPPPReLFi3a6rz69evH8ccfHz/60Y+iX79+qf5hw4bF4YcfXuKarfXvSE4AAAAAAAAg8371709j6dqNWTv/l0MnRq82DaJBzSpZy0D25GQ7AEBpLF+7MQY/PLrcil99Y+W6wjjnodGxPIt/EQMAAAAAAAAAAOyq8vPz09qbNm3a7prf//730adPn3jhhReKFb/amk8//TT233//uPrqq7da/Oqb8996663o169fnHfeeaXePyJi2bJlcdhhh8XVV19dYvGriK8LZD311FPRtWvXeOedd0q9d7Ykk8m46aabol27dnH//fdvs/hVRMTy5cvj8ccfj/79+2coIQAAAAAAAJBNw79YFC9N/DKrGZas2Ri3vDI5qxnIHgWwgF3CDc9/GgtXbaiQvReu2hA3vvBphewNAAAAAAAAAACwO9uyUFTDhg23Of/++++Pa6+9NpLJZEREVKlSJdq3bx8HH3xwtGjRIhKJRLE1Y8eOjX79+sWMGTPS+vPz86Ndu3bRs2fPaN68ebF1Dz/8cHz3u9+NjRu3/4DE1atXx9FHHx2jR49O608kEtG6devo2bNntG7dOtW/atWqOPHEE+Pzzz/f7t7ZUlhYGKeffnrceOONxf4MqlSpEvvuu2/06tUrOnfuHPXq1ctOSAAAAAAAACCrHnpvVrYjRETEvz+eH8vXbv93u+x+8rIdAGB73p68MJ7/pOSn6ZWXf3+8IE7s1jyO6LhXhZ4DAAAAAAAAAACwuygoKIgxY8ak9bVp02ar85ctWxY/+9nPIiKiWbNm8Zvf/CZOO+20qF27dmrOzJkzY+3atan26tWr47TTTovly5en+mrUqBE33nhjnH/++dGgQYNU/4QJE+KGG26IoUOHpvpeffXV+NWvfhW33HLLNl/L1VdfHR999FGqnUgk4rLLLourr746WrZsmZbv1ltvjfvvvz9Wr14dl1566Tb3zaZrrrkmnn766bS+bt26xf/+7//GMcccEzVr1kwbmzZtWrz00kvx+OOPF/u6du3aNd54442IiHj00UfjscceS43dfvvt0bVr1wp6FQAAAAAAAEBFmb10bYyYujjbMSIiYsOmonhi7Ny4eMC+2Y5ChimABVR69w2bsf1J5XHO8BkKYAEAAAAAAAAAAJTSPffcE+vWrUvrO+KII7Y6f/Xq1RER0alTp3j77bejadOmxeZsWUDrF7/4RcyaNSvVrlu3brzzzjtx0EEHFVt74IEHxnPPPRe//OUv47e//W2q/7bbbovTTz89unfvXmKuUaNGxQMPPJBqJxKJePTRR+Pss88uMd99990XPXr0iIsuuigtW2Xy2muvxR//+Me0vp/85Cdx5513Rk5OTolr9ttvv7jiiiviiiuuiLfeeittrH79+nHUUUdFRMS7776bNtajR48YOHBguWUHAAAAAAAAMuPxD+dEMpntFP/x+IezFcDaA5X8G2yASmLyV6ti9KxlGTlr9Mxl8cVXqzNyFgAAAAAAAAAAwK7shRdeiP/93/9N62vTpk307dt3m+vy8/PjySefLLH41ZZWrFgRDz30UFrf3/72txKLX33bb37zmzjuuONS7aKiorjzzju3Ov+uu+6K5LdudV922WUlFr/6tgsvvDAuuOCCbc7JpptuuimtfdZZZ8Vdd9211eJXWzryyCMrIhYAAAAAAABQiQz/YnG2I6SZu2xdTF+8JtsxyDAFsIBK7fmPF2T2vE/mZ/Q8AAAAAAAAAACAXcHmzZtjyZIl8dprr8VZZ50VJ554YhQWFqbN+c1vfhP5+fnb3Od73/tedOnSpVRn/uMf/4iCgoJUu0+fPnHKKaeUau0f/vCHtPaTTz4ZK1euLDZvxYoV8dxzz6Xa1apVK1Y8amt+97vfRZUqVUo1N5NGjx4dH3zwQapdu3bt+POf/5zFRAAAAAAAAEBls27j5phWCYtNTZpf/Pe67N4UwAIqtU/mrcjseXP9RQgAAAAAAAAAAOzZDj/88EgkEmkfeXl50bhx4zj22GPjn//8ZySTybQ1V155ZZx11lnb3fvMM88sdY7hw4entc8777xSr+3YsWMcdthhqfbGjRtj1KhRxeZ98MEHsWHDhlT7hBNOiAYNGpTqjMaNG8fxxx9f6kyZ8vrrr6e1f/jDH0a9evWyEwYAAAAAAAColD7/clVsLkpuf2KGTVQAa4+jABZQaSWTyZg0f1VGz5w4f2Wxi1kAAAAAAAAAAACUrGbNmnHvvffGHXfcUar5vXr1KvXeH374YVr7iCOOKFO2I488Mq1dUgGs0aNHp7UHDhxYpjPKOj8TRo4cmdaujEW6AAAAAAAAgOz6/MvM1vMorc8WVM5cVJy8bAcA2Jo1GzbFynWFGT1z5brCWLtxc9Sq6u0RAAAAAAAAAACgJNWqVYuDDjooTj755Bg8eHA0atSoVOtq1apV6rnJZDLmzp2batepUydat25dppxdu3ZNa8+ZM6fYnJkzZ6a1u3TpUqYzDjjggDLNz4Tp06entXv27JmlJAAAAAAAAEBltWp9Zut5lNbq9ZuyHYEMU+EFqLQKNyezcu7GTUURVbNyNAAAAAAAAAAAQNbdfvvtxYpH5ebmRu3ataNevXrRunXryMsr+xXUOnXqlHruypUro6ioKNVu2LBhmc/bstjW8uXLi81ZsWJFWrus5+xIroq2bNmy1OeJRKLURccAAAAAAACAPcfGLNX02J7CzUXbn8RuRQEsoNLKz01k5dwqeTlZORcAAAAAAAAAAKAy6NGjRwwcOLDc983Pzy/13DVr1qS1a9asWebztlyzevXq7Z5To0aNnTqjMvj266xRo0bk5LgTBwAAAAAAAKSrmls5f4+o5seex1ccqLRqVc2LutVLf+GpPNStnh81q+Rm9EwAAAAAAAAAAADS1apVK629du3aMu+x5ZratWsXm7NlAauCgoKdOqMy+PbrLCgoiKIiT0gGAAAAAAAA0tWrmdl6HqVVL8N1Rsg+BbCASiuRSESXFnUyeuYBLepGIpHI6JkAAAAAAAAAAACkq1u3buTk/Oea69KlS8u8x5IlS9La9evXLzanXr1621yzPWXJtbN300pbnKtBgwapz5PJZJlfEwAAAAAAALD769ysbrYjlKhLi8qZi4qjABZQqXXdu15mz9vHX4QAAAAAAAAAAADZlkgkYp999km1V61aFbNmzSrTHp988klau1WrVsXmtG3bNq09adKkMp0xYcKEUs+tVq1aWnvdunVlOmvx4sWlmteuXbu09tixY8t0DgAAAAAAALD769C0dlTJrXylhxTA2vNUvu9CgG/5brfmmT2va4uMngcAAAAAAAAAAEDJDjnkkLT222+/Xab1W87fcr+IiIMPPjitPXz48DKdUZb5derUSWsvXLiw1GuXLFlS6gJg/fr1S2u//PLLpT6nNHJy0q8fJ5PJct0fAAAAAAAAqHhV8nKifdNa2Y5RzAEKYO1xFMACKrWOTetEr9YNMnJWrzYNokPT2hk5CwAAAAAAAAAAgG0bMGBAWnvIkCGlXvvFF1/Ee++9l2pXrVo1evfuXWzeYYcdFlWqVEm1X3rppVi2bFmpzli0aFGZiktVr149GjdunGpPmDAhioqKSrX2iSeeKPU5xx57bFr7scceixUrVpR6/fbUrFkzrV1QUFBuewMAAAAAAACZM6jTXtmOkKbDXrVjnwY1sh2DDFMAC6j0Lh7YNiPnXDJg34ycAwAAAAAAAAAAwPadeeaZacWWRo4cGUOHDi3V2p///Odp7dNPPz3q1i3+pOB69erFf//3f6fa69evjxtuuKFUZ/zP//xPbNy4sVRzv9G9e/fU58uXL4833nhju2tWrlwZt956a5nO6Nu3b6q9atWquOyyy8qUc1saNEh/qOXMmTPLbW8AAAAAAAAgc87o1TLychLZjpFy9iGtsh2BLFAAC6j0jui4V3y3a/MKPePEbs3j8I5NKvQMAAAAAAAAAAAASq9evXpx3nnnpfWdd955MWHChG2uu+GGG+Kll15KtXNycuJnP/vZVudfccUVkUj851L3n//853j88ce3ecaDDz4YDz744DbnlOT4449Pa1977bVRUFCw1flr166N733vezF37twynXPDDTekvaZ//OMf8dOf/jSSyWSp1r/11ltbHevcuXNa+5lnnilTNgAAAAAAAKBy2KtOtRi0/17ZjhEREbWq5sV/d2+R7RhkgQJYwC7hpu92jr3qVK2QvfeqUzVu/E7n7U8EAAAAAAAAAAAgo377299G69atU+3ly5fHYYcdFnfccUcsX748be6kSZPilFNOiV//+tdp/VdffXUcdNBBWz3j0EMPjfPPPz/VTiaT8YMf/CB+8pOfFCs8NWvWrLjkkkvioosuiohIy1Ya3//+96NGjRqp9ieffBJHHXVUjB8/Pm3e+vXr49lnn42DDz44XnvttahSpUrsvffepT7nqKOOiiuvvDKt76677ooePXrEs88+G2vXri22Ztq0aXHXXXdFz54946ijjtrq3gcddFA0atQo1R42bFgcccQRcd9998XLL78cb775ZtoHAAAAAAAAUHld0K9tfOvZOllzRq99olbVvGzHIAt81YFdQv2aVeKR83rF9+4fFSvXFZbbvnWr58cj5/WK+jWrlNueAAAAAAAAAAAAlI/atWvHU089FUcffXSq4NXatWvjqquuiuuvvz7atGkTderUiS+//DLmz59fbP2xxx5brCBWSe6444746KOPUoWokslk3HPPPfGnP/0p2rRpEw0bNowlS5bEzJkz07Lde++9cfzxx5f69TRs2DB+/etfx1VXXZXq++CDD6J79+7RokWLaN68eaxduzZmzpwZ69atS825++6745///GfMmzev1GfdcsstMXfu3HjyySdTfePHj49TTjklqlSpEq1atYoGDRrE2rVrY968ebFixYpS7Zufnx8/+clP4le/+lWq75133ol33nmnxPnJZLLUmQEAAAAAAIDM6tGqfny/d6v4+6jZWcuwT4PqceWg9lk7n+zKyXYAgNLq2LROPPGjQ2KvOlXLZb8GNavEEz86JDo2rVMu+wEAAAAAAAAAAFD+evbsGSNGjIi2bdum9RcWFsaUKVNi7NixJRa/Gjx4cDz//PNRpcr2H5BYp06deP3116Nnz55p/clkMmbMmBFjxoxJK35Vp06deP7556NTp05lfj0/+9nP4sILLyzWP3/+/BgzZkx89tlnqeJXOTk58cc//jF+9KMflfmcvLy8+Ne//hW//OUvIz8/P21s48aNMXXq1Pjwww9j0qRJpS5+9Y1f/OIXcfbZZ5c5EwAAAAAAAFD5XH9cx9i7fvWsnJ1IRNx2ateoUSUvK+eTfQpgAbuUjk3rxKtX9I8TuzXf6b32bVwzOuxVuxxSAQAAAAAAAAAAUJG6dOkSn332Wdx2223FCmF9W15eXhx55JExcuTIePjhh4sVftqWRo0axQcffBC33nprNGvWrMQ5ubm5ceqpp8Ynn3wSAwcOLOvLiIivi1o98MADMWTIkGjZsuVW5/Xr1y/ef//9uOKKK3bonIiIRCIRN998c3z++ecxePDgqFev3jbn77XXXnHBBRfE6NGjtzkvNzc3HnvssXj33Xfjsssui169ekWjRo2iatXyecAlAAAAAAAAkDk1q+bF7ad1jbycRMbPPq9PmzikbcOMn0vlkUgmk8lsh4Bd3aeffhpdunRJtSdNmhSdO3fOYqI9w9uTF8Z9w2fE6JnLdniPR8/rFf3bNy7HVAAAAAAAAABAZeA+B1Sc8vz52rRpU0ydOjWtr127dpGX58mubNvkyZNj/PjxsWjRoigoKIiGDRtGixYtom/fvlG3bt2d3r+oqCjefffdmDJlSixatCiqVq0abdu2jX79+kWjRo3K4RV8LZlMxvjx42P8+PGxZMmSSCaTsc8++8Rhhx0Wbdq0KbdzvrF58+YYPXp0TJ8+PRYvXhwFBQVRq1ataNGiRXTu3Dk6duwYiUTmL7Wzc7yXAgAAAAAAUB6Gjp8fP3vy48hUNaITDmgW95x5UORkofDW7mZXvivlt5rALuuIjnvFER33ii++Wh3PfzI/Ppm7MibOXxkr1xWm5tStnh8t6lWLz75cXeIet7wyOfru18hfhgAAAAAAAAAAALuQjh07RseOHSts/5ycnOjfv3/079+/ws6IiEgkEtG9e/fo3r17hZ7zjdzc3Dj00EPj0EMPzch5AAAAAAAAwK7jpINaRFEyGdc8PSE2FVVsFazvdm0ed5zeVb0PFMACdn0dmtaOq5t+fZEpmUzG2o2bY+OmoqiSlxM1q+RGRMT3HhgVo2cuK7b2sy9XxfOfLIiTDmqR0cwAAAAAAAAAAAAAAAAAAAAAUJmc3H3vaFy7alz91IT4atX6ct8/LycRlx2+X1xxZDvFr4iIiJxsBwAoT4lEImpVzYsGNatErap5kUgkIpFIxPXHbf1Jf7e//kVs2LQ5gykBAAAAAAAAAAAAAAAAAAAAoPLp165xvP6z/nFaj73Ldd9OzWrHv3/cJ342qL3iV6QogAXsEQ5qWT+O69K0xLF5y9fF46PmZDgRAAAAAAAAAAAAAAAAAAAAAFQ+darnx22ndY3Hzu8VffZrGImdqFfVskGN+OUJneL5H/eNzs3rll9Idgt52Q4AkClXHdMhXv9sYWwuShYbu+ftqXFqz72jTrX8LCQDAAAAAAAAAAAAAAAAAAAAgMqlX7vG0a9d45i+eE08Pmp2vDLpq/hy5frtrqtVNS8O3bdhfL93yxjYoUkGkrKrUgAL2GPs27hWnHHwPvH4h3OKjS0vKIwHhs+Iq47pkIVkAAAAAAAAAAAAAAAAAAAAAFA57du4VvzqO53jV9/pHEvWbIhJ81fGpPmrYunaDbGhsCjychNRq2pedGhaO7q0qBv7Nq6V7cjsIhTAAvYoVxzZLp4dNz/WFW4uNvbguzPih4e2iiZ1qmUhGQAAAAAAAAAAAAAAAAAAAABUbo1qVY2BHZrEwA5Nsh2F3UBOtgMAZFKTOtXign5tShxbX1gUf3xraoYTAQAAAAAAAAAAAAAAAAAAAADseRTAAvY4F/VvGw1qVilx7Ikxc2P64jUZTgQAAAAAAAAAAAAAAAAAAAAAsGdRAAvY49Sulh+XH7FfiWObi5Jx26tfZDgRAAAAAAAAAAAAAAAAAAAAAMCeRQEsYI90Vu+WsU+D6iWOvfrpVzFuzvIMJwIAAAAAAAAAAAAAAAAAAAAA2HMogAXskarm5cZVR3fY6vgtL0+OZDKZwUQAAAAAAAAAAAAAAAAAAAAAAHsOBbCAPdZ3DmwenZvXKXFs9Kxl8fbkRRlOBAAAAAAAAAAAAAAAAAAAAACwZ1AAC9hj5eQk4rrjOm51/NZXJ8fmomQGEwEAAAAAAAAAAAAAAAAAAAAA7BkUwAL2aP3aNY6++zUqcWzKwjXxzLh5GU4EAAAAAAAAAAAAAAAAAAAAALD7UwAL2ONde2zHrY7d+caUWF+4OYNpAAAAAAAAAAAAAAAAAAAAAAB2fwpgAXu8A/auG9/t2rzEsS9Xro9H3p+V2UAAAAAAAAAAAAAAAAAAAAAAALs5BbAAIuKqoztEfm6ixLE/vzMtVhYUZjgRAAAAAAAAAAAAAAAAAAAAAMDuSwEsgIho2bBGfL93qxLHVq3fFPcOm5bhRAAAAAAAAAAAAAAAAAAAAAAAuy8FsAD+v8uP2C9qVc0rcezh92fFghXrMpwIAAAAAAAAAAAAAAAAAAAAAGD3pAAWwP/XsFbVuKh/2xLHNm4qijvfmJLhRAAAAAAAAAAAAAAAAAAAAAAAuycFsAC+5fy+baJRraoljj0zbl588dXqDCcCAAAAAAAAAAAAAAAAAAAAANj9KIAF8C01q+bFT49qV+JYUTLi969OznAiAAAAAAAAAAAAAAAAAAAAAIDdjwJYAFv43sH7RJtGNUsce2vyovhwxtIMJwIAAAAAAAAAAAAAAAAAAAAA2L0ogAWwhfzcnLj6mA5bHb/l1cmRTCYzmAgAAAAAAAAAAAAAAAAAAAAAYPeiABZACY7r0jS67lOvxLHxc1bEa59+ldlAAAAAAAAAAAAAAAAAAAAAAAC7EQWwAEqQSCTi+uM6bnX8969+EZs2F2UwEQAAAAAAAAAAAAAAAAAAAADA7kMBLICtOKRtwzi8Q+MSx2YsWRtPjp2X4UQAAAAAAAAAAAAAAAAAAAAAALuHvGwHAKjMrjm2YwybsjiSyeJjd745JU46qHnUqOKtFAAAAAAAAAAAKNmmzUUxddGamDR/ZXz25apYua4wCjcVRX5eTtStnh/7N6sTXVrUjXZNakVerueaAgAAAAAAAAB7DlVbALahU7M6cfJBe8cz4+YVG1u8ekM89O7M+PER7bKQDAAAAAAAAAAAqMxGTFkcfx81O0ZMXRzrC4u2O79afk70b9c4zj6kVfRv3zgDCakIrVu3jtmzZ0dERKtWrWLWrFkVcs6QIUPi3HPPTbUffvjhGDx4cIWcBQAAAAAAAAAVRQEsgO248uj28cKEBbFxU/FLaPcNnxFn9W4VDWpWyUIyAAAAAAAAAACgMikqSsbfP5wdD783K2YuWVumtesLi+L1zxbG658tjDaNasZ5fdrE93u3jJycRAWlBQAAAAAAAADIrpxsBwCo7FrUqx7nHNqqxLE1GzbFPW9PzXAiAAAAAAAAAACgspm+eE2cet/78at/f1rm4ldbmrlkbfzvvyfFqfd9ENMXrymnhLuum2++ORKJROrjzDPPLPMe7dq1S9ujatWqsW7dujLtcdNNN6Xtceqpp5Y5B7uv6667Lu37I5FIxE033ZTtWAAAAAAAAACVmgJYAKVw6cD9ona1vBLH/j5qdsxdVpDhRAAAAAAAAAAAQGXxt3dnxPF3jYxxc1aU677j5iyP4+8aGQ+9O7Nc993VDBgwIK09cuTIMq1fsGBBTJs2La1v48aNMWrUqDLtM3z48G3mInO+XWRq4MCB2Y4Tmzdvjscee6xY/6OPPhrJZDILiQAAAAAAAAB2DQpgAZRC/ZpV4tKB+5U4Vrg5GXe8/kWGEwEAAAAAAAAAAJXBTS98Gje/+Hls2FRUIftv2FQUv37xs7jphU8rZP9dQe/evaNatWqp9vz582P69OmlXj9ixIgy9ZeksLCwWMEsBbD4xptvvhkLFiwo1j9jxowyF2wDAAAAAAAA2JMogAVQSuf2aR1N61QrcWzoxwti0vyVGU4EAAAAAAAAAABk000vfBoPvzcrI2c9/N6sPbYIVtWqVaNXr15pfWUpXlUeBbDGjBkT69atS7UbNGgQBxxwQLF5s2bNimQyGclkMmbNmlXq/dm1DRkyZKtjjzzySOaCAAAAAAAAAOxiFMACKKVq+bnxs0Httjp+66uTM5gGAAAAAAAAAADIpr+9OyNjxa++8fB7s+Khd2dm9MzKYsCAAWnt4cOHl3rttwtdde/ePfX5Bx98EIWFhWXeIyKiX79+kUgkSp2B3dfKlStj6NChqXabNm2iefPmqfZTTz0VBQUFWUgGAAAAAAAAUPkpgAVQBqd03zvaNalV4tjIqUvi3alLMpwIAAAAAAAAAADItOmL1sTvX/0iK2ff+urkmL54TVbOzqYtC2BtWZBqa5YuXRqfffZZqn3ddddFTs7X12fXrVsXY8aMKdU+W563ZR72XE888USsX78+1f7+978fZ555Zqq9evXqePbZZ7MRDQAAAAAAAKDSUwALoAzycnPimmM7bnX81lcnR1FRMoOJAAAAAAAAAACATCoqSsbVT38SGzYVZeX8DZuK4uqnJuxx95QOPfTQyM/PT7VnzpwZ8+bN2+66kSNHRjL59Z9VXl5eHH/88dGlS5fUeGkKaRUVFcV7772X1qcAFt8YMmRIWvvss8+Os88+e5tzAAAAAAAAAPhaXrYDAOxqjurUJHq2qh9jZy8vNjZx/sp4ceKX8d2uzbOQDAAAAAAAAAAAqGiPfzgnxs1ZkdUM4+Ysj8c/nBM/OLRVVnNkUo0aNaJnz57xwQcfpPpGjBgRZ5111jbXfbvA1UEHHRQ1a9aMfv36xYQJE1Lj11133Tb3+Pjjj2PVqlWpdt26daNbt2478Cq2r6CgIIYNGxazZ8+OZcuWRd26daNTp07Rp0+fqFatWrmdk0wmY/To0fH555/HV199FXl5edGqVavo06dPNG9e/vffCgoK4r333ov58+fHokWLIjc3N5o0aRL7779/dO/ePRKJRLmfmQlTpkxJ+57s2bNndOjQISIiOnfuHJ9++mlERLzzzjsxd+7c2GeffbKSEwAAAAAAAKCyysl2AIBdTSKRiOuP77jV8dtf+yI2ZunpjgAAAAAAAAAAQMX627szsh0hIiIeem9mtiNk3IABA9Law4cP3+6ab8/p379/RET069cv1ffee+/F5s2bS71HRETfvn0jJ6fkK7itW7eORCIRiUQiWrduvd1831i+fHlcfPHF0aRJkzjhhBPi0ksvjV/+8pdx+eWXx1FHHRVNmjSJa6+9NtauXVvqPUtSVFQUd999d7Rs2TIOOeSQOPfcc+P666+Pq6++Ok4//fTYe++947jjjouJEyem1nzzehKJRAwcOLBM57333ntx/PHHR4MGDeLoo4+Oc889N6699tq46qqr4oc//GH07NkzmjZtGr/61a9i9erV29xr4MCBqRzfNnz48LSMW37ceOONZcpcFo888kha++yzzy7x86Kionj00UcrLAcAAAAAAADArkoBLIAd0KNVgzh6/71KHJuzrCD+OXpOhhMBAAAAAAAAAAAVbcSUxTFraUG2Y0RExMwla2PElMXZjpFRWxbAGjFixDbnr1q1Kj755JNU+5vCV98ugLVq1ar4+OOPt7nPludsmWNnjR07Nvbff/+4//77t1rgavXq1fH73/8+Dj744Jg3b94OnbNixYro169fXHHFFVvdI5lMxquvvho9e/aMJ554YofOiYhYu3ZtnH766dG3b9945ZVXYsOGDVudu2jRorj55pujffv2MWbMmB0+M9OKioriscceS7Vzc3PjjDPOSLXPOuustGJdCmABAAAAAAAAFKcAFsAOuubYDpGTKHns7remxpoNmzIbCAAAAAAAAAAAqFB/HzU72xHSVLY8Fa1Pnz6Rm5ubak+ePDkWLVq01fnvvfdebN68OSIiEolEqvBV8+bNo02bNql52yqklUwm4913303rK88CWJMmTYpjjjkmvvrqq7T+KlWqRIcOHaJHjx7RpEmTVP/nn38exx9/fKxbt65M56xduzaOPvroeP/994uNtWzZMg4++ODYb7/9Ii8vLyIiNm7cGGeffXYMHz68zK9p0aJFMWDAgHjqqaeKje29997Ro0eP6NatW9SvXz9t7KuvvoqBAwcW+/OurN5+++2YO3duqn3UUUfFXnv958GaLVu2TCu2NmXKlBL//AEAAAAAAAD2ZApgAeyg/ZrUjtN77lPi2NK1G+OBETMynAgAAAAAAAAAAKgomzYXxfApi7MdI82IqYtjc1Ey2zEypnbt2nHQQQel9W2reNW3xzp37hwNGjRItb9dmGhbRZ4+++yzWLJkSapdq1at6N69e5lyb01hYWGcddZZsWzZslRf7dq146677opFixbF5MmTY+zYsbFw4cIYNWpU9O/fPyIiJk6cGL///e/LdNb1118fY8aMSbUTiURccMEFMW3atJg9e3aMHj06pk6dGl999VXccsstUaNGjdi0aVOce+65ZTqnqKgozjjjjPjoo49SfY0bN47bbrstvvzyy5g7d26MHTs2xo8fH0uWLIl33303jjjiiNTcgoKCOPPMM2Pp0qXF9r7jjjvijTfeiDfeeCOt/8ADD0z1l/Txwx/+sEyvobSGDBmS1j777LOLzdmy75FHHqmQLAAAAAAAAAC7qrxsB2DHJZPJmDVrVkycODHmzZsXK1asiKpVq0b9+vWjXbt2cfDBB0e1atWyHXOHffrpp/HRRx/Fl19+GZs3b46GDRtGly5donfv3qknjEG2/fSo9jH04/mxvrCo2NiDI2fE2Ye0jCa1d92fQwAAAAAAAACAysBdKSqDqYvWxIZNxe8JZdP6wqKYumh1dGxaJ9tRMmbAgAExduzYVHvEiBFx6qmnljj32wWwvl3w6pv2o48+GhER7777biSTyUgkEtvcIyKiT58+5fZzeeedd8bEiRNT7fr168eIESOiS5cuxeb27t07hg0bFuecc0489thjMWvWrFKf88knn8Sf//zntL777rsvLrroomJzGzZsGNdee20cfvjhcdRRR8XMmTNL/4Ii4rbbbot33nknLffzzz8fTZo0KTY3Jycn+vTpE2+88UZcccUV8ac//SkiIubNmxe//vWv46677kqb36NHjxLPrF+/fhx11FFlyrmzVq9eHc8991yqXbNmzfjv//7vYvNOO+20uPzyy2PDhg0REfHEE0/EXXfdtUv/nQUAAAAAAABQntyM2cUsX748hg4dGq+++mq8/fbbaU8V21J+fn6ccMIJ8dOf/jQGDBhQIXlee+21OPbYY4v1v/POOzFw4MAy75dMJuPhhx+OW2+9NaZMmVLinIYNG8Yll1wS1113XdSsWbPMZ0B5alq3WpzXp03cO2x6sbGCjZvjnremxc0nFb+MBAAAAAAAAADAtrkr5a5UZTNp/spsRyjRpPkr96gCWP3794877rgj1d6yQNU31q1bl1Yoq3///mnj3y6ItXTp0vj0009LLDy15f7l9R6zefPmuPvuu9P6/vrXv5aY4RuJRCL+9re/xUcffRSfffZZqc/605/+FEVF/yneNnjw4BKLX31br1694s4774wLLrig1OcUFBTE73//+1S7WbNm8fLLL0eDBg22uS4nJyf++Mc/xtixY2PUqFEREfHQQw/FTTfdFPXq1Sv1+Zn05JNPRkFBQap90kknlfg+Xa9evTjhhBPi2WefjYiIlStXxtChQ+OMM87IWFYAAAAAAACAyiwn2wEovcsuuyyaNm0a5513Xjz55JPbvNAVEVFYWBhDhw6NgQMHxjnnnBOrVq0q1zxr1qzZ7gWIslixYkUcc8wxcf7552/1QlfE1xdNfvOb38SBBx4Yn376abmdDzvqRwP2jXo18ksc++foOTFzydoMJwIAAAAAAAAA2LW5K/U1d6Uql8++LN/vq/Ly2YLKmaui9OvXL3Jy/nP9deLEibFixYpi80aNGhUbN25MW/dtHTp0iCZNmqTaWyukNXLkyLR2eRXAev3112P+/Pmp9sEHHxynnHLKdtfl5+fH7373u1Kfs3HjxvjXv/6Vaufm5sZvf/vbUq0977zzon379qU+69FHH41ly5al2jfeeON2i199O9f111+faq9ZsyZee+21Up+daUOGDElrn3322Vudu+XYlmsBAAAAAAAA9mQKYO1CPvzww7TLGN/Izc2NvffeO3r06BEHHnhg1K1bt9icRx99NAYNGhRr1qwptzzXXXddzJkzp1z2WrduXRxzzDHxxhtvpPVXqVIl2rdvHwcccECxJ2PNmDEjDj/88Jg2bVq5ZIAdVbd6fvz48P1KHNtUlIzbX/siw4kAAAAAAAAAAHZt7kq5K1UZrVxXmO0IJaqsuSpK/fr144ADDki1i4qKihWpikgvaNW2bdto0aJFsTl9+/ZNfT58+PBi49OnT08rUlWjRo04+OCDdzj7tw0bNiyt/cMf/rDUa0844YRo3LhxqeZ+8sknae+HAwcOjObNm5dqbSKRiO9///ulzvXyyy+nPs/Ly4szzjij1GsjIo488si04mYlfV0rg+nTp8e7776bau+1114xaNCgrc4/4YQTon79+qn2m2++GQsWLKjQjAAAAAAAAAC7CgWwdlH16tWLSy+9NF566aVYvnx5zJ07N8aOHRuffPJJLF26NN55551iTysbPXp0DB48uFzOf++99+Lee++NiIicnJyoVq3aTu135ZVXxujRo1PtnJyc+N///d/46quv4osvvogJEybEsmXL4uGHH067BLB48eI4/fTTY/PmzTt1PuysHxzaKlrUq17i2EsTv4yP567IbCAAAAAAAAAAgN2Eu1Jfc1cq+wo3FWU7QokKNyezHSHjBgwYkNb+drGrb3y7oNWW7xEl9ZdUbGnLoliHHnpo5Ofnlynr1nz7fSDi68JUpZWXlxd9+vQp1dyxY8emtQ877LBSn1OW+clkMt57771Uu3379lGnTp0ynVWzZs1o2LBhqv3555+XaX2mPPLII2nt733ve5Gbm7vV+VWqVIlTTz011d68eXM89thjFZYPAAAAAAAAYFeiANYupnXr1vHggw/GggUL4s9//nMcf/zxUbt27bQ5ubm5MXDgwHjnnXfioosuSht75pln4p133tmpDBs2bIjzzz8/ksmvL81cdtllsddee+3wfpMnT46//vWvaX1///vf49e//nXaBa4qVarE4MGDY+TIkVGvXr1U//jx4+PRRx/d4fOhPFTNy42fH91+q+O3vPJ56mcGAAAAAAAAAIDtc1fKXanKJj+vcl65zM9NZDtCxvXv3z+tvWUBrMLCwhg1atRW53/j2wWwvvzyy5g6deo2992y8NbOmDlzZurz3Nzc6NixY5nWH3DAAaWaN3/+/LR2p06dynROaecvXLgwli1blmp/9tlnkUgkyvyxePHi1B7f3q+ySCaTxd6Hzz777O2u23LOlkW0AAAAAAAAAPZUlfM2BiW66aab4osvvojzzz8/qlevvt35ubm5ce+990bPnj3T+h988MFyyRERsffee8dvf/vbndrvhhtuSHsq4Q9+8IM488wztzq/c+fOcfvttxfLVFhYuFM5YGed2K1FdGxau8SxUTOWxbApi0scAwAAAAAAAAAgnbtSX3NXqnKpWz0/2xFKVFlzVaQtC1qNGzcu1qxZk2qPGTMm1q1bl2p/u9DVt3Xr1i2tsN7w4cPTxiuyANaKFStSn9etWzfy8vLKtL5hw4ZlPuebs8ri20X4tmXp0qVl2rc0Vq5cWe577qxhw4bF7NmzU+0OHTrEwQcfvN11/fr1i1atWqXan3/+eYwePbpCMgIAAAAAAADsShTA2oWccMIJUaVKlTKtyc3NjWuuuSat77XXXtvhDB9//HHcdtttqfaf//znYk9VLIvly5fHs88+m2onEom48cYbt7vu3HPPTbsIMHv27HjzzTd3OAeUh9ycRFx33NafwnfrK5Njc1Eyg4kAAAAAAAAAAHZN7kr9h7tSlcf+zepkO0KJ9m9eOXNVpMaNG8f++++fam/atCnef//9VPvbhauaNm0a7dq1K3Gf3NzcOPTQQ0tcN2/evJg5c2aqXa1atejdu3e55I+ItIJdNWrUKPP6mjVrlmrehg0b0tplfW+tWrVqqeZtWWirPBQVFZX7njtryJAhae1u3brFm2++ud2Pt956Kw466KC0tY888kgGkwMAAAAAAABUTmV7XBS7pC2fXLZ06dIoKCgo84WJTZs2xfnnnx+bNm2KiIhTTjklvvvd7+5Utpdeeim1X0TEwIEDo23btttdl5OTE+eee27aBbChQ4fGcccdt1N5YGcNaN84Dm3bMD6YUfxpdpO/Wh3//nh+nNx97ywkAwAAAAAAAADY/bkrRUXq0qJutiOUqLLmqmj9+/ePzz77LNUeMWJEHH300anPv7Hl+8KW+vXrF6+//nqxdd/+PCKid+/epS4GVRo1a9aMVatWRUREQUFBmdevXbu2VPPq1k3//vh24a3S+Cbj9mz5Prv//vvHXXfdVaaztlS9evWdWl/e1qxZE88880xa3xNPPBFPPPHEDu33r3/9K/7whz+U6/cVAAAAAAAAwK5GAaw9QP369Yv1rVy5ssyXum6//fYYN25cRHx9IeKee+7Z6WwvvfRSWvubyyelMWjQoLRLXS+++OJO54GdlUgk4rrjOsaJf36vxPE7Xp8Sxx/QLKrl52Y4GQAAAAAAAADA7s9dKSpSuya1ompeTmzYVJTtKCnV8nOiXZPa2Y6RFQMGDIj77rsv1f6mYFVRUVG8995/7m/1799/m/t8u0DW7NmzY86cOdGyZctiBbAGDBhQHrFT6tWrlyoutXLlyigsLIz8/PxSr1+6tPhDGkvSoEGDtPaCBQtKH7IM8xs1apTWTiaTcdRRR5XprMru6aefLnXhsdJYtmxZvPDCC3HqqaeW254AAAAAAAAAu5qcbAeg4s2fP79YX8OGDcu0x5QpU+Kmm25KtW+55ZZo1qzZTmf7+OOP09qHHXZYqdf26NEj7alXCxYsiMWLF+90JthZXfepFyccWPLPx/wV6+Lvo2ZnOBEAAAAAAAAAwJ7BXSkqUl5uTgxo3zjbMdL0b9c4cnMS2Y6RFVsWpBo9enSsX78+Pv7441RhqYjtF8Dq3bt3VKlSJdUePnx4RESFF8Bq27Zt6vPNmzfH5MmTy7R+woQJpZq3//77p7XHjx9fpnO2fO/amqZNm0b16tVT7dmzZ0dhYWGZzqrshgwZskvsCQAAAAAAALArUQBrDzBy5Mi0dqtWrdIua2xPMpmMCy64INavXx8REX369Ikf/ehHO52rsLAwpk2blta35UWLbalatWrsu+++aX2ff/75TueC8nDV0R0ibysXy/70zrRYuW73utgDAAAAAAAAAFAZuCtFRTv7kFbZjpCmsuXJpGbNmkW7du1S7Q0bNsSHH36YVriqXr160aVLl23uU61atejZs2eqPWLEiFi8eHHaz1iVKlXi0EMPLcf0EQcffHBa+5vCW6WxadOmeO+990o1t1evXmntl19+OYqKikp91vPPP1+qefn5+dGnT59Uu6CgID788MNSn1NWicR/7uclk8kKO+cbs2bNSvveqlmzZqxduzaSyWSZPgoKCqJ27dqpfV577bVYuHBhhecHAAAAAAAAqKwUwNoDPPTQQ2nt448/vkzr//KXv6QuhlWpUiUeeOCBtIsDO2rGjBmxadOmVLt69erRqFGjMu2xzz77pLW/+OKLnc4F5aFNo5pxZq+WJY6tKCiM+4ZPz3AiAAAAAAAAAIDdn7tSVLT+7RtHm0Y1sx0jIr6+o9S/feNsx8iq/v37p7VHjBiRVkiqb9++kZOz/auy/fr1S9vj24WOIr4uVlW9evWdTJtu4MCBae1HH3201GtfeumlWLJkSanmNm/ePHr06JFqL1iwIIYOHVqqtXPmzIkXXnih1LmOPfbYtPY999xT6rVlVbPmf34OCwoKKuycbzzyyCNphba+853vRI0aNcq8T/Xq1ePEE09MtTdt2hR///vfyyUjAAAAAAAAwK5IAazd3Msvv1zsIsbgwYNLvX7u3Llx3XXXpdrXXnttmZ48uC2LFi1Ka7do0aLMe2y5Zss9IZt+cmS7qFElt8Sxh96dGV+tXJ/hRAAAAAAAAAAAuy93pciU8/q0yXaEiKg8ObJpwIABae1hw4bFu+++m2p/u7DVtnx73pQpU+LJJ5/c5jnl4Zhjjkn7uR4zZkw888wz211XWFgY119/fZnOuvDCC9PaV155ZSxdunSba4qKiuKSSy6J9etLf8/tggsuiHr16qXaTz/9dLz00ktlylpaDRo0SH0+a9asCjnjG8lksliBsjPPPHOH9zvjjDPS2o888sgO7wUAAAAAAACwq1MAaze2bNmy+NGPfpTWd9JJJ0WvXr1KvcfFF18cq1evjoiIDh06xP/8z/+UW741a9aktb/9NK7S2nLNlnvuiEWLFsWnn35apo9p06bt9LnsfhrXrhoX9mtb4tiGTUXxxzenZDgRAAAAAAAAAMDuyV2pHee+VNl9v3fL6N6yflYzdG9ZP77fu2VWM1QGJRXAWrJkSardv3//Uu3Tp0+fyMn5z5Xap59+epvnlIfc3Nz48Y9/nNZ34YUXxqRJk7a6JplMxgUXXBCff/55mc4655xzol27dqn27NmzY9CgQTFjxowS569atSp+8IMfxMsvvxyJRKLU59StWzeuvfbaVLuoqCjOPPPMeP7558uU96OPPorvfe9725zTuXPn1OdLliyJYcOGlemMshg5cmTan1W9evXi2GOP3eH9jj766LQCXhMnToxx48btVEYAAAAAAACAXVVetgNQMYqKiuLss8+OefPmpfrq1q0bd999d6n3+Pvf/x4vv/xyREQkEom4//77o2rVquWWccsLWNWqVSvzHtWrV9/mnjvi3nvvjZtuummn94GIiAv7t42/j5odS9duLDb25Ni5cUG/NrFfk9pZSAYAAAAAAAAAsHtwV2rnuC9Vdjk5ibjttAPj+LtGxoZNRRk/v2peTtx22oGRk1P6wkS7q5YtW0arVq1i9uzZEfH1+8E3atSoET169CjVPvXq1YsuXbrEhAkTiu2Tl5cXhx12WDmm/o8rr7wyHnvssfjss88iImL58uVx2GGHxW9/+9s455xzok6dOqm5o0ePjmuuuSaGDx8eERGtW7eOWbNmleqcatWqxV//+tc44ogjUq9t/Pjx0aVLlzjttNPi8MMPjyZNmsTKlStj7Nix8Y9//CO++uqriIj40Y9+FPfdd1+pX9M111wTI0eOTL2nrl69Ok466aQ46aST4sc//nH06dOn2Pvr+vXrY8KECfHmm2/GM888kyoG9cQTT2z1nKOPPjpeeeWVVPu///u/40c/+lH06NEj6tatm1bQrG3bttG2bckPsyyNIUOGpLVPPvnkqFKlyg7vl5+fH6ecckr89a9/TfU98sgj0b179x3eEwAAAAAAAGBXlbP9KeyKrr766rRf7EdE3H///bHPPvuUav2iRYvipz/9aap93nnnlfsTzNavX5/W3pHLAFtegli3bt1OZYLyVqtqXvzkyHYljhUlI2599YsMJwIAAAAAAAAA2L24K0U27Nu4VlxzbIesnH3tsR1j38a1snJ2ZbS1n9dDDjkk8vPzS71Pv379Suzv0aNH1KpVMX/eVapUiX/+859Rv379VN/q1avjJz/5STRp0iQ6deoUPXv2jL322it69+6dKn514IEHxjXXXFOmswYMGBAPP/xwWmGodevWxaOPPhrnnntunHDCCXHWWWfFH/7wh1Txq969e8cf/vCHtH3y8rb97N2cnJz4xz/+EQMHDkz1JZPJeO655+LII4+MunXrRocOHeKQQw6Jbt26RevWraNWrVrRu3fv+J//+Z9U8avt+eEPfxiNGjVKtVesWBG33nprnH766XHMMcfEoEGDUh+PPvpoqfYsSUFBQTz99NNpfWecccYO7/eNM888M639j3/8IwoLC3d6XwAAAAAAAIBdjQJYu6G777672IWDa665Jr73ve+Veo/LL788li5dGhERe+21V9x2223lmjGi+FMMN27cWOY9NmzYsM09oTI4s1fLaNWwRoljb3y2MMbOWpbhRAAAAAAAAAAAuwd3pcim8/u2jXP7tM7omef1aR3n9W2T0TMru60VwNpaQaut2dr88i6It6UDDzwwXn311WjSpEla/4YNG2Ly5Mnx0UcfxaJFi1L9nTp1ipdeeimqV69e5rN++MMfxvPPPx977733dueedtpp8cYbb8TmzZvT+uvWrbvdtXXr1o033ngjrrzyymIFszZs2BBTpkyJDz/8MD755JOYPXt2sTMiYrtFDBs0aBDPPPNMsT+38vbMM8/E6tWrU+0mTZrEEUccsdP7DhgwIJo1a5ZqL1myJF566aWd3hcAAAAAAABgV7PtxzCxy/nHP/6R9jTCiIjBgwfHLbfcUuo9nn/++XjyySdT7T/+8Y9pTxcrL1s+EW3LpxyWxpZPMSyPp6xdeumlcdppp5VpzbRp0+Kkk07a6bPZPVXJy4mrju4Ql/9zfInjt7wyOZ66+NBIJBIZTgYAAAAAAAAAsOtyV2rn70pFuC+1s274TueIiHj4vVkVftZ5fVrHr/7/efzH1gpU9e/fv0z7bK0AVln32RG9evWKzz//PK677rp4/PHHo6CgoNic2rVrx8UXXxw33HBD1KxZc4fPOuGEE+Lzzz+Pf/7zn/H000/H559/HgsXLoy8vLxo2bJl9O3bNwYPHhx9+vSJiIg5c+akrS9NAayIiLy8vLjjjjvisssui1tvvTWGDh2aVsirJK1bt46jjz46Tj311DjyyCO3e0b//v1j8uTJ8Y9//CNee+21mDRpUixZsiTWrl0bRUVFpcq5PY888kha+7TTTovc3Nyd3jcnJydOP/30uOuuu1J9Q4YM8d4KAAAAAAAA7HEUwNqNvPjii3HOOedEMplM9Z188snx4IMPlrqwzsqVK+OSSy5JtY877rg444wzyj1rRPELWGvXri3zHluuKY9LXU2aNKnwJ4Kx5znhgGbxwIgZMXH+ymJjY2cvjzc+WxhHd26ahWQAAAAAAAAAALsed6XKrwCW+1I774bvdI596teIW1+dHBs2lU/RnW+rmpcT1x7bMc7r26bc994d7LvvvmnvBTuqefPm5bLPrFmzdmhdgwYN4oEHHog777wz3nnnnZg9e3YsX7486tatG506dYq+fftGtWrVUvMHDx4cgwcP3qGzatWqFRdeeGFceOGF2507YcKEtHarVq3KdFbbtm3j/vvvj/vuuy8+/fTT+PTTT2PJkiWxYsWKqFq1atStWzfatGkT+++/fzRv3rxMe0dE1K9fPy677LK47LLLyry2NN58880K2Tfi66KLf/zjHytsfwAAAAAAAIBdgQJYu4l33nknTjvttNi0aVOqb9CgQfHPf/6zTE+auvPOO2PBggUREVGzZs34y1/+Uu5Zv7Hlpan58+eXeY8t17iIRWWVk5OI64/rGGc9+GGJ479/7Ys4omOTyMvNyXAyAAAAAAAAAIBdi7tSJe9Jdp3Xt00M6NA4rn5qQoybs7zc9u3esn7cdtqBsW/j8il4RuVXs2bN+K//+q9sx0h566230to9e/bcoX0SiUR06dIlunTpUh6xAAAAAAAAANhNqLSyG/jwww/ju9/9bqxfvz7Vd9hhh8Vzzz0XVapUKdNeK1asSH2+du3aaN26dSQSie1+zJ49O22fww8/PG38pz/9abGz2rZtG3l5/6nBtm7duli8eHGZ8s6ZMyet3bFjxzKth0w6bL9G0b994xLHpi1aE8+Mm5fhRAAAAAAAAAAAuxZ3pf7DXanKZ9/GteLpiw+Nm0/sEm0a1dypvdo0qhk3n9glnr74UMWvyJpVq1bFI488kmrn5eVF7969s5gIAAAAAAAAgN2NAli7uAkTJsRxxx0Xa9asSfUddNBB8fLLL0fNmjt3gaai5efnx7777pvW99lnn5V6/YYNG2LGjBlpfS51Udlde2yHrY7d+cbUWLdxcwbTAAAAAAAAAADsOtyVcldqV5CTk4gfHNoq3rlqYDx6Xq84ev+9olp+6a5qVsvPiaP33ysePa9XvHPVwPjBoa0iJydRwYnZkySTyTLNveSSS2L58uWpvu985zvRqFGjiogGAAAAAAAAwB4qb/tTqKy++OKLGDRoUNrlgk6dOsVrr70WdevWzWKy0uvWrVt88cUXqfb7778fAwYMKNXajz76KDZs2JBqN2vWLJo0aVLuGaE8dW5eN07q1jyGfryg2NhXq9bHw+/PjEsH7peFZAAAAAAAAAAAlZe7Uu5K7Yr6t28c/ds3js1FyZi6aHVMmr8yPluwKlauK4zCzcnIz01E3er5sX/zOtGlRd1o16R25Cp4RQUaNGhQnHHGGXHmmWdus3DgV199FZdffnk8/fTTqb5EIhE//elPM5ASAAAAAAAAgD2JAli7qNmzZ8dRRx0VixYtSvW1adMm3njjjWjcuPEO73vppZfGf/3Xf5V53dlnnx0LFy5MtW+//fbo2rVrqt2yZcsS1/3Xf/1XPPHEE6n2G2+8Eddff32pznzjjTfS2t/5znfKEhmy5udHd4iXJ34VGzcXFRv7y7DpcebBLaN+zSpZSAYAAAAAAAAAUPm4K+Wu1K4uNycRHZvWiY5N60T0yHYa9mTTpk2LCy+8MK644oo4+uijo1evXtG2bduoW7durF27NhYsWBAjR46MF154IdavX5+29tJLL43+/ftnKTkAAAAAAAAAuysFsHZBX375ZRx55JExb968VF+LFi3irbfeihYtWuzU3u3bt4/27duXeV21atXS2j169IiBAwdud93xxx8feXl5sWnTpoiIGDZsWMyYMSPatm27zXXJZDKGDBmS1nfiiSeWKTNkyz4NasTZh7SKh96bWWxs9fpNce+wafE/J+yfhWQAAAAAAAAAAJWLu1LuSgHlr6CgIIYOHRpDhw4t1fxTTz01br/99ooNBQAAAAAAAMAeKSfbASibZcuWxaBBg2L69OmpvsaNG8cbb7wRbdq0yWKyHdOgQYM46aSTUu1kMhk33njjdtc99NBDMWvWrFS7VatWcdRRR5V/QKggPz5iv6hdteQahI+8PzvmLS/IcCIAAAAAAAAAgMrFXamvuSsFlJe99967TPMbNmwYt912Wzz55JPFiv8BAAAAAAAAQHlQAGsXsnr16jj22GPj008/TfXVq1cvXn/99ejUqVMWk+2cm266KXJy/vOt+Nhjj8U///nPrc7/7LPP4qqrrkrr+9///d+oUqVKhWWE8tagZpW4eOC+JY5t3FwUf3hjSoYTAQAAAAAAAABUHu5Kfc1dKaA8vfvuuzF+/Pi47bbb4tRTT42uXbtGw4YNo2rVqpGfnx9NmjSJ/fffP374wx/Gww8/HLNmzYqrrroqEolEtqMDAAAAAAAAsJvKy3YASu+73/1ujBkzJq3vyiuvjCVLlsSbb75Zpr169OgR9evXL894O2z//fePCy64IB544IFU39lnnx2ff/55/OxnP0vlLCwsjMcffzyuvPLKWLFiRWrugQceGOecc06mY8NOO7dP63jk/VmxaPWGYmPPjZ8fF/ZrG52a1clCMgAAAAAAAACA7HJXyl0poGJ069YtunXrlu0YAAAAAAAAABARCmDtUoYNG1as71e/+tUO7fXOO+/EwIEDdy5QObrzzjtj3LhxMXbs2IiIKCoqiptvvjluvfXWaNOmTVStWjVmzJgRa9asSVvXqFGjeOqppyIvz7cyu54aVfLip0e1j188N7HYWDIZceurk2PIub2ykAwAAAAAAAAAILvclXJXCgAAAAAAAACA3V9OtgNARESNGjXitddeiyOOOCKtf+PGjfHFF1/EhAkTil3oat26dbz99tvRvn37TEaFcnV6z72jbeOaJY4N+2JxvD99SYYTAQAAAAAAAABQkdyVAgAAAAAAAACArymARaXRoEGDeOONN+KBBx6I/fbbb5vzfvGLX8TEiRPjgAMOyGBCKH95uTlxzTEdtzp+6yuTI5lMZjARAAAAAAAAAAAVzV0pAAAAAAAAAACIyMt2AEqvMhfBmTVrVrnsk5OTExdeeGFceOGFMXHixBg3blx8+eWXsXnz5mjYsGF06dIlevfuHfn5+eVyHlQGx3TeKw5qWS/Gz1lRbOyTeSvjlUlfxfEHNMt8MAAAAAAAAACALHFXyl0pAAAAAAAAAAB2fwpgUWkdcMABnlrIHiGRSMT1x3WK0+//oMTx2177Igbtv1fk5+ZkOBkAAAAAAAAAAJngrhQAAAAAAAAAAHsi1VQAKoFebRrEUZ2alDg2c8na+NeYuRlOBAAAAAAAAAAAAAAAAAAAAABQcRTAAqgkrj6mY+QkSh67682psXbDpswGAgAAAAAAAAAAAAAAAAAAAACoIApgAVQSHZrWjlO6713i2JI1G+LBkTMznAgAAAAAAAAAAAAAAAAAAAAAoGIogAVQifxsUPuomlfyW/MDI6bHkjUbMpwIAAAAAAAAAAAAAAAAAAAAAKD8KYAFUIk0r1c9BvdpXeLY2o2b409vT8tsIAAAAAAAAAAAAAAAAAAAAACACqAAFkAlc+mA/aJOtbwSxx7/cHbMXro2w4kAAAAAAAAAAAAAAAAAAAAAAMqXAlgAlUzdGvlx2eH7lThWuDkZt78+JcOJAAAAAAAAAAAAAAAAAAAAAADKlwJYAJXQOYe1juZ1q5U49sInC2LivJUZTgQAAAAAAAAAAAAAAAAAAAAAUH4UwAKohKrl58bPBrXf6vitr07OYBoAAAAAAAAAAAAAAAAAAAAAgPKlABZAJXVy972jw161Sxx7d9qSGDFlcYYTAQAAAAAAAAAAAAAAAAAAAACUDwWwACqp3JxEXHtch62O3/LK5CgqSmYwEQAAAAAAAAAAAAAAAAAAAABA+VAAC6ASO7xDk+jVpkGJY599uSpemLAgw4kAAAAAAAAAAAAAAAAAAAAAAHaeAlgAlVgikYjrjuu41fHbXvsiNmzanMFEAAAAAAAAAAAAAAAAAAAAAAA7TwEsgEque8v6cVyXpiWOzVu+Lh4fNSfDiQAAAAAAAAAAAAAAAAAAAAAAdo4CWAC7gKuO6RC5OYkSx+55e2qsWl+Y4UQAAAAAAAAAAECpFG2KWDgpYvzfI165NuK5H0U8fd7X//nKtV/3L5z09Tx2ea1bt45EIhGJRCJat25dYecMGTIkdU4ikYghQ4ZU2FkAAAAAAAAAUFHysh0AgO3bt3Gt+N7B+8Q/PpxTbGx5QWH8dcSM+PnRHbKQDAAAAAAAAAAAKNG0tyLG/i1i+tsRheu2Pz+/esS+R0T0PD9ivyMrPh8AAAAAAAAAQJblZDsAAKXz0yPbRfX83BLHHhw5MxatWp/hRAAAAAAAAAAAQJpkUcTov0bc0z3i7ydHTH6pdMWvIr6eN/mlr9fd0z1izINf70fcfPPNkUgkUh9nnnlmmfdo165d2h5Vq1aNdetK+bX5/2666aa0PU499dQy52DXNWvWrLSv/7Y+8vLyon79+rHvvvvGiSeeGL/97W9j+vTp2X4JAAAAAAAAAJWOAlgAu4gmdarFBf3alDi2rnBz/PGtqRlOBAAAAAAAAAAApCyZGvG3oyNevipi6U4Wulk6PeKln0c8dMzX++7hBgwYkNYeOXJkmdYvWLAgpk2blta3cePGGDVqVJn2GT58+DZzkTnfLjY1cODAbMcpZvPmzbFixYqYMWNGPP/88/HLX/4y9ttvvzjllFNi3rx52Y4HAAAAAAAAUGkogAWwC7mof9uoXyO/xLEnxsyN6YvXZDgRAAAAAAAAAAAQH/w54r6+EfPGlO++c0d/ve+oe8t3311M7969o1q1aqn2/PnzY/r00hcZGzFiRJn6S1JYWFisYJYCWJTVs88+GwcddFBMmDAh21EAAAAAAAAAKoW8bAcAoPRqV8uPy49oF79+8bNiY5uLknHbq1/EfT/okYVkAAAAAAAAAAD8P/buPM4Kut4f//vMwjbCsAgKiAjKKijKpmyDCbhl2U1Ny9TMJaubZbnd7/em2fVeRa0082vZbdGy0izTRAUXFnEBXFBWQWFkEdm3YRtmzu8Pf544zAFmdDhnZng+Hw8ezufz/iyvAYE/+DzehwPUU9dFvHrf/jt/57aIp2+IWFcacdpt+++eOqxx48YxaNCgtIZVkydPjiOPPLJa+2ujAdb06dNj69atqXHr1q2jb9++VdYtXry42mdS/02YMCHj/I4dO2Lt2rXx1ltvxd/+9re0hm2rV6+O0047LebNmxfNmzfPVlQAAAAAAACAOikv1wEAqJmvnHB4dGrdNGPt6dkr4vX312U5EQAAAAAAAAAAHKD2d/OrXb1630f3HaBKSkrSxpMmTar23l0bXR1//PGpr19++eUoLy+v8RkREcOHD49EIlHtDDRMo0aNyvjj9NNPjwsuuCDGjh0b8+fPj1tuuSVt3/Lly+OOO+7IUWoAAAAAAACAukMDLIB6pnFBfvxgTI891m8dNy+SyWQWEwEAAAAAAAAAwAHo5V9kr/nVx169L+KVe7N7Zx2xewOs3RtS7cmaNWtizpw5qfH1118feXkfPZ/dunVrTJ8+vVrn7H7f7nlgT/Lz8+M//uM/4pJLLkmbf/jhh3OUCAAAAAAAAKDu0AALoB4685gO0bt9i4y1aYvXxgvzV2Y5EQAAAAAAAAAAHEBWvxPx3M25ufvZH0WsXpCbu3PoxBNPjMLCwtR40aJFsXTp0n3umzJlSuoDBQsKCuL000+PPn36pOrVaaRVWVkZU6dOTZvTAIua+sY3vpE2nj9/fuzYsSNHaQAAAAAAAADqhoJcBwCg5vLyEnH9aT3jwt9My1i/7an5UdK9XeTnJbKcDAAAAAAAAAAAGrhkZcRj34zYuS039+/cFvGPb0Zc8kxE4sD5HNRmzZrFgAED4uWXX07NTZ48Ob785S/vdd+uDa6OO+64KCoqiuHDh8dbb72Vql9//fV7PePNN9+MjRs3psbFxcXRr1+/T/Bd7NuWLVti4sSJUVpaGmvXro3i4uLo1atXDB06NJo0aVJr9ySTyZg2bVrMnTs3VqxYEQUFBdG5c+cYOnRodOjQodbu+diWLVti6tSpsWzZsli5cmXk5+dHu3btonfv3nH88cdHItHw37r17t07bZxMJmP16tX75ecbAAAAAAAAoL7QAAugnhrRvW0MO+rgeHHh6iq1+R9uir+9vjTOGdApB8kAAAAAAAAAAKABm/GbiKXTc5thybSPcgy8NLc5sqykpCStAdakSZP22QBr0qRJqa9HjBgRERHDhw+PX/ziFxERMXXq1KioqIj8/PxqnRERMWzYsMjLy9x87IgjjojS0tKIiOjcuXMsXrx4r/k+tm7durjhhhviD3/4Q5SVlVWpN2/ePK688sr44Q9/GEVFRdU6M5PKysq455574vbbb4+lS5dWqScSiTjllFNi7Nix0bdv39Tcx0pKSmLixInVvm/q1Klxyy23xPPPPx/bt2/PuKZdu3ZxxRVXxDXXXBPNmzff41kjR46s8msR8dGvz94aaN14441x0003VTvz/pIpY9OmTXOQBAAAAAAAAKDuOHA++gugAbru1J57rP1kwjuxrbwii2kAAAAAAAAAAOAA8PIvcp3gI6/cm+sEWVdSUpI2njx58l7Xb9y4MWbOnJkaDx8+PO2/H695880393rO7vfsnuPTmjFjRvTu3Tt++ctfZmx+FRGxadOmGDt2bAwcODBj46rqWL9+fQwfPjyuuuqqPZ6RTCbj6aefjgEDBsRf/vKXT3RPRERZWVmce+65MWzYsHjqqaf22PwqImLlypXx4x//OLp37x7Tp+e4udx+NHfu3LRxmzZtolWrVjlKAwAAAAAAAFA3aIAFUI/1Paw4zjy2Q8baBxu2xe9fWpzdQAAAAAAAAAAA0JAtfC5i7Xu5TvGRNe9GvPt8rlNk1dChQyM/Pz81njdvXqxcuXKP66dOnRoVFR99iGAikUg1vurQoUN06dIltW5vjbSSyWS8+OKLaXO12QBr1qxZccopp8SKFSvS5hs1ahQ9evSI/v37R7t27VLzc+fOjdNPPz22bt1ao3vKyspizJgx8dJLL1WpHX744TFw4MA46qijoqCgICIiduzYERdccEFMmjSpxt/TypUro6SkJB555JEqtcMOOyz69+8f/fr1q9L8acWKFTFy5MgqP98Nxf333582HjVqVI6SAAAAAAAAANQdGmAB1HPXjOkRhfmJjLVfvLAwNmwpz3IiAAAAAAAAAABooGb8b64TpJv+61wnyKrmzZvHcccdlza3t+ZVu9aOPvroaN26dWr8cTOsiNhrk6c5c+bE6tWrU+ODDjoojj/++Brl3pPy8vL48pe/HGvXrk3NNW/ePO66665YuXJlzJs3L2bMmBEffvhhvPLKKzFixIiIiHj77bdj7NixNbrrhhtuiOnTp6fGiUQiLr300li4cGGUlpbGtGnTYsGCBbFixYq49dZbo1mzZrFz58742te+VqN7Kisr47zzzovXXnstNde2bdu4/fbb44MPPoglS5bEjBkz4o033ojVq1fHiy++GJ/5zGdSa7ds2RLnn39+rFmzpsrZd955Z0yYMCEmTJiQNn/MMcek5jP9uPDCC2v0PdS2ysrKuPPOO+NXv/pVai4vLy9+8IMf5DAVAAAAAAAAQN1QkOsAAHw6h7dpFl8Z3Dl+99LiKrWN23bGvZMWxg2n9cp+MAAAAAAAAAAAaEgqd0YsfC7XKdK9+3xEZUVEXn6uk2RNSUlJzJgxIzWePHlynH322RnX7toAa9eGVx+PH3jggYiIePHFFyOZTEYiUfWDCHdvsDV06NAoKKid57c//elP4+23306NW7VqFZMnT44+ffpUWTt48OCYOHFiXHTRRfHggw/G4sWLq33PzJkz4xe/+EXa3H333ReXX355lbVt2rSJ6667Lk466aQYNWpULFq0qPrfUETcfvvt8cILL6Tlfvzxx6Ndu3ZV1ubl5cXQoUNjwoQJcdVVV8U999wTERFLly6Nm2++Oe6666609f379894Z6tWrWLUqFE1yllbnn322Yzz5eXlsXbt2pg1a1b8/e9/j/nz56dqiUQifvKTn8SAAQOyFRMAAAAAAACgztIAC6AB+PZnjopHZiyJsh0VVWq/nbo4LjrxiOjQsmkOkgEAAAAAAAAAQAOxal7Ezm25TpGufOtHuQ45OtdJsmbEiBFx5513psa7N6j62NatW9MaZY0YMSKtvmtDrDVr1sTs2bMzNp7a/fySkpJPlHt3FRUVcffdd6fN3X///RkzfCyRSMT//u//xmuvvRZz5syp9l333HNPVFZWpsYXX3xxxuZXuxo0aFD89Kc/jUsvvbTa92zZsiXGjh2bGrdv3z7GjRsXrVu33uu+vLy8+NnPfhYzZsyIV155JSIifvOb38SPfvSjaNmyZbXvz4XRo0dXe21eXl6MGDEibrzxxhg5cuT+CwUAAAAAAABQj+TlOgAAn97BBzWOK0qOzFjbsbMyfjrhnSwnAgAAAAAAAACABmb5m7lOkNkHb+Y6QVYNHz488vL+9fz17bffjvXr11dZ98orr8SOHTvS9u2qR48e0a5du9R4T420pkyZkjaurQZY48ePj2XLlqXGAwcOjC9+8Yv73FdYWBj//d//Xe17duzYEX/+859T4/z8/LjllluqtfeSSy6J7t27V/uuBx54INauXZsa33TTTftsfrVrrhtuuCE13rx5czzzzDPVvrs+GDlyZFxxxRVV/l8EAAAAAAAAOJBpgAXQQHx9WJc4+KDGGWuPvr405q/YlOVEAAAAAAAAAADQgKx4O9cJMqurufaTVq1aRd++fVPjysrKKk2qItIbWnXt2jU6duxYZc2wYcNSX0+aNKlK/d13301rUtWsWbMYOHDgJ86+q4kTJ6aNL7zwwmrvPeOMM6Jt27bVWjtz5szYvHlzajxy5Mjo0KFDtfYmEon4yle+Uu1c48aNS31dUFAQ5513XrX3RkScfPLJac3NMv261mfPP/98nH/++dGzZ8945ZVXch0HAAAAAAAAoE7QAAuggShqXBBXjeqWsVaZjLj9mXlZTgQAAAAAAAAAAA3ItvW5TpDZ1vW5TpB1JSUlaeNdm119bNeGVsOHD894zq7zmZot7d4U68QTT4zCwsIaZd2TadOmpY1HjhxZ7b0FBQUxdOjQaq2dMWNG2njIkCHVvqcm65PJZEydOjU17t69e7Ro0aJGdxUVFUWbNm1S47lz59Zofy4kk8mMPyorK2PDhg3x1ltvxb333hvHHHNMas/ChQujpKQknn766RwmBwAAAAAAAKgbNMACaEDOG9gpuhxclLH27NyVMW3R2iwnAgAAAAAAAACABqKiPNcJMqvYkesEWTdixIi08e4NsMrLy+OVV17Z4/qP7doA64MPPogFCxbs9dzdG299GosWLUp9nZ+fHz179qzR/r59+1Zr3bJly9LGvXr1qtE91V3/4Ycfxtq1/3qfNmfOnEgkEjX+sWrVqtQZu55X3yQSiWjRokX07ds3rrzyynj99dfjO9/5Tqq+Y8eOOO+886r8+gAAAAAAAAAcaDTAAmhACvPz4ppTeuyx/j9PzY1kMpnFRAAAAAAAAAAA0EDkF+Y6QWb5jXKdIOt2b2j1+uuvx+bNm1Pj6dOnx9atW1PjXRtd7apfv37RvHnz1HjSpElp9f3ZAGv9+vWpr4uLi6OgoKBG+9u0aVPjez6+qyZatmxZrXVr1qyp0bnVsWHDhlo/M1fy8/PjZz/7WQwZMiQ1t2HDhrj55ptzmAoAAAAAAAAg9zTAAmhgTutzaBzbqWXG2hvvr49nZn+Y3UAAAAAAAAAAANAQNGmZ6wSZNW2Z6wRZ17Zt2+jdu3dqvHPnznjppZdS410bVx166KHRrVu3jOfk5+fHiSeemHHf0qVLY9GiRalxkyZNYvDgwbWSPyLSGnY1a9asxvuLioqqtW779u1p40aNatYwrXHjxtVat3ujrdpQWVlZ62fmUiKRiO985ztpc3/84x+jvLw8R4kAAAAAAAAAcq9mHxcFQJ2XSCTi+lN7xvn3v5KxPvaZeTGqV7soyNcDEQAAAAAAAAAAqu3QvrlOkFldzbWfjRgxIubMmZMaT548OcaMGZP6+mPDhw/f6znDhw+P8ePHV9m369cREYMHD652M6jqKCoqio0bN0ZExJYtW2q8v6ysrFrriouL08a7Nt6qjo8z7svuTbx69+4dd911V43u2l3Tpk0/1f66aMiQIWnjsrKyePPNN2PgwIE5SgQAAAAAAACQWxpgATRAJx7ZJk7q0TZemL+qSu29VWXx8Iyl8eXBh+cgGQAAAAAAAAAA1FMd+uU6QWbt++U6QU6UlJTEfffdlxp/3LCqsrIypk6dmpofMWLEXs/ZtUFWaWlpvP/++3H44YdXaYBVUlJSG7FTWrZsmWoutWHDhigvL4/CwsJq71+zZk211rVu3TptvHz58uqHrMH6gw8+OG2cTCZj1KhRNbrrQNCuXbsqc0uWLNEACwAAAAAAADhg5eU6AAD7x7Wn9oxEInPtZ8++E1t27MxuIAAAAAAAAAAAqM/a9owoaJLrFOkKm36U6wC0e0OqadOmxbZt2+LNN99MNZaK2HcDrMGDB0ejRo1S40mTJkVE7PcGWF27dk19XVFREfPmzavR/rfeeqta63r37p02fuONN2p0z5tvvlmtdYceemg0bdo0NS4tLY3y8vIa3XUgyPRzsn379hwkAQAAAAAAAKgbNMACaKB6tW8RXziuY8bayk3b47dTF2c3EAAAAAAAAAAA1Gd5BRFHnZzrFOmO/ExEXn6uU+RE+/bto1u3bqnx9u3b49VXX01rXNWyZcvo06fPXs9p0qRJDBgwIDWePHlyrFq1KubOnZuaa9SoUZx44om1mD5i4MCBaeOPG29Vx86dO2Pq1KnVWjto0KC08bhx46KysrLadz3++OPVWldYWBhDhw5Njbds2RKvvvpqte+pqcQunw6ZTCb32z217f33368y165duxwkAQAAAAAAAKgbNMACaMCuHt09GuVn/qP+vonvxtqyHVlOBAAAAAAAAAAA9diAr+c6QbqBl+Y6QU6NGDEibTx58uS0RlLDhg2LvLx9P5UdPnx42hm7NtGK+KhZVdOmTT9l2nQjR45MGz/wwAPV3vvkk0/G6tWrq7W2Q4cO0b9//9R4+fLl8dhjj1Vr7/vvvx9PPPFEtXOdeuqpaeOf//zn1d5bU0VFRamvt2zZst/uqW3PPPNMlbnu3bvnIAkAAAAAAABA3aABFkADdlirZnHRkM4Za5u274x7nl+Y5UQAAAAAAAAAAFCPHXVyRJsjc53iI22OjDjyM7lOkVMlJSVp44kTJ8aLL76YGu/a2Gpvdl33zjvvxMMPP7zXe2rDKaecEh07dkyNp0+fHo8++ug+95WXl8cNN9xQo7suu+yytPHVV18da9as2eueysrKuPLKK2Pbtm3VvufSSy+Nli1bpsZ//etf48knn6xR1upq3bp16uvFixfvlztq27p16+InP/lJ2lzfvn2jU6dOOUoEAAAAAAAAkHsaYAE0cN8ceVQ0b1KQsfbgK4tjydr68+l3AAAAAAAAAACQcyd8M9cJPlJXcuRQpgZYq1evTo1HjBhRrXOGDh0aeXn/elL717/+da/31Ib8/Pz49re/nTZ32WWXxaxZs/a4J5lMxqWXXhpz586t0V0XXXRRdOvWLTUuLS2N0aNHx3vvvZdx/caNG+OrX/1qjBs3LhKJRLXvKS4ujuuuuy41rqysjPPPPz8ef/zxGuV97bXX4ktf+tJe1xx99NGpr1evXh0TJ06s0R3Ztnjx4jjttNNi6dKlafPf//73c5QIAAAAAAAAoG7I3BEFgAajVVGjuHLkkTH26flVauUVybhz/Pz42XnH5SAZAAAAAAAAAADUQwMuiXjrLxFLpuUuQ6dBH+U4wB1++OHRuXPnKC0tjYiPGi59rFmzZtG/f/9qndOyZcvo06dPvPXWW1XOKSgoiCFDhtRi6n+5+uqr48EHH4w5c+ZERMS6detiyJAhccstt8RFF10ULVq0SK2dNm1aXHvttTFp0qSIiDjiiCNi8eLF1bqnSZMmcf/998dnPvOZ1Pf2xhtvRJ8+feKcc86Jk046Kdq1axcbNmyIGTNmxEMPPRQrVqyIiIgrrrgi7rvvvmp/T9dee21MmTIlxo0bFxERmzZtirPOOivOOuus+Pa3vx1Dhw6Nxo0bp+3Ztm1bvPXWW/Hss8/Go48+Gq+//npERPzlL3/Z4z1jxoyJp556KjX+whe+EFdccUX0798/iouL0xqade3aNbp27Vrt76Emnn322YzzyWQyNm/eHIsXL44pU6bEP//5zygvL09bM2rUqLjwwgv3Sy4AAAAAAACA+kIDLIADwCVDu8QDL5XGio3bqtQee3N5XDq8a/TpWJyDZAAAAAAAAAAAUM8k8iI+f2/EfcMidlZ9j7PfFTT56P5E3r7XHgBKSkrigQceqDJ/wgknRGFhYbXPGT58eKoB1q769+8fBx100KfKuCeNGjWKP/3pTzFy5MhYt25dRHzUMOo73/lOXHPNNdGlS5coKiqKJUuWxMqVK1P7jjnmmPjGN74R3/zmN6t9V0lJSfz2t7+Nr33ta6kmWFu3bo0HHngg489fRMTgwYPjJz/5SVoDrIKCvT89zsvLi4ceeijOOuusmDhxYkR81Azq73//e/z973+Pxo0bR+fOnaNVq1axbdu2WL9+fSxdujQqKiqq/b1ERFx44YVxyy23xOrVqyMiYv369XHbbbdlXHvjjTfGTTfdVKPzq2v06NGfaF9JSUk89thjkUgkajkRAAAAAAAAQP3i9QPAAaBJYX58b3S3PdbHPjM/i2kAAAAAAAAAAKCeO7hbxMk/zM3do2786H4i4qNGQpkMHz68Rufsaf2ezq8txxxzTDz99NPRrl27tPnt27fHvHnz4rXXXktrftWrV6948skno2nTpjW+68ILL4zHH388DjvssH2uPeecc2LChAlVGlMVF+/7gxaLi4tjwoQJcfXVV1dpmLV9+/Z455134tVXX42ZM2dGaWlpxuZXnTp12usdrVu3jkcffbTKz1td16ZNm7jzzjvj+eefj6KiolzHAQAAAAAAAMg5DbAADhBfPP6wOKpd5k8inPzOqpi6cHWWEwEAAAAAAAAAQD124rciBn8ju3eecGXECd/M7p113J4aVI0YMaJG5+ypAVZNz/kkBg0aFHPnzo3LLrssmjVrlnFN8+bN45prronp06dXq4HVnpxxxhkxd+7c+NWvfhVjxoyJTp06RaNGjaJZs2bRs2fPuPTSS+PFF1+Mhx9+OJo3bx5r165N21+dBlgREQUFBXHnnXfG/Pnz4/LLL69Wo6ojjjgiLr/88hg/fnwsXrx4n+tHjBgR8+bNi3vuuSfOPPPM6NKlSzRv3jzy8urG8+hmzZpF+/btY+DAgfGNb3wjHn744Vi+fHlcffXVdSYjAAAAAAAAQK4lkslkMtchoL6bPXt29OnTJzWeNWtWHH300TlMBJlNmPNhXPbAjIy1vh2L4x/fGhp5eYkspwIAAAAAAACA2uc9B+w/tfn7a+fOnbFgwYK0uW7dukVBQcGnyphVT10X8ep9+/+eE66MOPXW/X8POVVWVhYvvPBClJaWxrp166K4uDh69eoVw4YNiyZNmmQ9zz//+c8488wzU+Obbropbrzxxhqfk0wmY/bs2TF79uxYvXp1rF+/Pho3bhzFxcXRpUuX6N27d3To0KE2ox9QGsSfpQAAAAAAAMAnVp/fSvlXTYADyKhe7WJA51Yxo3RdldrbyzbEk29/EGce6xERAAAAAAAAAABU22m3RbTqHPHsjyJ2bqv98wuaRIy6MeKEb9b+2dQ5RUVF8dnPfjbXMVKee+65tPGAAQM+0TmJRCL69OmT9uAaAAAAAAAAAPJyHQCA7EkkEnH9aT33WL9j/PzYsbMyi4kAAAAAAAAAAKABOOGbEd94MaLToNo9t9Ogj87V/Ioc2LhxY/z+979PjQsKCmLw4ME5TAQAAAAAAABAQ6MBFsABZsARrWN070My1krXbIk/TXs/y4kAAAAAAAAAAKABOLhbxCXPRJxxZ0SbIz/dWW2O/OicS5756FyoBclkskZrr7zyyli3bl1q7swzz4yDDz54f0QDAAAAAAAA4AClARbAAei6U3tEXiJz7e7nFsTm7TuzGwgAAAAAAAAAABqCRF7EwEsj/v31iK/+PaLnGRGFTau3t7DpR+u/+veP9g+89KPzoJaMHj06fv3rX0dZWdle161YsSLOPffceOihh1JziUQivvvd7+7nhAAAAAAAAAAcaApyHQCA7DuqXfM4d0Cn+PP0JVVqa8p2xP2T34vvje6eg2QAAAAAAAAAANBAHPmZj35UVkSsmhfxwZsRK96O2Lo+omJHRH6jiKYtIw7tG9G+X0TbnhF5+bnNTIO2cOHCuOyyy+Kqq66KMWPGxKBBg6Jr165RXFwcZWVlsXz58pgyZUo88cQTsW3btrS93/zmN2PEiBE5Sg4AAAAAAABAQ6UBFsAB6rujusdjby6LbeWVVWr3T3kvvnLC4dGueZMcJAMAAAAAAAAAgAYkLz/ikKM/+gF1wJYtW+Kxxx6Lxx57rFrrzz777Ljjjjv2bygAAAAAAAAADkh5uQ4AQG4cWtwkLhnaJWNty46K+PlzC7OcCAAAAAAAAAAAgP3lsMMOq9H6Nm3axO233x4PP/xwNGniwxQBAAAAAAAAqH0FuQ4AQO5cUXJkPDTt/Vi/pbxK7U/T3o9LhnWJLgcX5SAZAAAAAAAAAAAAtenFF1+MN998M5599tl49dVXY8GCBbF06dLYvHlzVFZWRqtWreLggw+OAQMGxEknnRRnn312HHTQQbmODQAAAAAAAEADpgEWwAGsuGlhfPuko+K/npxbpbazMhl3jJ8fv/jy8TlIBgAAAAAAAAAAQG3r169f9OvXL9cxAAAAAAAAACAiIvJyHQCA3LrghM7RsWXTjLUn3/ogZi5Zn91AAAAAAAAAAAAAAAAAAAAAAECDpwEWwAGuSWF+fH9M9z3W/+epuZFMJrOYCAAAAAAAAAAAAAAAAAAAAABo6DTAAiA+369j9Dy0ecbaK++tjUnvrMpyIgAAAAAAAAAAAAAAAAAAAACgIdMAC4DIz0vEdaf13GP91qfmRUVlMouJAAAAAAAAAAAAAAAAAAAAAICGTAMsACIiYmT3tnFi1zYZa/NWbIp/vLksy4kAAAAAAAAAAAAAAAAAAAAAgIZKAywAIiIikUjE9af13GP9zvHvxLbyiiwmAgAAAAAAAAAAAAAAAAAAAAAaKg2wAEg5tlPLOKNv+4y1Zeu3xh9eKc1yIgAAAAAAAAAAAAAAAAAAAACgIdIAC4A0PzilRxTkJTLW7nlhYWzYWp7lRAAAAAAAAAAAAAAAAAAAAABAQ6MBFgBpuhxcFOcPOjxjbf2W8vjlpHeznAgAAAAAAAAAAAAAAAAAAAAAaGg0wAKgin8/+aho1ig/Y+03UxfFig3bspwIAAAAAAAAAAAAAAAAAAAAAGhINMACoIp2zZvEpcO7ZqxtK6+Mnz37TpYTAQAAAAAAAAAAAAAAAAAAAAANiQZYAGR0+Yiu0aaoUcbawzOWxMKVm7KcCAAAAAAAAAAAAAAAAAAAAABoKDTAAiCjgxoXxHdO7paxVpmMGPv0/CwnAgAAAAAAAAAAAAAAAAAAAAAaCg2wANij8wcdHp3bNMtYGz/nw5ixeG2WEwEAAAAAAAAAAAAAAAAAAAAADYEGWADsUaOCvPjBmB57rN/61LxIJpNZTAQAAAAAAAAAAAAAAAAAAAAANAQaYAGwV2f0bR99OxZnrM0oXRfPzl2Z5UQAAAAAAAAAAAAAAAAAAAAAQH2nARYAe5WXl4jrT+u5x/rYp+fFzorKLCYCAAAAAAAAAAAAAAAAAAAAAOo7DbAA2KehRx0cw7sdnLG2YOXmePT1pVlOBAAAAAAAAAAAAAAAAAAAAADUZxpgAVAt15/Wc4+1n05YEFt3VGQxDQAAAAAAAAAAAAAAAAAAAABQn2mABUC1HN2hOM7q1yFjbcXGbfG7lxZnNxAAAAAAAAAAAAAAAAAAAAAAUG8V5DoAAPXH98f0iHFvr4gdFZVVavdOXBjnDewUrYoa5SAZAAAAAAAAAADUTTsrd8Z769+LOWvnxLy182Lj9o1RXlkehXmF0aJxi+jZumf0bt07urbsGgV5nnXWd0cccUSUlpZGRETnzp1j8eLF++We3/3ud/G1r30tNf7tb38bF1988X65CwAAAAAAAAD2Fy8lAKi2Tq2bxQUndI7fTF1UpbZp2864d+LC+D9n9M5BMgAAAAAAAAAAqFumLpsaD89/OF5a/lJsq9i2z/VN8pvEkA5D4twe58bQjkOzkBCobRUVFTF79uyYP39+LF++PMrKyqKgoCBatWoVBx98cBx77LHRtWvXXMcEAAAAAAAAqDM0wAKgRr79maPi4RlLYvP2nVVqv3+pNC4ackQc1qpZDpIBAAAAAAAAAEBuVSYr4+H5D8cf5v4hSjeW1mjvtopt8fyS5+P5Jc9H5xad44JeF8S5Pc6NvETefkpbf/z4xz+OH/7wh6nxeeedF3/6059qdEa3bt1i4cKFqXGjRo1i/fr10bRp02qf8aMf/Shuuumm1PiLX/xi/PWvf61RDhqmp556Kn7/+9/HuHHjYtOmTXtde/DBB8eYMWPioosuilGjRkVent/jAAAAAAAAwIHLv5gCUCOtixrFN0oyfwLdjorK+OmEBVlOBAAAAAAAAAAAubdow6K48KkL45ZXb6lx86vdlW4sjVtevSUufOrCWLRhUS0lrL9KSkrSxlOmTKnR/uXLl6c1v4qI2LFjR7zyyis1OmfSpEl7zUX2JBKJ1I+RI0fmLMfUqVPjuOOOi9NPPz3+8pe/7LP5VUTE6tWr46GHHopTTjklunXrFo888kgWkgIAAAAAAADUTRpgAVBjlwzrEu2aN85Y+9sbS2PuBxuznAgAAAAAAAAAAHLnwTkPxjlPnBMzV82s1XNnrpoZ5zxxTjw458FaPbe+GTx4cDRp0iQ1XrZsWbz77rvV3j958uQazWdSXl5epWGWBlgHtptvvjlGjBgRb775ZpVaXl5etG3bNo4++ujo379/dOzYMQoLC6use++99+Lcc8+Na665JguJAQAAAAAAAOoeDbAAqLFmjQriu6O6Z6wlkxFjn56X5UQAAAAAAAAAAJAbt067NcZOHxvbK7bvl/O3V2yPsdPHxq3Tbt0v59cHjRs3jkGDBqXN1aR5VW00wJo+fXps3bo1NW7dunX07du3yrrFixdHMpmMZDIZixcvrvb51C9XXnll3HjjjVFZWZk2/4UvfCH+/Oc/x5o1a2LlypUxa9asmDFjRixdujS2bdsWL774Ylx77bXRqVOntH2rVq3KZnwAAAAAAACAOkMDLAA+kXMHHBZdDy7KWHth/qp4+d01WU4EAAAAAAAAAADZdeu0W+OPc/+Ylbv+OPePB3QTrJKSkrTxpEmTqr1310ZXxx9/fOrrl19+OcrLy2t8RkTE8OHDI5FIVDsDDcfdd98d9913X9rc0UcfHS+99FL87W9/iy996UvRsmXLKvvy8vJi6NChcdttt8WCBQvi9ttvj1atWmUpNQAAAAAAAEDdpAEWAJ9IQX5eXHtqjz3Wb316XiSTySwmAgAAAAAAAACA7HlwzoNZa371sT/O/WM8OOfBrN5ZV+zeAGv3hlR7smbNmpgzZ05qfP3110de3kfPZ7du3RrTp0+v1jm737d7Hg4Mr7/+elxzzTVpcyeccEJMmTIlTjzxxGqf07hx4/jBD34Qs2bNisGDB9d2TAAAAAAAAIB6QwMsAD6xU44+NI47vGXG2swl6+OpWSuyGwgAAAAAAAAAALJg0YZFcdfrd+Xk7rtevysWbViUk7tz6cQTT4zCwsLUeNGiRbF06dJ97psyZUrqg/wKCgri9NNPjz59+qTq1WmkVVlZGVOnTk2b0wDrwHTppZfGjh07UuP27dvHuHHjolWrVp/ovA4dOsSkSZPi3HPPra2IAAAAAAAAAPVKQa4DAFB/JRKJuP7UnvGlX72SsX77M/NjdO9DojBfv0UAAAAAAAAAABqGymRl/OfU/4ztFdtzcv/2iu3xn1P/Mx447YHISxw473KaNWsWAwYMiJdffjk1N3ny5Pjyl7+81327Nrg67rjjoqioKIYPHx5vvfVWqn799dfv9Yw333wzNm7cmBoXFxdHv379PsF3sW9btmyJiRMnRmlpaaxduzaKi4ujV69eMXTo0GjSpEmt3ZNMJmPatGkxd+7cWLFiRRQUFETnzp1j6NCh0aFDh1q752NbtmyJqVOnxrJly2LlypWRn58f7dq1i969e8fxxx8fiUSi1u+sbc8++2y88cYbaXO//OUvP3Hzq481btw4Tj/99E91BgAAAAAAAEB9pQEWAJ/K4K5t4uSe7eK5eSur1BatLos/T18SXz2hcw6SAQAAAAAAAABA7Xt4/sMxc9XMnGaYuWpmPDz/4Tiv53k5zZFtJSUlaQ2wJk2atM8GWJMmTUp9PWLEiIiIGD58ePziF7+IiIipU6dGRUVF5OfnV+uMiIhhw4ZFXl7m5mNHHHFElJaWRkRE586dY/HixXvN97F169bFDTfcEH/4wx+irKysSr158+Zx5ZVXxg9/+MMoKiqq1pmZVFZWxj333BO33357LF26tEo9kUjEKaecEmPHjo2+ffum5j5WUlISEydOrPZ9U6dOjVtuuSWef/752L49c9O4du3axRVXXBHXXHNNNG/efI9njRw5ssqvRcRHvz57a6B14403xk033VTtzHty5513po2PP/74OPPMMz/1uQAAAAAAAAAHsgPno78A2G+uPbVn5O3h/dBdzy6Isu07sxsIAAAAAAAAAAD2kwfnPJjrCBER8Ye5f8h1hKwrKSlJG0+ePHmv6zdu3BgzZ/6rWdnw4cPT/vvxmjfffHOv5+x+z+45Pq0ZM2ZE796945e//GXG5lcREZs2bYqxY8fGwIEDMzauqo7169fH8OHD46qrrtrjGclkMp5++ukYMGBA/OUvf/lE90RElJWVxbnnnhvDhg2Lp556ao/NryIiVq5cGT/+8Y+je/fuMX369E985/60adOmmDBhQtrcZZddlqM0AAAAAAAAAA2HBlgAfGo9Dm0eXzz+sIy11Zu3x/++uCjLiQAAAAAAAAAAoPZNXTY13t/0fq5jRERE6cbSeGn5S7mOkVVDhw6N/Pz81HjevHmxcuXKPa6fOnVqVFRUREREIpFINb7q0KFDdOnSJbVub420kslkvPjii2lztdkAa9asWXHKKafEihUr0uYbNWoUPXr0iP79+0e7du1S83Pnzo3TTz89tm7dWqN7ysrKYsyYMfHSS1X/nzn88MNj4MCBcdRRR0VBQUFEROzYsSMuuOCCmDRpUo2/p5UrV0ZJSUk88sgjVWqHHXZY9O/fP/r16xetWrVKq61YsSJGjhxZ5ee7Lnj55ZdT/y997POf/3yO0gAAAAAAAAA0HBpgAVArvje6ezQqyPzXyi8nvRtrNu/5E/wAAAAAAAAAAKA+eHj+w7mOkOYv8/6S6whZ1bx58zjuuOPS5vbWvGrX2tFHHx2tW7dOjT9uhhURe23yNGfOnFi9enVqfNBBB8Xxxx9fo9x7Ul5eHl/+8pdj7dq1qbnmzZvHXXfdFStXrox58+bFjBkz4sMPP4xXXnklRowYERERb7/9dowdO7ZGd91www0xffr01DiRSMSll14aCxcujNLS0pg2bVosWLAgVqxYEbfeems0a9Ysdu7cGV/72tdqdE9lZWWcd9558dprr6Xm2rZtG7fffnt88MEHsWTJkpgxY0a88cYbsXr16njxxRfjM5/5TGrtli1b4vzzz481a9ZUOfvOO++MCRMmxIQJE9LmjznmmNR8ph8XXnhhjb6HTKZMmZI27tChQ7Rv3/5TnwsAAAAAAABwoCvIdQAAGoYOLZvG14YcEb+c/F6VWtmOivj58wvjps8dnYNkAAAAAAAAAADw6e2s3BlTl0/NdYw0Ly1/KSoqKyI/Lz/XUbKmpKQkZsyYkRpPnjw5zj777Ixrd22AtWvDq4/HDzzwQEREvPjii5FMJiORSOz1jIiIoUOHRkFB7Ty//elPfxpvv/12atyqVauYPHly9OnTp8rawYMHx8SJE+Oiiy6KBx98MBYvXlzte2bOnBm/+MUv0ubuu+++uPzyy6usbdOmTVx33XVx0kknxahRo2LRokXV/4Yi4vbbb48XXnghLffjjz8e7dq1q7I2Ly8vhg4dGhMmTIirrroq7rnnnoiIWLp0adx8881x1113pa3v379/xjtbtWoVo0aNqlHOmpo3b17aePdGbAAAAAAAAAB8Mnm5DgBAw/HNkUdFiyaZH3f98dXSKF1TluVEAAAAAAAAAABQO95b/15sr9ie6xhptlVsi/c2VP3AuoZsxIgRaePdG1R9bOvWrWmNsnbft2tDrDVr1sTs2bMznrP7+SUlJTXKuycVFRVx9913p83df//9GZtffSyRSMT//u//Ru/evWt01z333BOVlZWp8cUXX5yx+dWuBg0aFD/96U9rdM+WLVti7NixqXH79u1j3LhxGZtf7SovLy9+9rOfxQknnJCa+81vfhPr16+v0f3709q1a9PG+/qeAAAAAAAAAKgeDbAAqDXFzQrjWycdlbFWXpGMO8e/k+VEAAAAAAAAAABQO+asnZPrCBnNWVM3c+0vw4cPj7y8fz1/ffvttzM2SnrllVdix44daft21aNHj7QmRntqpDVlypS0cW01wBo/fnwsW7YsNR44cGB88Ytf3Oe+wsLC+O///u9q37Njx47485//nBrn5+fHLbfcUq29l1xySXTv3r3adz3wwANpjaJuuummaN26dbX25ufnxw033JAab968OZ555plq372/7d4Aq2XLlrkJAgAAAAAAANDAaIAFQK26aMgR0b64Scba4zOXx9tLN2Q5EQAAAAAAAAAAfHrz1s7LdYSM6mqu/aVVq1bRt2/f1LiysrJKk6qI9IZWXbt2jY4dO1ZZM2zYsNTXkyZNqlJ/991305pUNWvWLAYOHPiJs+9q4sSJaeMLL7yw2nvPOOOMaNu2bbXWzpw5MzZv3pwajxw5Mjp06FCtvYlEIr7yla9UO9e4ceNSXxcUFMR5551X7b0RESeffHJac7NMv665smnTprRxUVFRjpIAAAAAAAAANCwaYAFQq5oU5sfVo/f8qX+3PX1gPbgDAAAAAAAAAKBh2Lh9Y64jZLRxR93MtT+VlJSkjXdtdvWxXRtaDR8+POM5u85nara0e1OsE088MQoLC2uUdU+mTZuWNh45cmS19xYUFMTQoUOrtXbGjBlp4yFDhlT7npqsTyaTMXXq1NS4e/fu0aJFixrdVVRUFG3atEmN586dW6P9+1Pz5s3TxmVlZTlKAgAAAAAAANCwaIAFQK37t+MPi+6HHJSx9uLC1TFlwaosJwIAAAAAAAAAgE+nvLI81xEyqqu59qcRI0akjXdvgFVeXh6vvPLKHtd/bNcGWB988EEsWLBgr+fu3njr01i0aFHq6/z8/OjZs2eN9vft27da65YtW5Y27tWrV43uqe76Dz/8MNauXZsaz5kzJxKJRI1/rFr1r7dlu56Xa61bt04bb9iwIUdJAAAAAAAAABoWDbAAqHX5eYm47tQ9P8i69al5UVmZzGIiAAAAAAAAAAD4dArzCnMdIaO6mmt/2r2h1euvvx6bN29OjadPnx5bt25NjXdtdLWrfv36RfPmzVPjSZMmpdX3ZwOs9evXp74uLi6OgoKCGu1v06ZNje/5+K6aaNmyZbXWrVmzpkbnVkddajK1ewOslStX5igJAAAAAAAAQMOiARYA+8VneraLQV1aZ6zNXr4xnnhreZYTAQAAAAAAAADAJ9eicYtcR8ioRaO6mWt/atu2bfTu3Ts13rlzZ7z00kup8a6Nqw499NDo1q1bxnPy8/PjxBNPzLhv6dKlsWjRotS4SZMmMXjw4FrJHxFpDbuaNWtW4/1FRUXVWrd9+/a0caNGjWp0T+PGjau1bvdGW7WhsrKy1s/8pHr2TP9AyDfeeCNHSQAAAAAAAAAalpp9XBQAVFMikYjrT+sZ/3bvSxnrtz8zP07tc2g0LsjPcjIAAAAAAAAAAKi5nq177ntRDtTVXPvbiBEjYs6cOanx5MmTY8yYMamvPzZ8+PC9njN8+PAYP358lX27fh0RMXjw4Go3g6qOoqKi2LhxY0REbNmypcb7y8rKqrWuuLg4bbxr463q+DjjvuzexKt3795x11131eiu3TVt2vRT7a9Nu/9/tGzZslixYkUceuihOUoEAAAAAAAA0DBogAXAfnP84a3i1KMPjadnr6hSW7puazz06vvxtaFdcpAMAAAAAAAAAABqpnfr3rmOkFHvNnUz1/5WUlIS9913X2r8ccOqysrKmDp1amp+xIgRez1n18ZGpaWl8f7778fhhx9epQFWSUlJbcROadmyZaq51IYNG6K8vDwKCwurvX/NmjXVWte6deu08fLly6sfsgbrDz744LRxMpmMUaNG1eiuuuzEE0+M/Pz8qKioSM09/vjjcfnll+cwFQAAAAAAAED9l5frAAA0bNec2iPy8xIZaz9/fmFs2lae5UQAAAAAAAAAAFBzXVt2jcb5jXMdI02T/CbRtbhrrmPkxO4NqaZNmxbbtm2LN998M9VYKmLfDbAGDx4cjRo1So0nTZoUEbHfG2B17fqvX7eKioqYN29ejfa/9dZb1VrXu3d6g7Q33nijRve8+eab1Vp36KGHRtOmTVPj0tLSKC9vOG/DmjdvXqWh1/3335+jNAAAAAAAAAANhwZYAOxXR7Y9KL40sFPG2tqyHfGrye9lOREAAAAAAAAAANRcQV5BDO0wNNcx0gzpMCTy8/JzHSMn2rdvH926dUuNt2/fHq+++mpa46qWLVtGnz599npOkyZNYsCAAanx5MmTY9WqVTF37tzUXKNGjeLEE0+sxfQRAwcOTBt/3HirOnbu3BlTp06t1tpBgwaljceNGxeVlZXVvuvxxx+v1rrCwsIYOvRfvz+2bNkSr776arXvqalE4l8fyphMJvfbPbv6/ve/nzaeMWNGjBs3Lit3AwAAAAAAADRUGmABsN999+Ru0bQw80O7X09ZFCs3bstyIgAAAAAAAAAAqLlze5yb6whpvtTzS7mOkFMjRoxIG0+ePDmtkdSwYcMiL2/fT2WHDx+edsauTbQiPmpW1bRp00+ZNt3IkSPTxg888EC19z755JOxevXqaq3t0KFD9O/fPzVevnx5PPbYY9Xa+/7778cTTzxR7Vynnnpq2vjnP/95tffWVFFRUerrLVu27Ld7djV69Ojo169f2tzll18eGzZs+FTnVlRUxPjx4z/VGQAAAAAAAAD1lQZYAOx37Vo0ia8P65KxtrW8In723IIsJwIAAAAAAAAAgJob2nFodG7ROdcxIiKic4vOMaTDkFzHyKmSkpK08cSJE+PFF19MjXdtbLU3u65755134uGHH97rPbXhlFNOiY4dO6bG06dPj0cffXSf+8rLy+OGG26o0V2XXXZZ2vjqq6+ONWvW7HVPZWVlXHnllbFtW/U/3PDSSy+Nli1bpsZ//etf48knn6xR1upq3bp16uvFixfvlzsy+dWvfhWFhYWp8bJly+KMM874xE2wVq5cGaeddlo89NBDtRURAAAAAAAAoF7RAAuArLiipGu0alaYsfaX6Uvi3VWbs5wIAAAAAAAAAABq7oJeF+Q6QkTUnRy5lKkB1urVq1PjESNGVOucoUOHRl7ev57U/vWvf93rPbUhPz8/vv3tb6fNXXbZZTFr1qw97kkmk3HppZfG3Llza3TXRRddFN26dUuNS0tLY/To0fHee+9lXL9x48b46le/GuPGjYtEIlHte4qLi+O6665LjSsrK+P888+Pxx9/vEZ5X3vttfjSl7601zVHH3106uvVq1fHxIkTa3THJzVw4MC47bbb0uamTp0aw4cPj2nTplX7nIqKivjNb34Tffr0iQkTJtR2TAAAAAAAAIB6QwMsALKieZPC+PfPdMtYq6hMxh3PzM9yIgAAAAAAAAAAqLlze5wbx7Y9NqcZjm17bJzb49ycZqgLDj/88OjcuXNqXFlZmfq6WbNm0b9//2qd07Jly+jTp0/GcwoKCmLIkCG1kLaqq6++Onr37p0ar1u3LoYMGRI///nPY+PGjWlrp02bFieddFI88MADERFxxBFHVPueJk2axP3335/W5OuNN96IPn36xEUXXRS/+93vYty4cfGnP/0pvv/970ePHj3ioYceioiIK664okbf07XXXhunn356arxp06Y466yz4t/+7d/i+eefj+3bt1fZs23btpg2bVr893//d/Tv3z8GDBgQDz/88F7vGTNmTNr4C1/4Qlx//fXxyCOPxPjx4+PZZ59N/dhTo69P6nvf+15ceumlaXNvv/12nHDCCXH22WfHI488Ehs2bKiyr7KyMl555ZX4P//n/0T37t3j61//eqxatapWswEAAAAAAADUNwW5DgDAgeMrJxwev5m6KJau21ql9tSsFfH6++vi+MNb5SAZAAAAAAAAAABUT14iL3489MdxzhPnxPaKqs189rfG+Y3jx0N/HHkJn4EaEVFSUpJqCrWrE044IQoLC6t9zvDhw+Ott96qMt+/f/846KCDPlXGPWnUqFH86U9/ipEjR8a6desi4qOGUd/5znfimmuuiS5dukRRUVEsWbIkVq5cmdp3zDHHxDe+8Y345je/We27SkpK4re//W187WtfSzX42rp1azzwwAMZf/4iIgYPHhw/+clP4r777kvNFRTs/elxXl5ePPTQQ3HWWWfFxIkTIyIimUzG3//+9/j73/8ejRs3js6dO0erVq1i27ZtsX79+li6dGlUVFRU+3uJiLjwwgvjlltuidWrV0dExPr16+O2227LuPbGG2+Mm266qUbn78uvfvWraN++ffzXf/1XJJPJiPjo+3z00Ufj0Ucfjby8vGjbtm20a9cuGjduHB9++GGsWLEiysvLM57Xvn37Ws0HAAAAAAAAUF94/QBA1jQuyI8fjOmxx/qtT81LPQYCAAAAAAAAAIC6qktxl7jq+KtycvdVx18VXYq75OTuuqikpCTj/PDhw2t0zp7W7+n82nLMMcfE008/He3atUub3759e8ybNy9ee+21tOZXvXr1iieffDKaNm1a47suvPDCePzxx+Owww7b59pzzjknJkyYUKUxVXFx8T73FhcXx4QJE+Lqq6+u0jBr+/bt8c4778Srr74aM2fOjNLS0ozNrzp16rTXO1q3bh2PPvpolZ+3bEkkEnHzzTfHxIkTo2/fvlXqlZWV8eGHH8bbb78dM2bMiCVLlmRsftW7d+944okn4n/+53+yERsAAAAAAACgztEAC4Cs+tyxHaJ3+xYZa9MWrY0X5q/MWAMAAAAAAAAAgLrkq72/Gl/p9ZWs3nlBrwviq72/mtU767o9NagaMWJEjc7ZUwOsmp7zSQwaNCjmzp0bl112WTRr1izjmubNm8c111wT06dPr1YDqz0544wzYu7cufGrX/0qxowZE506dYpGjRpFs2bNomfPnnHppZfGiy++GA8//HA0b9481q5dm7a/Og2wIiIKCgrizjvvjPnz58fll19erUZVRxxxRFx++eUxfvz4WLx48T7XjxgxIubNmxf33HNPnHnmmdGlS5do3rx55OVl73n0iBEjYubMmfHPf/4zzj777CgqKtrnnnbt2sVFF10UEydOjFmzZsVnP/vZLCQFAAAAAAAAqJsSyWQymesQUN/Nnj07+vTpkxrPmjUrjj766Bwmgrpt8jur4sLfTMtY63FI8xh31fDIz0tkORUAAAAAAAAADYn3HLD/1Obvr507d8aCBQvS5rp16xYFBQWfKmM23Trt1vjj3D/u93su6HVBXDfouv1+D7lVVlYWL7zwQpSWlsa6deuiuLg4evXqFcOGDYsmTZpkPc8///nPOPPMM1Pjm266KW688cYan5NMJmP27Nkxe/bsWL16daxfvz4aN24cxcXF0aVLl+jdu3d06NChNqPnxM6dO2PWrFkxf/78+OCDD6KsrCwKCgqidevW0bZt2+jXr18cccQR++Xe+v5nKQAAAAAAAPDJ1ee3Uv5VE4CsG97t4Bh6VJuYunBNldr8DzfF315fGucM6JSDZAAAAAAAAAAAUDPXD7o+Oh7UMe56/a7YXrG91s9vnN84rjr+qvhq76/W+tnUPUVFRfHZz3421zFSnnvuubTxgAEDPtE5iUQi+vTpk/bguiEqKCiIfv36Rb9+/XIdBQAAAAAAAKBe0ACrHksmk7F48eJ4++23Y+nSpalPw2rVqlV069YtBg4cWGuf9rV+/fp4++2345133ol169ZFeXl5tGrVKg499NAYPHhwtG/fvlbu+VgymYzXX3893nzzzVi5cmVERBxyyCFx7LHHxvHHHx+JRKJW7wOyK5FIxPWn9ooz73kxY/0nE96JM4/tEE0K87OcDAAAAAAAAACoi7yVoq77au+vxrCOw+I/p/5nzFw1s9bOPbbtsfHjoT+OLsVdau1MqK6NGzfG73//+9S4oKAgBg8enMNEAAAAAAAAADQ0GmDVM+vWrYvHHnssnn766Xj++edj9erVe1xbWFgYZ5xxRnz3u9+NkpKSGt1TWVkZEydOjCeeeCKeffbZmDVr1l7X9+7dO771rW/FxRdfHM2aNavRXbsqLy+Pu+66K372s5/FsmXLMq457LDD4rvf/W585zvficLCwk98F5BbfQ8rjjOP7RBPzFxepfbBhm3xwMuL4/IRR+YgGQAAAAAAAABQF3gr5a1UfdOluEs8cNoD8fD8h+MPc/8QpRtLP/FZnVt0jgt6XRDn9jg38hJ5tZiSA1kymax2U71kMhlXXnllrFu3LjV35plnxsEHH7y/4gEAAAAAAABwAEokk8lkrkNQPd/61rfi17/+dezYsaPGey+88ML4+c9/Hi1atNjn2meeeSa+9rWvxQcffFDje7p16xZ//OMfY+DAgTXeu2TJkvj85z8fb7zxRrXW9+/fP/7xj39Ex44da3xXbZs9e3b06dMnNZ41a1YcffTROUwE9UPpmrIY9ZNJUV5R9a+i4qaFMfmak6K4mcebAAAAAAAAANSc9xz1m7dS6erSW6mI2v39tXPnzliwYEHaXLdu3aKgoP5/vudLy1+Kv8z7S7y0/KXYVrFtn+ub5DeJIR2GxJd6fimGdBiShYQcaEaNGhXnnXdenH/++VFUVLTHdStWrIh///d/j7/+9a+puUQiERMnTowRI0ZkIyo11JD/LAUAAAAAAAD2rT6/lfKvmvXIq6++mvFBV35+frRv3z4OOeSQKC8vj9LS0tiwYUPamgceeCDmzZsXzz33XBx00EF7vWfBggV7fNDVunXrOPTQQ6OoqCg+/PDDeP/996vsLSkpiaeffrpGjxxWrlwZJ510Urz77rtp802bNo2uXbtGZWVlLFq0KLZt+9cjoNdeey1OOumkeOmll3yiGNRTndsUxVcGd47fvbS4Sm3D1vK4d9LCuOG0XtkPBgAAAAAAAADklLdS3ko1BEM6DIkhHYZERWVFvLfhvZizZk7MWzsvNu7YGOWV5VGYVxgtGrWInq17Ru82vaNrcdfIz8vPdWwasIULF8Zll10WV111VYwZMyYGDRoUXbt2jeLi4igrK4vly5fHlClT4oknnkj7Mygi4pvf/KbmVwAAAAAAAADUOg2w6qmWLVvGl7/85TjjjDNi+PDh0bx581StoqIipkyZEj/84Q9jypQpqflp06bFxRdfnPaJXPuSSCRSn/g1cuTI6Nq1a1r9/fffj7vvvjt+9rOfRUVFRUREbN26Nc4888yYO3dudOjQoVr3XHzxxWkPupo0aRK33nprXHbZZdGsWbOIiCgrK4tf/epX8R//8R+phxULFiyISy65JB5//PFqf09A3fLtzxwVj8xYEmU7KqrUfjt1cVx04hHRoWXTHCQDAAAAAAAAAOoCb6W8larv8vPyo1urbtGtVbf4fHw+13EgtmzZEo899lg89thj1Vp/9tlnxx133LF/QwEAAAAAAABwQMrLdQBq5ogjjohf//rXsXz58vjFL34Rp59+etqDroiPPuVw5MiR8cILL8Tll1+eVnv00UfjhRde2Oc9jRo1in//93+P9957L8aPHx+XXHJJlQddERGHH3543HHHHfHMM89E48aNU/MbN26MG264oVrf0/jx4+Opp55KjQsLC+OZZ56Jq666KvWgKyKiqKgovve978XTTz8dhYWFqfknnniiWt8TUDcdfFDjuHzEkRlrO3ZWxs+efSfLiQAAAAAAAACAusBbKW+lgNp12GGH1Wh9mzZt4vbbb4+HH344mjRpsp9SAQAAAAAAAHAg0wCrHvnRj34U8+fPj69//evRtGnTfa7Pz8+Pe++9NwYMGJA2/+tf/3qv+4YMGRLvvPNO3H333XHEEUdUK9vJJ58cY8eOTZv7y1/+Eps3b97n3v/8z/9MG19//fUxYsSIPa4vKSmJ6667Lm3u//7f/1utnEDddOnwLnHwQY0z1v762tJ458NNWU4EAAAAAAAAAOSSt1If8VYKqE0vvvhivPHGG3H77bfH2WefHccee2y0adMmGjduHIWFhdGuXbvo3bt3XHjhhfHb3/42Fi9eHD/4wQ8ikUjkOjoAAAAAAAAADVQimUwmcx2C/euRRx6Jc889NzVu06ZNrF69utbvKS8vj7Zt28aGDRtSc0888UR89rOf3eOet99+O4455pjUuKioKD744IMqn9S4u02bNkX79u2jrKwsNTdnzpzo1avXp/gOPrnZs2dHnz59UuNZs2bF0UcfnZMsUF89+Epp/OdjszLWRvVqF7++aGCWEwEAAAAAAABQn3nPcWDyVio7avP3186dO2PBggVpc926dYuCgoJPlRHgQOLPUgAAAAAAADiw1ee3Unm5DsD+N3z48LTxmjVrYsuWLbV+T2FhYZxwwglpc++///5e9/zjH/9IG5977rn7fNAVEdG8efM455xz0uYee+yx6gUF6qTzBnaKI9o0y1h7du7KmLZobZYTAQAAAAAAAAD1jbdSAAAAAAAAAABQf2iAdQBo1apVlbldP3lwf961r3uefPLJtPGYMWOqfdfo0aPTxv/85z+rvReoewrz8+KaU3rusX7rU3MjmUxmMREAAAAAAAAAUN94KwUAAAAAAAAAAPWHBlgHgGXLllWZa9OmTVbu2ts9yWQy3nrrrbS5IUOGVPuuoUOHpo1nzpypOQ7Uc6f3PTSO7dQyY+3199fHM7M/zG4gAAAAAAAAAKBe8VYKAAAAAAAAAADqDw2wDgBTpkxJG3fu3DkaNWpU6/eUlZXF66+/njbXvXv3Pa4vLS2NLVu2pMZFRUVx+OGHV/u+zp07R7NmzdLuX7JkSQ0SA3VNIpGI60/tucf62Gfmxc6KyiwmAgAAAAAAAADqE2+lAAAAAAAAAACg/tAA6wDwm9/8Jm18+umn75d7Hn744SgrK0uNW7RoUeWTB3c1f/78tHGnTp1qfOfue3Y/E6h/TjyyTYzs0TZj7b1VZfHIa0uznAgAAAAAAAAAqC+8lQIAAAAAAAAAgPpDA6wGbty4cTF58uS0uYsvvrjW79myZUvcfPPNaXNf+cpXorCwcI97Vq5cmTY+7LDDanxvx44d93omUD9dd2rPSCQy13464Z3YsmNndgMBAAAAAAAAAHWet1IAAAAAAAAAAFC/FOQ6APvP2rVr44orrkibO+uss2LQoEG1ftcPfvCDWLx4cWpcVFQU//f//t+97tm8eXPauKioqMb37r5n9zM/iZUrV8aqVatqtGfhwoWf+l7gX3q1bxFfOK5j/O31ZVVqKzdtj99OXRzfOumoHCQDAAAAAAAAAOoib6U+Oe+lAAAAAAAAAADIFQ2wGqjKysq44IILYunSpam54uLiuPvuu2v9rj/96U/x//7f/0ub+5//+Z/o0KHDXvft/gCrSZMmNb67adOmez3zk7j33nvjRz/60ac+B/h0rh7dPf4584PYUVFZpXbfxHfj/EGHR+uiRjlIBgAAAAAAAADUJd5KfTreSwEAAAAAAAAAkCt5uQ7A/nHNNdfEU089lTb3y1/+Mjp16lSr90ybNi2+/vWvp82dfvrp8e1vf3ufe7dt25Y2btSo5o1sGjdunDbeunVrjc8A6qbDWjWLC0/snLG2afvOuOd5nyQKAAAAAAAAAHgrVd8lEokqc5WVVT8wDYA9y/TnZqY/XwEAAAAAAADqGg2wGqC77747fvKTn6TNXXvttfGlL32pVu9ZuHBhnHnmmWkPqXr27BkPPvhgtf7RfPdPMdyxY0eNM2zfvn2vZwL127dOOiqaNynIWHvwlcWxZO2WLCcCAAAAAAAAAOoSb6Xqv7y8qs8Yy8vLc5AEoP7auXNnlblMf74CAAAAAAAA1DWZu4pQbz300EPx3e9+N23u4osvjltvvbVW71m+fHmMGTMmVq5cmZrr1KlTjB8/Plq3bl2tMw466KC08e6fclgdu3+K4e5nfhLf/OY345xzzqnRnoULF8ZZZ531qe8G0rUqahRXjjwyxj49v0qtvCIZP5nwTvz0S/2yHwwAAAAAAAAAyDlvpT79W6mI3L+XSiQS0ahRo7SmYBs3boyioqJaOR/gQLB58+a0caNGjarVoBEAAAAAAAAg1zTAakD++c9/xkUXXRTJZDI192//9m/x61//ulb/EXvt2rUxZsyYWLRoUWqubdu2MWHChOjUqVO1z9n9AVZZWVmNs+y+pzYedbVr1y7atWv3qc8BasfXhnSJB14qjRUbqz78fOzNZXHp8C5xdIfiHCQDAAAAAAAAAHLFW6naa4BVF95LFRcXx6pVq1LjjRs3Rtu2baOgwBNHgH1JJpOxcePGtLnmzZvnKA0AAAAAAABAzeTlOgC144UXXohzzjkndu7cmZobPXp0/OlPf4r8/Pxau2fTpk1x6qmnxuzZs1NzxcXF8cwzz0SPHj1qdNbuj6aWLl1a4zzLli3b65lA/de0UX58b3S3jLVkMuK2p+dnOREAAAAAAAAAkEveSmU+sz4rLk7/8LPKysooLS2NHTt25CgRQP2QTCZj2bJlUV5enjbfokWLHCUCAAAAAAAAqBkfj9YAvPrqq/G5z30utm3blpobMmRI/P3vf49GjRrV2j1bt26Nz372szF9+vTUXLNmzeLJJ5+M4447rsbn7f4IbMmSJTU+Y/c9PXv2rPEZQN33xeMPi/unLIqFKzdXqU1+Z1VMXbg6hh51cA6SAQAAAAAAAADZ5K3UvzSkt1KFhYVRVFQUZWVlqbkdO3bEe++9F82aNYuDDjoomjVrFvn5+ZFIJHKYFCD3KisrY+fOnbF58+bYuHFjleZXhYWF0bhx4xylAwAAAAAAAKgZDbDqubfeeitOO+202Lz5X01hjjvuuBg3blwUFRXV2j07duyIL37xizF58uTUXOPGjeOxxx6LoUOHfqIzO3fuHE2bNo2tW7dGRERZWVmUlpZG586dq7W/tLQ0tmzZkhoXFRVFp06dPlEWoG4ryM+La0/pEZc/+FrG+q1PzYt/fGto5OV54AgAAAAAAAAADZW3Ug37rdQhhxwS77//fuzcuTM1l0wmo6ysLK0xFgB7lkgkokOHDpoFAgAAAAAAAPVGXq4D8MnNnz8/Ro8eHevWrUvN9erVK5555pkoLi6utXsqKiriy1/+cjz11FOpuYKCgvjzn/8co0eP/sTnJhKJOOaYY9LmXnrppWrvnzp1atr4mGOO8Q/20ICN7n1I9O/cKmPt7WUb4sm3P8hyIgAAAAAAAAAgW7yVavhvpRo3bhxHHHFENG7cONdRAOqlRCIRhx9+eDRr1izXUQAAAAAAAACqTQOseqq0tDRGjRoVK1euTM116dIlJkyYEG3btq21e5LJZFxyySXx6KOPpuby8vLit7/9bZx11lmf+vzPfvazaeMJEyZUe+/ua88888xPnQeouxKJRNxwWs891u8YPz927KzMYiIAAAAAAAAAIBu8lTpw3koVFhZG586do3nz5rmOAlCvFBYWan4FAAAAAAAA1EsaYNVDH3zwQZx88smxdOnS1FzHjh3jueeei44dO9bqXd/+9rfjgQceSJu7995744ILLqiV8z/3uc+ljR955JHYvHnzPvdt2rQpHnnkkbS5z3/+87WSCai7BhzROkb3PiRjrXTNlvjz9PeznAgAAAAAAAAA2J+8lTrw3krl5+fHYYcdFt27d4+OHTtGcXFx5Ofn5zoWQJ3TqFGjaNOmTXTp0iWOPPJIza8AAAAAAACAeqkg1wGombVr18bo0aPj3XffTc21bds2JkyYEF26dKnVu2644Ya499570+buuOOOuOKKK2rtjmOOOSYGDhwY06dPj4iIzZs3x9ixY+Pmm2/e676xY8dGWVlZanzCCSdE7969ay0XUHdde0qPeG7uh1GZrFq7+7kF8W/HHxYHNfbXGwAAAAAAAADUd95KfeRAfSuVn58fLVq0iBYtWkRERDKZjMrKykgmMzwaATiAJBKJyMvLi0QikesoAAAAAAAAAJ+aDiH1yKZNm+LUU0+N2bNnp+ZatmwZ48ePj169etXqXbfddlvceuutaXM33nhjfP/736/VeyIibr755jjttNNS41tvvTVGjRoVI0aMyLh+0qRJcdttt6XN/dd//Vet5wLqpm6HNI9zB3SKP09fUqW2evOOuH/ye/G90d1zkAwAAAAAAAAAqC3eSn3EW6l/SSQSkZ+fn+sYAAAAAAAAAADUIg2w6pHPfe5zqU//+9jVV18dq1evjmeffbZGZ/Xv3z9atWqVsfb73/8+rr/++rS5YcOGxbBhw2p8T4cOHfb5aYOnnnpqjBkzJsaPHx8REeXl5XHKKafErbfeGpdddlk0a9YsIiLKysri/vvvjxtuuCHKy8tT+08//fQ4+eSTa5QLqN++O6p7/P2NZbF9Z2WV2v1T3osLTugcbZs3zkEyAAAAAAAAAKA2eCvlrRQAAAAAAAAAAA1fIplMJnMdgupJJBK1dtYLL7wQI0eOzFi7+OKL4/e//32t3HPRRRfF7373u32u+/DDD+PEE0+MRYsWpc03bdo0unbtGslkMt57773Ytm1bWv3II4+Ml19+Odq2bVsreT+p2bNnR58+fVLjWbNmxdFHH53DRNDw3fb0vPh/E9/NWLvwxM5x8+f7ZKwBAAAAAAAAcGDwnqN+81aq7r6VivD7CwAAAAAAAACgLqnPbznych0AIiIOOeSQeOGFF+LYY49Nm9+6dWvMnj075syZU+VBV79+/eKFF16oEw+6gOz7RsmR0bJZYcbaQ6++H4tWl2U5EQAAAAAAAADAvnkrBQAAAAAAAAAAH9EAizqjc+fOMW3atLjtttuiQ4cOe1zXoUOHGDt2bLz66qvRqVOnLCYE6pLipoXx7ZOOyljbWZmMO8bPz3IiAAAAAAAAAIDq8VYKAAAAAAAAAAAiEslkMpnrELC7ysrKeO2112LmzJmxcuXKiIho165d9OvXL44//vjIy6tbvdtmz54dffr0SY1nzZoVRx99dA4TwYFhW3lFnHznpFi2fmvG+j++NTSO7dQyu6EAAAAAAAAAqBO856C+qG9vpSL8/gIAAAAAAAAAqEvq81uOglwHgEzy8vJi4MCBMXDgwFxHAeqwJoX5cfXo7vH9R2ZmrN/61Lx46LLBkUgkspwMAAAAAAAAAKB6vJUCAAAAAAAAAOBAVfc+Gg4AauCs4zpGz0ObZ6y9/N6amPTOqiwnAgAAAAAAAAAAAAAAAAAAAAD2RQMsAOq1/LxEXHdazz3Wb31qXlRWJrOYCAAAAAAAAAAAAAAAAAAAAADYFw2wAKj3RnZvGyd0bZ2xNm/FpvjHzGVZTgQAAAAAAAAAAAAAAAAAAAAA7I0GWADUe4lEIm44rdce63c8805sK6/IYiIAAAAAAAAAAAAAAAAAAAAAYG80wAKgQTi2U8s4o2/7jLVl67fGH14pzXIiAAAAAAAAAAAAAAAAAAAAAGBPNMACoMH4wSk9Ij8vkbF2zwsLY+O28iwnAgAAAAAAAAAAAAAAAAAAAAAy0QALgAajy8FFcf6gThlr67eUx30T381yIgAAAAAAAAAAAAAAAAAAAAAgEw2wAGhQvnNyt2jWKD9j7TdTF8WKDduynAgAAAAAAAAAAAAAAAAAAAAA2J0GWAA0KO2aN4lLh3fNWNtWXhl3PfdOlhMBAAAAAAAAAAAAAAAAAAAAALvTAAuABufyEV2jTVGjjLW/TF8SC1duznIiAAAAAAAAAAAAAAAAAAAAAGBXGmAB0OAc1LggvnNyt4y1ymTE2KfnZTkRAAAAAAAAAAAAAAAAAAAAALArDbAAaJDOH3R4HN66Wcba+Dkfxmula7OcCAAAAAAAAAAAAAAAAAAAAAD4mAZYADRIjQry4gen9Nhj/dan5kUymcxiIgAAAAAAAAAAAAAAAAAAAADgYxpgAdBgfbZv++jbsThjbfridfHs3JVZTgQAAAAAAAAAAAAAAAAAAAAARGiABUADlpeXiOtP67nH+tin58XOisosJgIAAAAAAAAAAAAAAAAAAAAAIjTAAqCBG3rUwTG828EZawtWbo6/vb4sy4kAAAAAAAAAAAAAAAAAAAAAAA2wAGjwrju15x5rP5nwTmzdUZHFNAAAAAAAAAAAAAAAAAAAAACABlgANHh9OhbHWf06ZKyt2LgtfvfS4uwGAgAAAAAAAAAAAAAAAAAAAIADnAZYABwQvj+mRxTmJzLW7p24MNZv2ZHlRAAAAAAAAAAAAAAAAAAAAABw4NIAC4ADQqfWzeKCEzpnrG3atjPunfhulhMBAAAAAAAAAAAAAAAAAAAAwIFLAywADhj//plucVDjgoy13720OJat35rlRAAAAAAAAAAAAAAAAAAAAABwYNIAC4ADRuuiRvGNkq4Zazt2VsZPxr+T5UQAAAAAAAAAAAAAAAAAAAAAcGDSAAuAA8olw7pE2+aNM9b+9sbSmLdiY5YTAQAAAAAAAAAAAAAAAAAAAMCBRwMsAA4ozRoVxHdHdctYSyYjbntqXpYTAQAAAAAAAAAAAAAAAAAAAMCBRwMsAA44XxrQKboeXJSx9sL8VfHyu2uynAgAAAAAAAAAAAAAAAAAAAAADiwaYAFwwCnIz4trT+2xx/qtT8+LZDKZxUQAAAAAAAAAAAAAAAAAAAAAcGDRAAuAA9IpRx8axx3eMmNt5pL18fSsFdkNBAAAAAAAAAAAAAAAAAAAAAAHEA2wADggJRKJuP7Unnusj31mfpRXVGYxEQAAAAAAAAAAAAAAAAAAAAAcODTAAuCANbhrmzi5Z7uMtUWry+Iv05dkOREAAAAAAAAAAAAAAAAAAAAAHBg0wALggHbtqT0jkchc+9mzC6Js+87sBgIAAAAAAAAAAAAAAAAAAACAA4AGWAAc0Hoc2jy+ePxhGWurN2+P/31xUZYTAQAAAAAAAAAAAAAAAAAAAEDDpwEWAAe8q0d3j0YFmf9K/OWkd2PN5u1ZTgQAAAAAAAAAAAAAAAAAAAAADZsGWAAc8Dq0bBpfG3JExlrZjor4+fMLsxsIAAAAAAAAAAAAAAAAAAAAABo4DbAAICKuHHlktGhSkLH2x1dL4/01W7KcCAAAAAAAAAAAAAAAAAAAAAAaLg2wACAiWjZrFN866aiMtfKKZNwxfn6WEwEAAAAAAAAAAAAAAAAAAABAw6UBFgD8/y4ackS0L26Ssfb4zOUxa9mGLCcCAAAAAAAAAAAAAAAAAAAAgIZJAywA+P81KcyP743uvsf6bU/Py2IaAAAAAAAAAAAAAAAAAAAAAGi4NMACgF188fjDovshB2WsTVmwOqYsWJXlRAAAAAAAAAAAAAAAAAAAAADQ8GiABQC7yM9LxHWn9txj/dan5kVlZTKLiQAAAAAAAAAAAAAAAAAAAACg4dEACwB285me7WLQEa0z1mYv3xhPvLU8y4kAAAAAAAAAAAAAAAAAAAAAoGHRAAsAdpNIJOK603rusX7H+PmxfWdFFhMBAAAAAAAAAAAAAAAAAAAAQMOiARYAZNC/c6s49ehDM9aWrN0aD736fpYTAQAAAAAAAAAAAAAAAAAAAEDDoQEWAOzBNaf2iPy8RMbaz59fGJu2lWc5EQAAAAAAAAAAAAAAAAAAAAA0DBpgAcAeHNn2oDh3QKeMtbVlO+L+ye9lOREAAAAAAAAAAAAAAAAAAAAANAwaYAHAXnxvVLdoWpifsXb/lEWxcuO2LCcCAAAAAAAAAAAAAAAAAAAAgPpPAywA2It2LZrE14d1yVjbWl4Rdz23IMuJAAAAAAAAAAAAAAAAAAAAAKD+0wALAPbh8pKu0apZYcban6cvifdWbc5yIgAAAAAAAAAAAAAAAAAAAACo3zTAAoB9aNGkML79mW4ZaxWVybj9mflZTgQAAAAAAAAAAAAAAAAAAAAA9ZsGWABQDReccHgc1qppxtpTs1bE6++vy3IiAAAAAAAAAAAAAAAAAAAAAKi/NMACgGpoXJAfPxjTY4/1W5+aF8lkMouJAAAAAAAAAAAAAAAAAAAAAKD+0gALAKrpc8d2iN7tW2SsTVu0NibOX5XlRAAAAAAAAAAAAAAAAAAAAABQP2mABQDVlJeXiOtP67nH+q1PzYuKymQWEwEAAAAAAAAAAAAAAAAAAABA/aQBFgDUwPBuB8fQo9pkrM3/cFP8/Y1lWU4EAAAAAAAAAAAAAAAAAAAAAPWPBlgAUAOJRCKuP7XXHus/GT8/tpVXZDERAAAAAAAAAAAAAAAAAAAAANQ/GmABQA31Paw4zjy2Q8ba8g3b4oGXF2c3EAAAAAAAAAAAAAAAAAAAAADUMxpgAcAn8IMx3aMgL5Gx9osX3o0NW8qznAgAAAAAAAAAAAAAAAAAAAAA6g8NsADgE+jcpii+MvjwjLUNW8vj/016N8uJAAAAAAAAAAAAAAAAAAAAAKD+0AALAD6hfz+5WxQ1ys9Y++3URbF8/dYsJwIAAAAAAAAAAAAAAAAAAACA+kEDLAD4hA4+qHFcPuLIjLXtOyvjZ8++k+VEAAAAAAAAAAAAAAAAAAAAAFA/aIAFAJ/CpcO7xMEHNcpY++trS+OdDzdlOREAAAAAAAAAAAAAAAAAAAAA1H0aYAHAp1DUuCCuOrlbxlplMmLs0/OznAgAAAAAAAAAAAAAAAAAAAAA6j4NsADgUzpv0OFxRJtmGWvPzv0wpi9em+VEAAAAAAAAAAAAAAAAAAAAAFC3aYAFAJ9SYX5eXHNKzz3W/2fc3Egmk1lMBAAAAAAAAAAAAAAAAAAAAAB1mwZYAFALTu97aBx7WHHG2uvvr4/xcz7MciIAAAAAAAAAAAAAAAAAAAAAqLs0wAKAWpBIJOK603rusT726Xmxs6Iyi4kAAAAAAAAAAAAAAAAAAAAAoO7SAAsAasmQIw+OkT3aZqy9u6osHnltaZYTAQAAAAAAAAAAAAAAAAAAAEDdpAEWANSia0/pGYlE5tpPJ7wTW3dUZDcQAAAAAAAAAAAAAAAAAAAAANRBGmABQC3q3aFFfKFfx4y1lZu2x2+mLspyIgAAAAAAAAAAAAAAAAAAAACoezTAAoBadvWY7tEoP/NfsfdNfDfWlu3IciIAAAAAAAAAAAAAAAAAAAAAqFs0wAKAWnZYq2Zx4YmdM9Y2bd8Zv3hhYZYTAQAAAAAAAAAAAAAAAAAAAEDdogEWAOwH3zrpqGjepCBj7cGXS2PJ2i1ZTgQAAAAAAAAAAAAAAAAAAAAAdYcGWACwH7QqahRXjjwyY21HRWX8ZMI7WU4EAAAAAAAAAAAAAAAAAAAAAHWHBlgAsJ98bUiXOKRF44y1x95cFrOXb8hyIgAAAAAAAAAAAAAAAAAAAACoGzTAAoD9pGmj/PjeqO4Za8lkxNin52c5EQAAAAAAAAAAAAAAAAAAAADUDRpgAcB+dHb/w+LItkUZa5PeWRUvLVyd5UQAAAAAAAAAAAAAAAAAAAAAkHsaYAHAflSQnxfXndpzj/X/eWpeVFYms5gIAAAAAAAAAAAAAAAAAAAAAHJPAywA2M9G9z4k+ndulbH29rINMW7WB1lOBAAAAAAAAAAAAAAAAAAAAAC5pQEWAOxniUQibjit5x7rtz8zP8orKrOYCAAAAAAAAAAAAAAAAAAAAABySwMsAMiCAUe0jtG9D8lYK12zJf407f0sJwIAAAAAAAAAAAAAAAAAAACA3NEACwCy5NpTekReInPt7ucWxObtO7MbCAAAAAAAAAAAAAAAAAAAAAByRAMsAMiSboc0j3P6d8pYW715R/x6yntZTgQAAAAAAAAAAAAAAAAAAAAAuaEBFgBk0XdHd4vGBZn/+v3V5Pdi1abtWU4EAAAAAAAAAAAAAAAAAAAAANmnARYAZFH74qZxybAuGWtbdlTEz59fkOVEAAAAAAAAAAAAAAAAAAAAAJB9GmABQJZ9o+TIKG5amLH20Kvvx+LVZVlOBAAAAAAAAAAAAAAAAAAAAADZpQEWAGRZcdPC+PZJR2Ws7axMxh3j52c5EQAAAAAAAAAAAAAAAAAAAABklwZYAJADXz2xc3Rs2TRj7Z9vfRAzl6zPbiAAAAAAAAAAAAAAAAAAAAAAyCINsAAgB5oU5sfVo7vvsX7rU/MimUxmMREAAAAAAAAAAAAAAAAAAAAAZI8GWACQI2cd1zF6Hto8Y+3l99bE5AWrs5wIAAAAAAAAAAAAAAAAAAAAALJDAywAyJH8vERcd1rPPdZvfWpeVFYms5gIAAAAAAAAAAAAAAAAAAAAALJDAywAyKGR3dvGCV1bZ6zN/WBj/GPmsiwnAgAAAAAAAAAAAAAAAAAAAID9TwMsAMihRCIR15/Wa4/1O555J7bvrMhiIgAAAAAAAAAAAAAAAAAAAADY/zTAAoAc69epZZze99CMtWXrt8aDL5dmOREAAAAAAAAAAAAAAAAAAAAA7F8aYAFAHXDNKT0jPy+RsXbPCwtj47byLCcCAAAAAAAAAAAAAAAAAAAAgP1HAywAqAO6HFwU5w/qlLG2fkt5/HLSu1lOBAAAAAAAAPD/sXffYXaV5d6Anz0tvRcI6QkpkNCr9FADSLFQFQGRo2A5wqGeI0hTAVERUVEQLAiCSpUaSELogUAgvffe+/T9/cHH6JA9yUwys/aU+76uXOZdz1rr/UVBQvaznxcAAAAAAAAAAADqjgFYAFBPfO+4AdGyIDdj7Q9vzIll6wsTTgQAAAAAAAAAAAAAAAAAAAAAdcMALACoJ7q2aR7fOLJfxlphSXnc/cr0hBMBAAAAAAAAAAAAAAAAAAAAQN0wAAsA6pFLj+wbnVoVZKw99t6CmLl8Y8KJAAAAAAAAAAAAAAAAAAAAAKD2GYAFAPVIm+b58d1jd89YK09H/PSlqQknAgAAAAAAAAAAAAAAAAAAAIDaZwAWANQz5x/SO3p1bJmx9tKkZTFu3uqEEwEAAAAAAAAAAAAAAAAAAABA7TIACwDqmYK8nLjqpEFV1m9/YWqk0+kEEwEAAAAAAAAAAAAAAAAAAABA7TIACwDqoc/v1S2Gdm+bsfbe3DXx6pTlCScCAAAAAAAAAAAAAAAAAAAAgNpjABYA1EM5Oam4bvgeVdbveHFqlJWnE0wEAAAAAAAAAAAAAAAAAAAAALXHACwAqKeOGNA5jhzQOWNtxvKN8c9xCxNOBAAAAAAAAAAAAAAAAAAAAAC1wwAsAKjHrh0+uMraz0dMj8KSsgTTAAAAAAAAAAAAAAAAAAAAAEDtMAALAOqxod3bxRn77paxtnR9YfzxrbnJBgIAAAAAAAAAAAAAAAAAAACAWmAAFgDUc1edOCjyc1MZa78ZNTPWbi5OOBEAAAAAAAAAAAAAAAAAAAAA7BwDsACgnuvZsWV89dDeGWvrC0vjN6NnJZwIAAAAAAAAAAAAAAAAAAAAAHaOAVgA0AB8Z9ju0bpZXsbaH9+aG4vWbkk4EQAAAAAAAAAAAAAAAAAAAADsuMyTNACAeqVT62bxzaP6xc9GTN+qVlxaHr8YMT3uOmufLCQDAAAAAAAAAAAAAAAAAGps7byIxR9FLBkfsWFJRGlRRE5uREHriC6DI3bbN2LXvSLyW2Y7KQAA1BkDsACggbjkyL7x53fmxYoNRVvV/vnBwvjGkX1j8K5ts5AMAAAAAAAAAAAAAAAAANiu5VMi3nsgYtKTEZtXbf/+nNyI3faPOOCiiKFfishvUecRAQAgSTnZDgAAVE/Lgrz4/vEDMtbS6Yg7X5yWcCIAAAAAAAAAAAAAAAAAYLtmjYx46JSI3xz6yQCs6gy/iogoL4tY+F7E09+O+PkeES/fEFG4tk6jAgBAkgzAAoAG5OwDe0a/zq0y1kZOXR7vzK7mH3oBAAAAAAAAAAAAAAAAAHWrcF3EU5dH/OULEfPe3Ll3bVkT8dY9Eb/5XMSMl2snHwAAZFletgOw49LpdMydOzcmTJgQCxcujLVr10azZs2iQ4cOMWDAgDjooIOiefPmtbrnhg0b4s0334zp06fH+vXro0WLFtG7d+847LDDYrfddqvVvSZNmhTjxo2LJUuWRFlZWXTq1CmGDh0ahxxySOTl+UsXaJryc3PimuGD4lsPf5CxfvsLU+PJyw+LVCqVcDIAAAAAAAAAqDt6pQAAAAAAgAZn9msRT30rYv3i2n3v+sURfz0rYt+vRJx6V0R+y9p9PwAAJEhnTAOzZs2aeOqpp+LFF1+MkSNHxsqVK6u8Nz8/P0499dT4/ve/H0cfffRO7Ttnzpy48cYb4/HHH4/i4uKt6qlUKo4++ui4+eab46ijjtrhfdLpdDz00ENxxx13xPTp0zPe06lTp7jsssviuuuui1atWu3wXgAN1UlDdo19e7aP8QvWblUbv2BtvDhxaZy8V7fkgwEAAAAAAACRTqdjY1FplJSlIz83Fa2b5TnABnaQXim9UgAAAAAA0GBNfCLiyf+KKCupuz3G/zVi9eyI8x+LaN6u7vYBAIA6lEqn0+lsh6B6vv3tb8cDDzyQsalqe772ta/Fr371q2jbtm2Nn3388cfj4osvjs2bN2/33lQqFddcc0385Cc/qXHz5tq1a+Pss8+OESNGVOv+fv36xTPPPBNDhgyp0T51YdKkSTF06NCK9cSJE+tFLqDxemf2qjj39+9krPXr3CpeuuKoyM/NSTgVAAAAAAAANE1Tl66PZ8Yvjo8Wro2Ji9bHui3/bmJv1yI/hnZvG/v0aB9n7Ns9Bu3aJotJmxb9HA2bXqnK6lOvVIS/vwAAAAAAYJsmPx3xj4sjysuS2a/HQRFfezqiwGEaAABNVUPu5TAZowF59913MzZ05ebmRo8ePeKAAw6IvffeO9q123pC75///Oc44YQTYuPGjTXa8+9//3ucd955WzV0denSJfbff//o0aNHpeatdDodd9xxR1x55ZU12mfLli1x0kknbdXQVVBQEAMHDoy99tprqxMMZ8+eHcOGDYuZM2fWaC+AxuDQfp3i2MFdM9Zmr9wUj723IOFEAAAAAAAA0PSMnLoszr7v7Rh+9+vxm9Gz4s2ZqyoNv4qIWLelJN6cuSp+M3pWnHT3mDj7vrdj1NTlWUoMDYdeKb1SAAAAAADQIC0aF/HPbyQ3/CoiYuF7n+wJAAANkAFYDVT79u3j8ssvj+eeey7WrFkTCxYsiPfffz8++uijWLVqVYwaNSqOPPLISs+MHTs2LrroomrvMWvWrLj44oujvLy84to+++wTI0eOjOXLl8e4ceNiwYIFMWXKlPjiF79Y6dm77747nnjiiWrvdeWVV8bYsWMr1jk5OXHDDTfE0qVLY9q0afHxxx/H6tWr46GHHooOHTpU3LdixYo4++yzo6wswX8JBKgnrh0+OKo6QPbuV2bEpqLSZAMBAAAAAABAE7FmU3F879EP4+t/fD/Gzl1do2fHzl0dF//xvfjvv30YazZtPdwH2JpeqU/olQIAAAAAgHqutCjiqcsiyrLwOeC05yPGP5L8vgAAsJMMwGpg+vTpEw888EAsXrw4fv3rX8cpp5wSbdq0qXRPbm5uHHPMMTFq1Kj4r//6r0q1f/7znzFq1Khq7XXDDTfEpk2bKtYHHXRQjBkzJoYNG1bpvkGDBsU//vGPrfa65pprorR0+8NXpk6dGvfff3+law8//HDccsstlRq4CgoK4qKLLorXX3892rdvX3H9ww8/jD//+c/V+jUBNCaDdm0TX9q/R8bayo1F8eAbcxJOBAAAAAAAAI3flCXrY/gvx8QzHy3eqfc8PX5xDP/lmJi6dH0tJYPGR6+UXikAAAAAAGhQRv04YsW07O3/4vUR63fuc0wAAEiaAVgNyM033xzTpk2LSy65JFq0aLHd+3Nzc+M3v/lNHHjggZWuP/DAA9t9dtKkSfHYY49VrAsKCuJPf/pTtG3bNuP9qVQqfvnLX8aAAQMqrs2aNSseeuih7e71wx/+sNKphBdccEGcd955Vd4/ZMiQuOuuuypdu/nmm6OkpGS7ewE0NlecMDAK8jL/4/x3Y2bHqo1FCScCAAAAAACAxmvKkvVx7u/fiWXra+dzuGXri+Kc371jCBZkoFfqE3qlAAAAAACggVg2KeLtX2U3Q+HaiBevy24GAACoIQOwGpBTTz01CgoKavRMbm5uXHPNNZWuvfTSS9t97sEHH4zy8vKK9bnnnht77LHHNp9p3rx5XHdd5X8p2l4D2Zo1a+KJJ56oWKdSqbjpppu2m+/iiy+O3r17V6znzZsXr7zyynafA2hsurdvERcf1idjbWNRafxq5MxkAwEAAAAAAEAjtWZTcVz00NhYt6V2h86s21ISFz44NtZsKq7V90JDp1fq3/RKAQAAAABAA/Du7yLKy7Z/X12b8mzE2vnZTgEAANVmAFYTcOSRR1Zar1q1KjZv3rzNZ5555plK60suuaRae51zzjnRqlWrivV7770XixcvrvL+5557LkpLSyvWxxxzTPTr12+7++Tk5MTFF19c6dpTTz1VrYwAjc1lx/SPts3zMtb++u68mL9q2/+fDwAAAAAAAGzfD5+ZFMvWF9XJu5etL4qbnp1UJ++GpkavFAAAAAAAkLjCdRET/p7tFJ9Il0e8/1C2UwAAQLUZgNUEdOjQYatr69atq/L+adOmxcyZMyvWrVq1isMOO6xae3323nQ6Hc8991yV93+2duKJJ1Zrn4iIE044odL6X//6V7WfBWhM2rcsiMuH7Z6xVlKWjp+NmJZwIgAAAAAAAGhcRk5dFs98VPVQm9rw9PjFMXLqsjrdA5oCvVIAAAAAAEDiPno0omTbB3Ik6sM/R5QVZzsFAABUiwFYTcCiRYu2utapU6cq7x8/fnyl9cEHHxx5eXnV3u/www/f5vu2Vatu81hExAEHHBDNmjWrWC9evDhWrFhR7ecBGpOLDusT3do1z1h7evzimLio6mZeAAAAAAAAYNvuGz07mX1eS2YfaMz0SgEAAAAAAImb/nK2E1S2aWXEog+ynQIAAKrFAKwm4PXXX6+07t27dxQUFFR5/5QpUyqt99xzzxrt99n7P/u+T5WUlFQ6PbGmezVr1iz69+9frb0AGrvm+blxxQkDq6zf8eLUBNMAAAAAAABA4zF16foYO3d1InuNnbM6pi3dkMhe0FjplQIAAAAAABK35MNsJ9jakvHZTgAAANViAFYT8OCDD1Zan3LKKdu8f9q0aZXWPXv2rNF+n73/s+/71OzZs6O0tLRi3aJFi+jcuXOd7AXQFHxp/x4xcJfWGWuvz1gZr89w8isAAAAAAADU1DPjFye730eLEt0PGhu9UgAAAAAAQKLWzo/YnMyBOjWyeHy2EwAAQLUYgNXIPf/88zFmzJhK1y666KJtPrN8+fJK6x49etRoz+7du1dar1iReeDKZ/f57HM7stdn3wnQlOTmpOKakwZXWb/jxalRXp5OMBEAAAAAAAA0fB8tXJvsfgvWJbofNCZ6pQAAAAAAgMQtnZDtBJkt/TjbCQAAoFrysh2AurN69er45je/WenamWeeGQcffPA2n9u4cWOldatWrWq072fvLykpiaKiomjWrFmt7pPpmc++c0csX768yka0qsycOXOn9wWoDcft0TUO7tMxxs7demL8xEXr49mPF8cZ+9a8iRYAAAAAAACaonQ6HRMXrU90zwmL1kU6nY5UKpXovtDQ6ZXacfqlAAAAAABgJ2xZk+0EmW1Zm+0EAABQLQZgNVLl5eXx1a9+NRYuXFhxrV27dnHPPfds99nPNkY1b968Rnu3aNEi4zu319RV030y7VUbTV2/+c1v4uabb97p9wBkQyqVimtPHhxf+u1bGet3vTwtTh7aLQrychJOBgAAAAAAAA3PxqLSWLelJNE9120piU3FZdG6mbYeqC69UjtHvxQAAAAAAOyEsmQ/T6y2suJsJwAAgGox/aKRuvrqq+OFF16odO13v/td9OzZc7vPFhYWVloXFBTUaO/PNm9FRGzZsqXW98m0V6Z9AJqaA3p3iJOG7JKxtmD1lnjk3XkJJwIAAAAAAICGqaQsnZV9i0vLs7IvNFR6pQAAAAAAgKzJzc92gsxya/5ZBAAAZIMBWI3QPffcEz//+c8rXbvmmmvinHPOqdbznz1dsLi4ZhN+i4qKtvvO2tgn0147cjIiQGN0zfDBkZuTyli7Z+TM2FBYT6fKAwAAAAAAQD2Sn5v5M7e6VpCnpQeqS68UAAAAAACQVS06ZDtBZi3aZzsBAABUS162A1C7Hnnkkfj+979f6dpFF10Ut99+e7Xf0bp160rrz54+uD2ZThb87DtrY59Me2Xap6Yuv/zyOOuss2r0zMyZM+PMM8/c6b0Bakv/Lq3j7AN7xqNj529VW72pOO4fMzuuPHFQFpIBAAAAAABAw9G6WV60a5Ef67Ykd8BMuxb50aogN7H9oCHTK7XzvVIR+qUAAAAAAGCn7LpXthNkVl9zAQDAZxiA1Yj861//igsvvDDS6XTFtS9+8YvxwAMPRCpV/RNJP9sYtWnTphrl+Oz9eXl5GU8b3Nl9Mj1TG01dXbt2ja5du+70ewCy7fvHD4gnP1wYhSXlW9Xuf31OfPVzvaNrG6fBAgAAAAAAQFVSqVQM7d423py5KrE99+rerkZ9HtBU6ZWqvQFY+qUAAAAAAGAntO8V0bJjxObV2U5S2W77ZTsBAABUS062A1A7Ro0aFWeddVaUlpZWXDvhhBPi0Ucfjdzcmp0K+tlmpoULF9bo+UWLFlVad+nSpVr7fPa5HdlLIxbAv+3StnlcckTfjLUtJWXxy1dmJJwIAAAAAAAAGp59erRPdr+e7RLdDxoivVKZ3wkAAAAAAGRJt3o4bKrbvtlOAAAA1WIAViPw7rvvxumnnx6FhYUV1w477LB48skno6CgoMbvGzRoUKX1/Pnza/T8Z+8fPHhwxvv69esXeXl5FestW7bEihUr6mQvgKbqm0f3jw4t8zPW/vbegpi9YmPCiQAAAAAAAKBhOX3f3ZLdb5/uie4HDY1eqe3vBQAAAAAAJGzACdlOUFmrzhHd9892CgAAqBYDsBq4jz/+OE4++eTYuPHfA0z222+/eP7556NVq1Y79M7PNkZNnjy5Rs9PmTJlm+/7VH5+fvTv33+H9yoqKorZs2dXay+Apqpt8/z4zrEDMtbKytNx18vTEk4EAAAAAAAADcvgXdvGwX06JrLXwX07xqBd2ySyFzREeqX0SgEAAAAAQL2073kR+S2zneLf9rsgIrfmB4cAAEA2GIDVgE2bNi1OOOGEWLNmTcW1PfbYI1566aVo167dDr933333rbR+7733orS0tNrPv/nmm9t837Zqb731VrX3GTduXBQVFVWsu3XrFl27dq328wBNxVcP7RU9OrTIWHt+wtL4cP6ajDUAAAAAAADgE986pl8i+1x2dP/t3wRNlF4pvVIAAAAAAFBvNW8fsdeXs53iE6mciAMvznYKAACoNgOwGqh58+bF8ccfH8uXL6+41rdv3xgxYkR06dJlp949ePDgSqcNbtq0qdrNVps2bYq33367Yp1KpeLzn/98lfd/tjZixIhq5/zsvaeddlq1nwVoSprl5cZVJw6qsn77C1MjnU4nmAgAAAAAAAAalmMH7xKn77Nbne5xxr67xbDBhtlAJnql9EoBAAAAAEC9d8i3InJys50iYvDnI9r3znYKAACoNgOwGqAlS5bEcccdFwsXLqy41r1793j11Veje/futbLH6aefXmn9hz/8oVrPPfbYY7Fx48aK9YEHHhi77VZ1A+gpp5wSeXl5FevRo0fH7Nmzt7tPOp2OP/7xj5WunXHGGdXKCNAUnb7PbrFHt7YZa+/OWR2jp61IOBEAAAAAAAA0LDefPiR2adusTt69S9tmcdNpQ+rk3dDQ6ZXSKwUAAAAAAA3CLkMiPvfd7GZo3j7i5DuymwEAAGrIAKwGZvXq1XHCCSfErFmzKq516dIlRowYEX379q21fb7+9a9HKpWqWP/tb3+LKVOmbPOZwsLCuP322ytdu+SSS7b5TMeOHePMM8+sWKfT6bjpppu2m+/BBx+MuXPnVqx79+4dxx9//HafA2iqcnJScd3Jg6us3/Hi1CgrTyeYCAAAAAAAABqWDq0K4q4v71Pr723XIj/+9PWDo0Orglp/NzR0eqU+oVcKAAAAAAAaiGH/G9FlUPb2H/7jiLZVH9YBAAD1kQFYDciGDRti+PDhMWnSpIpr7du3j5dffjn22GOPWt1r6NChcfbZZ1esi4uL48ILL4z169dnvD+dTsf3v//9mDFjRsW1fv36xde//vXt7nXzzTdHTs6//1L8y1/+Eo8++miV90+ePDmuuuqqStduuOGGKCjQCAqwLUcN6ByH794pY23q0g3x5IeLEk4EAAAAAAAADcvD786r1fft0rZZPPbNQ2Pwrm1r9b3QGOiV+oReKQAAAAAAaEDymkWc8ZuI3Cz8Of6gkyP2/Ury+wIAwE7Ky3YAqu/000+P9957r9K1K6+8MlauXBmvvPJKjd51wAEHRIcOHbZ5z2233RbPPvtsbN68OSIi3nvvvTjqqKPi7rvvjmOOOabivunTp8f1118fTzzxRKXnb7/99sjPz99ulj333DO+8Y1vxO9///uKa1/96ldjypQpccUVV1TkLCkpib/+9a9x5ZVXxtq1ayvu3XvvvePCCy/c7j4ATV0qlYprhw+O0+99M2P95y9Pi8/v3S2a5+cmnAwAAAAAAADqv5FTl8VLk5bV2vvO2He3uOm0IdGhlSE2kIleKb1SAAAAAADQIPU4MOJLD0T84+KI8rKE9jwo4kt/SGYvAACoZal0Op3OdgiqJ5VK1dq7Ro0aVakxqyp/+9vf4vzzz4/P/mXSpUuX6NWrVyxfvjwWLly4Vf273/1u3HPPPdXOs3nz5jj66KPj/fffr3S9oKAg+vbtG82aNYvZs2fHxo0bK9U7d+4cb775ZgwcOLDae9WFSZMmxdChQyvWEydOjCFDhmQxEUDVvvPIB/Gvj5dkrP3fKXvEpUf1SzgRAAAAAAAA1G9bisvihF+8FgvXbNnpdx3ct2NcdnT/GDa4ay0kY1v0czRseqXqb69UhL+/AAAAAABguyY+EfHkf0WUldTtPr0OjTj/8Yjm7ep2HwAA6rWG3MuRl+0A1G/nnntupNPpuOSSS2LLln83ca5YsSJWrFiR8Zmrrroq7rzzzhrt07Jly3jppZfirLPOipEjR1ZcLy4ujmnTpmV8pk+fPvHMM8/Ui4YugIbkqhMHxYsTl0Zp+dYzMO8dNTPOPqhntGux/VNpAQAAAAAAoKm4d9SMKodfDdmtbfz0y3vHcxOWxEcL1sWEReti3ZZ/N7G3a5Efe3VvF/v0bBen79M9Bu3aJqnYQA3plQIAAAAAAGrN0C9GtOwY8dRlEesX180e+54fcerPIvJb1s37AQAgATnZDkD9d95558XEiRPj/PPPj/z8qgeiHHXUUTF69Oj46U9/ukMnMHbs2DFGjBgRv//972P33Xff5n3/+7//GxMmTIi99tqrxvsANHV9OreKrxzSK2Nt3ZaS+O3oWQknAgAAAAAAgPpr5vIN8fsxszPWUqmIH31hr9hzt3Zx9UmD4+FvHBLjbzwhJt58Unxwwyf/Of7GE+LhbxwSV5802PAraAD0SgEAAAAAALWm3zERl78dse9Xave9bbpFnP94xJm/NfwKAIAGL5VOp9PZDkHDsX79+njjjTdixowZsWHDhmjevHn06tUrDj/88OjevXut7jVhwoT44IMPYsmSJVFWVhadOnWKoUOHxiGHHLLN5rJsmDRpUgwdOrRiPXHixBgyZEgWEwFs28qNRXH0naNiU3HZVrVmeTkx+upjolu7FllIBgAAAAAAAPVHOp2O8+5/J96ZvTpj/SuH9IoffcFAmvpKPwc7S69U1fz9BQAAAAAANTTz1YjXfxYx780df0eLDhH7XRBx1P9ENG9fa9EAAGj4GnIvR162A9CwtG3bNk455ZRE9tprr72cWghQRzq3bhaXHtUv7n5lxla1otLyuHvEjLjjy3tnIRkAAAAAAADUH09+uKjK4VedWxfENScNTjgRkCS9UgAAAAAAQK3Z/bhPfiyfEvHeAxGTnojYnPmzyEpyciN22y/igIsjhn4pIr9F3WcFAIAEGYAFAE3UpUf2i4ffmRcrNxZvVfv7uAXxjSP7xoBd2mQhGQAAAAAAAGTfus0l8aPnplRZ/99T9oh2LfMTTAQAAAAAAAA0eF33iDj1Z5/8WDsvYvFHEUvGR2xYElFa9MnAq4LWEV0GR+y2b8Sue0Xkt8x2agAAqDMGYAFAE9WqWV7893ED4oanJ21VK09H3PHitHjgwgOzkAwAAAAAAACy786XpsaqTVsfJhMRcWi/jvGF/bonnAgAAAAAAABoVNr3/uTHnqdnOwkAAGRNTrYDAADZc+7BvaJPp8zT31+Zsizem7s64UQAAAAAAACQfR/OXxOPjJ2fsZafm4rbztwrUqlUwqkAAAAAAAAAAACgcTEACwCasPzcnLjqpEFV1n/y/JRIp9MJJgIAAAAAAIDsKi0rj/97cmJU9THZfx3VL3bv2jrZUAAAAAAAAAAAANAIGYAFAE3cqXt1i316tMtY+2D+2nh58rKEEwEAAAAAAED2/PnteTF5yfqMtR4dWsR3hg1IOBEAAAAAAAAAAAA0TgZgAUATl0ql4tqTB1dZv/PFqVFaVp5gIgAAAAAAAMiOZesL4+cjpldZv+WMIdGiIDfBRAAAAAAAAAAAANB4GYAFAMRh/TvH0QO7ZKzNWrEp/jFuYcKJAAAAAAAAIHm3/GtybCwqzVg7acgucezgXRJOBAAAAAAAAAAAAI2XAVgAQEREXDt8cKRSmWu/eGV6bCkuSzYQAAAAAAAAJGjM9BXx3MdLMtZaFuTGD08bknAiAAAAAAAAAAAAaNwMwAIAIiJiz93axhf27Z6xtmx9UTz45pyEEwEAAAAAAEAyCkvK4sanJ1ZZv+L4gbFb+xYJJgIAAAAAAAAAAIDGzwAsAKDCFScMjILczL89uG/0rFizqTjhRAAAAAAAAFD3fjt6VsxdtTljbfCubeKiw/skGwgAAAAAAAAAAACaAAOwAIAKPTu2jK99rnfG2oai0rh31MyEEwEAAAAAAEDdmr1iY/x29Kwq67edOTTyqzhEBgAAAAAAAAAAANhxuvMAgEq+PWz3aNMsL2PtL2/PiwWrM598DQAAAAAAAA1NOp2OG5+eFMVl5Rnr5xzYMw7s0zHhVAAAAAAAAAAAANA0GIAFAFTSoVVBfOuY/hlrxWXl8YsR0xNOBAAAAAAAAHXj2Y+XxBszV2asdWiZH9edPDjhRAAAAAAAAAAAANB0GIAFAGzl64f3jV3aNstYe3L8opi8eH3CiQAAAAAAAKB2rS8siVv/NbnK+vUn7xEdWhUkmAgAAAAAAAAAAACaFgOwAICttCjIjSuOH5ixlk5H3PHi1IQTAQAAAAAAQO36+cvTY8WGooy1g/p0iC8f0CPhRAAAAAAAAAAAANC0GIAFAGT05QN6RP8urTLWXpu+It6auTLhRAAAAAAAAFA7JixcF39+e27GWl5OKm47c6/IyUklGwoAAAAAAAAAAACaGAOwAICM8nJz4prhg6us3/7i1Ein0wkmAgAAAAAAgJ1XVp6O/3tqQpRX8VHXJUf0jUG7tkk2FAAAAAAAAAAAADRBBmABAFU6cc9d4oDeHTLWPl64Lp6bsCThRAAAAAAAALBzHnl3Xny8cF3G2m7tmsf3jhuQcCIAAAAAAAAAAABomgzAAgCqlEql4rqTB1dZ/+lL06KkrDzBRAAAAAAAALDjlm8ojDtfmlZl/YenD4lWzfISTAQAAAAAAAAAAABNlwFYAMA2HdSnYxy/xy4Za/NWbY6/jZ2fcCIAAAAAAADYMT9+bkpsKCzNWDtucNc4cc/Mn4sBAAAAAAAAAAAAtc8ALABgu64dPihyUplrv3x1RmwqyvwlAQAAAAAAAKgv3pq5Mp4avzhjrXl+Ttx0+pBIpar4UAwAAAAAAAAAAACodQZgAQDbNWCXNnHWAT0z1lZuLI77X5+dcCIAAAAAAACovqLSsvjB0xOrrH/vuAHRs2PLBBMBAAAAAAAAAAAABmABANXy/RMGRLO8zL91uH/M7FixoSjhRAAAAAAAAFA994+ZHbNXbMpYG9C1dXzjiH4JJwIAAAAAAAAAAAAMwAIAqqVbuxZx8eF9M9Y2FZfFvSNnJJwIAAAAAAAAtm/+qs3xq5Ezq6zfeubQKKjiIBgAAAAAAAAAAACg7ujeAwCq7bJj+ke7FvkZa399d37MXZn51GwAAAAAAADIhnQ6HTc+MzGKSssz1r+4f/c4tF+nhFMBAAAAAAAAAAAAEQZgAQA10K5Ffnxn2O4Za6Xl6bjr5WkJJwIAAAAAAICqvThxaYyetiJjrV2L/PjfU/ZIOBEAAAAAAAAAAADwKQOwAIAaueBzvaN7+xYZa//6eEl8vHBtsoEAAAAAAAAgg41FpXHzs5OrrF8zfFB0bt0swUQAAAAAAAAAAADAfzIACwCokeb5uXHlCQOrrN/+wtRIp9MJJgIAAAAAAICt3T1ieixdX5ixtl+v9nHeQb0STgQAAAAAAAAAAAD8JwOwAIAaO3O/7jF41zYZa2/NWhVjZqxMOBEAAAAAAAD82+TF6+Oht+ZmrOWkIm47c2jk5KSSDQUAAAAAAAAAAABUYgAWAFBjuTmpuHb44Crrt78wNcrL0wkmAgAAAAAAgE+Ul6fjB09NiLIqPq+66LC+MWS3dgmnAgAAAAAAAAAAAD7LACwAYIccM6hLHNK3Y8balCXr45mPFiecCAAAAAAAACIee39BfDB/bcbaLm2bxZUnDkw2EAAAAAAAAAAAAJCRAVgAwA5JpVJx/Sl7VFm/6+VpUVRalmAiAAAAAAAAmrpVG4vi9hemVlm/8fNDonWzvAQTAQAAAAAAAAAAAFUxAAsA2GH79mwfp+y1a8bawjVb4uF35iecCAAAAAAAgKbsJy9MjXVbSjLWjhrYpcrPtgAAAAAAAAAAAIDkGYAFAOyUq04cFLk5qYy1e0fOiPWFmb9gAAAAAAAAALVp7JzV8Y9xCzPWCvJy4pbTh0QqlflzLQAAAAAAAAAAACB5BmABADulX5fWcd7BPTPW1mwuid+9NivhRAAAAAAAADQ1JWXl8YOnJlRZ/86w3aNP51YJJgIAAAAAAAAAAAC2xwAsAGCnfe+4AdEiPzdj7Q9vzIll6wsTTgQAAAAAAEBT8oc35sT0ZRsz1vp1bhXfPLpfwokAAAAAAAAAAACA7TEACwDYaV3bNI9Lj+ybsVZYUh53vzIj4UQAAAAAAAA0FQvXbI5fbuPzqFvPHBrN8jIf5gIAAAAAAAAAAABkjwFYAECtuPSoftGxVUHG2uPvL4iZyzOfuA0AAAAAAAA746ZnJseWkrKMtdP32S0O371zwokAAAAAAAAAAACA6jAACwCoFW2a58f3jt09Y62sPB0/fWlqwokAAAAAAABo7EZMXhavTFmWsdamWV784PN7JJwIAAAAAAAAAAAAqC4DsACAWnP+Ib2jZ8cWGWsvTVoW4+atSTgRAAAAAAAAjdXm4tK46ZlJVdavOmlQdG3TPMFEAAAAAAAAAAAAQE0YgAUA1JqCvJy46sRBVdbveGFqpNPpBBMBAAAAAADQWN3z6sxYtHZLxtpe3dvFVw/tnXAiAAAAAAAAAAAAoCYMwAIAatVpe+8WQ7u3zVgbO3d1vDplecKJAAAAAAAAaGymL9sQD7w+O2MtlYr40ReGRm5OKuFUAAAAAAAAAAAAQE0YgAUA1KqcnFRcN3yPKut3vDg1ysrTCSYCAAAAAACgMUmn0/GDJydGaRWfOV1waO/Yu0f7ZEMBAAAAAAAAAAAANWYAFgBQ644Y0DmOHNA5Y23G8o3xzw8WJpwIAAAAAACAxuIf4xbG2LmrM9Y6t24W/3PioIQTAQAAAAAAAAAAADvCACwAoE5cO3xwlbVfjJgehSVlCaYBAAAAAACgMVizqTh+8sLUKus3fH6PaNciP8FEAAAAAAAAAAAAwI4yAAsAqBNDu7eLM/bdLWNtybrC+ONbc5MNBAAAAAAAQIN350tTY/Wm4oy1w3fvFKfvk/nzKQAAAAAAAAAAAKD+MQALAKgz/3PCoMjPTWWs/WbUzFi7OfOXEwAAAAAAAOCzxs1bE4+OXZCxVpCbE7ecMTRSqcyfTQEAAAAAAAAAAAD1jwFYAECd6dWpZXzlkN4Za+sLS+O3o2clnAgAAAAAAICGqLSsPH7w1MQq6986ul/079I6wUQAAAAAAAAAAADAzjIACwCoU989dvdo3SwvY+2ht+bGorVbEk4EAAAAAABAQ/PHt+bGlCXrM9Z6dWwZlw/bPeFEAAAAAAAAAAAAwM4yAAsAqFOdWjeLbx7VL2OtuLQ8fjFiesKJAAAAAAAAaEiWrNuyzc+UbjljSDTPz00wEQAAAAAAAAAAAFAbDMACAOrcJUf2jS5tmmWs/fODhTF1aebTugEAAAAAAOCWZyfHpuKyjLVT9to1jhnUNeFEAAAAAAAAAAAAQG0wAAsAqHMtC/Li+8cPyFhLpyPufHFawokAAAAAAABoCEZNWx4vTFyasdaqIDdu/PyQhBMBAAAAAAAAAAAAtcUALAAgEWcf2DP6dW6VsTZy6vJ4Z/aqhBMBAAAAAABQnxWWlMUPn55UZf2KEwbGru2aJ5gIAAAAAAAAAAAAqE0GYAEAicjPzYmrTxpUZf32F6ZGOp1OMBEAAAAAAAD12a9HzYz5qzdnrO3RrW1cdFifZAMBAAAAAAAAAAAAtcoALAAgMcOH7hr79myfsTZ+wdp4adLSZAMBAAAAAABQL81asTHue21WxloqFfGjLwyNvFxtLwAAAAAAAAAAANCQ6QQEABKTSqXiupMHV1m/88VpUVJWnmAiAAAAAAAA6pt0Oh03PDUxSsrSGevnHtQr9u/VIeFUAAAAAAAAAAAAQG0zAAsASNSh/TrFsYO7ZqzNXrkpHn9/QcKJAAAAAAAAqE+eHr843pq1KmOtU6uCuHb4oIQTAQAAAAAAAAAAAHXBACwAIHHXDB8UqVTm2t2vzIjNxaXJBgIAAAAAAKBeWLelJG57bnKV9etP2SPatyxIMBEAAAAAAAAAAABQVwzAAgASN3jXtvGl/XtkrK3YUBR/eH1OwokAAAAAAACoD+56aVqs3FicsXZw347xpf27J5wIAAAAAAAAAAAAqCsGYAEAWXHFCQOjIC/zb0V+N2Z2rNpYlHAiAAAAAAAAsumjBWvj4XfnZazl5aTitjOHRiqVSjgVAAAAAAAAAAAAUFcMwAIAsqJ7+xZx0WF9MtY2FpXGvaNmJhsIAAAAAACArCkrT8cPnpoY6XTm+qVH9YuBu7RJNhQAAAAAAAAAAABQpwzAAgCy5vJj+kfb5nkZaw+/My/mr9qccCIAAAAAAACy4eF35sWEResy1rq3bxHfO3ZAwokAAAAAAAAAAACAumYAFgCQNe1bFsTlw3bPWCspS8fPRkxLOBEAAAAAAABJW76+MO56qerPhW4+fUi0KMhNMBEAAAAAAAAAAACQBAOwAICsuuiwPrFr2+YZa0+PXxwTqzjpGwAAAAAAgMbh1uemxIai0oy1E/bcJY7fc5eEEwEAAAAAAAAAAABJMAALAMiq5vm5ceUJA6us3/Hi1ATTAAAAAAAAkKTXZ6yIZz9anLHWIj83bjp9SMKJAAAAAAAAAAAAgKQYgAUAZN2XDugRA3dpnbH2+oyV8caMlQknAgAAAAAAoK4VlpTFjU9PqrL+38cPiO7tWySYCAAAAAAAAAAAAEiSAVgAQNbl5qTimpMGV1m//cUpUV6eTjARAAAAAAAAde13r82OOSs3ZawN3KV1XHJE34QTAQAAAAAAAAAAAEkyAAsAqBeO26NrHNSnQ8baxEXr418TliScCAAAAAAAgLoyd+Wm+PXomVXWf/SFvSI/V1sLAAAAAAAAAAAANGY6BQGAeiGVSsV1J+9RZf2ul6ZFcWl5gokAAAAAAACoC+l0Om54emKVn/2cdUCPOKhPx4RTAQAAAAAAAAAAAEkzAAsAqDcO6N0hThqyS8ba/NWb45F35yWcCAAAAAAAgNr23IQl8fqMlRlr7Vvmx/WnVH1oCgAAAAAAAAAAANB4GIAFANQrV580OHJzUhlr94ycGRsKSxJOBAAAAAAAQG3ZUFgStzw7ucr6dcMHR8dWBQkmAgAAAAAAAAAAALLFACwAoF7ZvWvrOPvAnhlrqzcVx/2vz0k4EQAAAAAAALXl5yOmx/INRRlr+/dqX+XnRAAAAAAAAAAAAEDjYwAWAFDvfP/4AdE8P/NvUx54fXYs31CYcCIAAAAAAAB21sRF6+JPb83NWMvNScWPvrBX5OSkkg0FAAAAAAAAAAAAZI0BWABAvbNL2+ZxyRF9M9Y2F5fFPa/OSDgRAAAAAAAAO6O8PB0/eGpilKcz179+eJ/Yo1vbZEMBAAAAAAAAAAAAWWUAFgBQL33z6P7RoWV+xtqjYxfE7BUbE04EAAAAAADAjnr0vfkxfsHajLVu7ZrH948fmGwgAAAAAAAAAAAAIOsMwAIA6qW2zfPjO8cOyFgrK0/HXS9PSzgRAAAAAAAAO2LFhqK444WpVdZ/eNqe0apZXoKJAAAAAAAAAAAAgPrAACwAoN766qG9onv7Fhlrz09YGh/OX5NwIgAAAAAAAGrqJ89PifWFpRlrwwZ1iZOG7JpwIgAAAAAAAAAAAKA+MAALAKi3muXlxlUnDayyfvsLUyOdTieYCAAAAAAAgJp4e9aqeOLDRRlrzfJy4ubTh0YqlUo4FQAAAAAAAAAAAFAfGIAFANRrZ+zTPfbo1jZj7d05q2P0tBUJJwIAAAAAAKA6ikvL44anJ1ZZ/+6xu0evTi0TTAQAAAAAAAAAAADUJwZgAQD1Wk5OKq47eXCV9TtenBpl5ekEEwEAAAAAAFAd978+O2Yu35ix1q9Lq7j0qH4JJwIAAAAAAAAAAADqEwOwAIB676gBneOw/p0y1qYu3RBPfbgo4UQAAAAAAABsy4LVm+NXI2dUWb/tzKHRLC83wUQAAAAAAAAAAABAfWMAFgBQ76VSqbju5MFV1n8+YnoUlpQlmAgAAAAAAICqpNPp+OEzk6KwpDxj/Qv7dY/D+ndOOBUAAAAAAAAAAABQ3xiABQA0CHv3aB+f37tbxtqitVviL2/PSzgRAAAAAAAAmbw0aVmMnLo8Y61t87z431P2SDgRAAAAAAAAAAAAUB8ZgAUANBhXnTgo8nJSGWv3jpoZ67aUJJwIAAAAAACA/7SpqDRufnZSlfWrhw+OLm2aJZgIAAAAAAAAAAAAqK8MwAIAGow+nVvF+Yf0ylhbt6Uk7nttVsKJAAAAAAAA+E+/fHVGLFlXmLG2T492cf7BmT/rAQAAAAAAAAAAAJoeA7AAgAble8cNiFYFuRlrD74xJ5as25JwIgAAAAAAACIipi5dH394Y07GWk4q4kdf2Ctyc1IJpwIAAAAAAAAAAADqKwOwAIAGpXPrZnHpUf0y1opKy+PuETMSTgQAAAAAAEB5eTp+8OTEKCtPZ6x/7XN9Ymj3dgmnAgAAAAAAAAAAAOozA7AAgAbnG0f2i86tCzLW/j5uQcxYtiHhRAAAAAAAAE3bP8YtjPfnrclY69qmWfzPiQMTTgQAAAAAAAAAAADUdwZgAQANTutmefHfxw3IWCtPR9z50rSEEwEAAAAAADRdqzcVx49fmFJl/YbP7xltmucnmAgAAAAAAAAAAABoCAzAAgAapHMP7hV9OrXMWBsxeVm8P3d1wokAAAAAAACapttfmBJrN5dkrB05oHN8fu9uCScCAAAAAAAAAAAAGgIDsACABik/NyeuOmlQlfWfvDA10ul0gokAAAAAAACanvfnro7H31+YsVaQlxO3nDE0UqlUwqkAAAAAAAAAAACAhsAALACgwTplaLfYu0e7jLVx89bEiMnLEk4EAAAAAADQdJSUlcf/PTmxyvplR/ePvp1bJZgIAAAAAAAAAAAAaEgMwAIAGqycnFRcd/LgKut3vDg1SsvKE0wEAAAAAADQdDz05pyYtmxDxlqfTi3jsmP6J5wIAAAAAAAAAAAAaEgMwAIAGrTD+neOowd2yVibtWJT/GPcwoQTAQAAAAAANH6L126Ju1+ZUWX9ljOGRvP83AQTAQAAAAAAAAAAAA2NAVgAQIN37fDBkUplrv3ilemxpbgs2UAAAAAAAACN3M3PTorNVXwG8/m9u8VRVRxgAgAAAAAAAAAAAPApA7AAgAZvz93axhf27Z6xtmx9UTz01pyEEwEAAAAAADRer05ZFi9NWpax1rpZXtzw+T0TTgQAAAAAAAAAAAA0RAZgAQCNwhUnDIyC3My/tfnt6FmxZlNxwokAAAAAAAAany3FZfHDZyZVWf+fEwfGLm2bJ5gIAAAAAAAAAAAAaKgMwAIAGoWeHVvGBZ/rnbG2obA0fj1qZsKJAAAAAAAAGp9fjZwRC9dsyVgbslvbuODQzJ/XAAAAAAAAAAAAAHyWAVgAQKPx7WG7R5tmeRlrf357XixcsznhRAAAAAAAAI3HzOUb4v7XZ2espVIRP/rCXpGXqxUFAAAAAAAAAAAAqB5dhwBAo9GxVUF865j+GWvFZeXx85enJ5wIAAAAAACgcUin0/GDpyZGSVk6Y/0rh/SKfXu2TzYUAAAAAAAAAAAA0KAZgAUANCpfP7xvdG3TLGPtyfGLYvLi9QknAgAAAAAAaPie/HBRvDN7dcZa59YFcfVJgxNOBAAAAAAAAAAAADR0BmABAI1Ki4LcuOKEgRlr6XTEnS9NTTgRAAAAAABAw7Z2c3H86LkpVdb/79Q9ol2L/AQTAQAAAAAAAAAAAI2BAVgAQKNz1gE9on+XVhlro6etiLdmrUw4EQAAAAAAQMN150vTYtWm4oy1z/XrFGfu2z3hRAAAAAAAAAAAAEBjYAAWANDo5OXmxDXDB1dZv/2FqZFOpxNMBAAAAAAA0DB9OH9NPDp2fsZafm4qbj1zaKRSqYRTAQAAAAAAAAAAAI2BAVgAQKN04p67xAG9O2SsfbxwXTw/YWnCiQAAAAAAABqW0rLy+L8nJ0ZV54r811H9YveurZMNBQAAAAAAAAAAADQaBmABAI1SKpWK604eXGX9py9NjZKy8gQTAQAAAAAANCx/fnteTF6yPmOtR4cW8Z1hAxJOBAAAAAAAAAAAADQmBmABAI3WQX06xvF77JKxNnfV5vjb2PkJJwIAAAAAAGgYlq0vjJ+PmF5l/dYzhkaLgtwEEwEAAAAAAAAAAACNjQFYAECjds3wQZGTylz75aszYlNRabKBAAAAAAAAGoBb/jU5NlbxOcrwIbvGsMFdE04EAAAAAAAAAAAANDYGYAEAjdrAXdrElw/okbG2cmNxPPD6nIQTAQAAAAAA1G+vTV8Rz328JGOtZUFu3HjangknAgAAAAAAAAAAABojA7AAgEbvihMGRrO8zL/t+f2YWbFyY1HCiQAAAAAAAOqnwpKyuPHpiVXWrzh+YOzWvkWCiQAAAAAAAAAAAIDGygAsAKDR69auRVx8eN+MtU3FZfGrV2cknAgAAAAAAKB++s3oWTFv1eaMtcG7tomLDu+TbCAAAAAAAAAAAACg0crLdgAajgULFsT7778fS5YsibVr10Z+fn60b98+BgwYEAcccEC0adOm1vZatGhRvP322zFv3rzYsmVLtG3bNgYOHBhHHHFEtG7dutb2AaDpuOzo/vHo2PmxbkvJVrW/vjs/vn5E3+jdqVUWkgEAAAAAANQPs1dsjPtGz6qyftuZQyM/11lrQNOgVwoAAAAAAAAAAOqeAVgN2KJFi2Ls2LHx7rvvxtixY+P999+PDRs2VNR79+4dc+fO3ak9CgsL43e/+13cd999MXXq1Crvy8nJieHDh8d///d/x4knnrjD+7322mtx0003xejRozPWCwoK4pxzzolbbrkl+vTps8P7AND0tGuZH98Ztnv86PkpW9VKy9Nx18vT41fn7ZeFZAAAAAAAANmXTqfjxqcnRXFZecb6uQf1jAP7dEw4FcC/6ZXqs8P7AAAAAAAAAABAfWUAVgPz5ptvxs9+9rN49913Y/HixXW61/jx4+O8887bZjPXp8rLy+P555+P559/Ps4777x44IEHomXLltXeK51Ox7XXXhs//elPt3lfcXFx/OUvf4knnngi/vSnP8WXvvSlau8BABd8rnc89OacWLyucKvasx8tjkuP7Bt792iffDAAAAAAAIAse/bjJfHGzJUZax1bFcS1wwcnnAhAr5ReKQAAAAAAAAAAGrucbAegZt5777148skn67yha8KECXHsscdmbOjq3bt3HHzwwbHPPvtE27Ztt6o/+uijcdppp0VxcXG19/ve9763VUNXKpWKnj17xv777x+dO3euVNu0aVOcc8458eSTT1Z7DwBonp8bV544qMr67S9MjXQ6nWAiAAAAAACA7FtfWBK3/mtylfXrTh4cHVoVJJgI4BN6pT6hVwoAAAAAAAAAgMbKAKxGpHXr1rXynrKysrjgggtizZo1Fddyc3PjqquuioULF8bcuXPj3XffjfHjx8eaNWti5MiRcfDBB1d6x8iRI7d7QuGnHn/88bj33nsrXfvSl74U06ZNi/nz58e4ceNixYoV8corr8Tee+9dKeeFF14Yc+fO3fFfLABNzhf26x6Dd22TsfbWrFXx+ozMJ5sDAAAAAAA0Vj97aVqs2FCUsXZQnw7x5f17JJwIYPv0SgEAAAAAAAAAQMNnAFYD1aZNmzjmmGPi6quvjr///e8xd+7cePbZZ2vl3U899VR89NFHla799a9/jZ/+9KfRvXv3StdzcnJi2LBh8cYbb8RJJ51UqXbHHXdEUVHmBtlPFRcXx7XXXlvp2re+9a34+9//HgMGDKh0/bjjjosxY8bEgQceWHFtw4YN8cMf/rDavzYAyM1JxbXDB1dZv/2FqVFenk4wEQAAAAAAQPZMWLgu/vLOvIy1vJxU3HbmXpGTk0o4FUBleqU+oVcKAAAAAAAAAIDGxgCs/7Bhw4ZYuHBhzJ8/P4qLi7MdJ6PTTjstJk2aFGvXro1Ro0bFnXfeGV/+8pejd+/etbbH008/XWl9yimnxDnnnLPNZ/Lz8+P++++PvLy8imsbNmyI1157bZvP/eEPf6h0KuGAAQPiF7/4RaRSmZtn27VrF3/605+ioKCg4tpf//rXmDp16jb3AYD/dMygLnFI344Za5OXrI9nPlqccCIAAAAAAIDklZWn4/+emhBVnQ1yyRF9Y9CubZINBSSqvvdL6ZXSKwUAAAAAAAAAQOPWpAdgjRw5Mr797W/H3nvvHQUFBdG+ffvo3bt39O3bN954442Mz4wbNy7GjBkTY8aMiY8//jjhxBH9+/ePPffcM3Jy6u5/umnTplVaf/GLX6zWcz179oyDDz640rWZM2du85kHHnig0vr666+P5s2bb/OZPffcs1KTWVlZWTz00EPVyggAERGpVCquO3lwlfW7Xp4WRaVlCSYCAAAAAABI3iPvzouPF67LWNutXfP43nEDEk4E1LWG1i+lV0qvFAAAAAAAAAAAjVuTHID1zjvvxH777RcnnHBC3HfffTFx4sQoLS2NdDod6XQVx5r+f4899lgMGzYshg0bFkcffXQUFhYmlDo5q1evrrTu2bNntZ/t1atXpfXatWurvHfhwoXxwQcfVKxbt24dZ599drX2ueSSSyqtP3sSIwBsz369OsQpe+2asbZwzZZ4+J35CScCAAAAAABIzvINhXHnS9OqrN90+pBo1SwvwURAXdIvVTW9UgAAAAAAAAAAkD1NbgDWL3/5yzj66KPj448/3qp5K5VKbff5733ve5GbmxvpdDrWr18f//znP+sqata0a9eu0nrLli3Vfvaz93bu3LnKe5977rlK68MPPzxatWpVrX0OP/zwaNmyZcV62rRpMWPGjGrnBICIiKtOHBS5OZn/+X/vyBmxvrAk4UQAAAAAAADJ+PFzU2JDYWnG2vF7dI0Th2Q+SARoePRLbZteKQAAAAAAAAAAyJ4mNQDrwQcfjCuuuCJKSv49zCI3NzcOOeSQOOuss7Z7mmFERI8ePeLYY4+tWD/zzDN1kjWb9t1330rr9957r1rPpdPpre49+OCDq7x//PjxldaHHXZYtfaJiMjLy9vq3Z99HwBsT78urePcgzKf3rtmc0n8/rXZCScCAAAAAACoe2/OXBlPjV+csdY8Pyd+eNqQhBMBdUW/1PbplQIAAAAAAAAAgOxpMgOw5s6dG5dffnmkUqmKH1dffXUsXbo03n777XjssccionqnGn7pS1+KiE+amF599dU6zZ0N55xzTqX1/fffH2vXrt3uc3/5y19i8eJ/N8juv//+WzWI/acpU6ZUWu+55541yvnZ+z/7PgCojv8+fkC0yM/NWHvgjdmxfH1hwokAAAAAAADqTlFpWdzw1MQq6987bkD07NgywURAXdEvVT16pQAAAAAAAAAAIHuazACsG2+8MYqLiyOdTkcqlYpHHnkk7rjjjujYsWON33XkkUdW/HzNmjUxa9as2oyadSeccEKceOKJFevly5fHaaedFsuWLavymWeeeSYuu+yyinV+fn78+te/3uY+06ZNq7Tu2bNnjXJ+9v7Pvg8AqqNrm+Zx6ZF9M9YKS8rjF6/MSDgRAAAAAABA3fn9a7Nj9spNGWsDuraObxzRL+FEQF3RL1U9eqUAAAAAAAAAACB78rIdIAnFxcXxxBNPVJxW+F//9V9x9tln7/D7Bg4cGC1btozNmzdHxCen6fXv379WstYXf/3rX2PYsGExceInp76+8cYbMWDAgDj33HPj8MMPj65du0ZxcXHMnDkznnnmmRgzZkzFsy1btoyHH344Dj300G3usWLFikrrHj161Chj9+7dK62XL19eo+cB4FOXHtUvHn53fqzeVLxV7fH3F8QlR/SN3bu2zkIyAAAAAACA2jN/1ea4d9TMKuu3njk0CvKazFlq0Kjpl6oZvVIAAAAAAAAAAJAdTWIA1ptvvlnRfJVKpeLqq6/eqffl5OREt27dKk4yXLRo0U5nrG86d+4c77zzTlx//fXxu9/9LoqLi2PDhg1x//33x/3335/xmfz8/PjiF78Yt956awwYMGCb79+yZUuUlZVVutaqVasaZfzs/Rs3bqzR81VZvnz5Vg1n2zNzZtUNwgDUf22a58d3j909bn528la1svJ03PXStLjvggOykAwAAAAAAKB2pNPpuPGZiVFUWp6x/qX9e8Sh/TolnAqoK/qlaqYp90pF6JcCAAAAAAAAACB7msQArDlz5lT8vHv37tG3b9+dfmf79u0rfr5+/fqdfl991KpVq7jnnnvi3HPPjUsvvTQmT956KMh/Ovfcc+Pb3/72dhu6IjI3YDVv3rxG+Vq0aLHdd+6I3/zmN3HzzTfXyrsAaDi+ckjvePDNObFg9Zatai9OWhrj5q2JA3p3yEIyAAAAAACAnffixKUxelrm4SbtWuTH/54yOOFEQF3SL1VzTbVXKkK/FAAAAAAAAAAA2ZOT7QBJ+PR0ulQqFd26dav195eXZz4dtaGbM2dOnHnmmXHEEUdst6ErIuIvf/lLHHrooXHqqafG4sWLt3lvYWHhVtcKCgpqlK9Zs2aV1lu2bD2wBACqqyAvJ646cVCV9TtemBrpdDrBRAAAAAAAALVjY1Fp3Pxs1Z/7Xzt8cHRq3azKOtDw6JeqOb1SAAAAAAAAAACQvCYxAOs/m3+Ki4tr5Z2rVq2q+HmnTp1q5Z31yahRo2LfffeNp59+umLYx3HHHRePP/54zJ8/P4qKimLdunUxfvz4uOOOO6J79+4Vzz7//PNx4IEHxowZM6p8f6YTDGv6v01RUdF23wkANXHa3rvF0O5tM9bGzl0dI6cuTzgRAAAAAADAzvvFiOmxdP3Ww1ciIvbr1T7OPahnwomAuqZfqmb0SgEAAAAAAAAAQHbkZTtAErp27RoREel0OhYtWrTT71u7dm3Mnz8/UqlUpfc3FtOmTYvTTjstNm3aFBEROTk58bvf/S6+8Y1vVLqvoKAg9tlnn9hnn33iW9/6Vpxzzjnx4osvRkTEkiVL4rTTTovx48dnbLZq3br1VtcKCwtr1Jj12VMMM71zR1x++eVx1lln1eiZmTNnxplnnlkr+wOQPTk5qbhu+B7x1T+8m7F+x4tT45hBXSM3J5VwMgAAAAAAgB0zefH6+ONbczPWclIRt505NHJ89gGNjn6p6mvqvVIR+qUAAAAAAAAAAMieJjEAa/fdd6/4+apVq2Lq1KkxePDgHX7fSy+9FOXl5RERkUql4qCDDtrpjPXJt771rYqGroiIG2+8cauGrs9q27Zt/POf/4z9998/pk2bFhGfNIfdc889cc0112x1f4sWLSI3NzfKysoqrm3atCnat29f7Zz/mTGi9pq6unbt2qia9AComSMGdI4jB3SO12es3Ko2fdnG+OcHC+PsA52CDgAAAAAA1H/l5en4wVMToqw8nbF+0WF9Y8hu7RJOBSRBv1T1NfVeqQj9UgAAAAAAAAAAZE9OtgMk4cADD4yOHTtWnEB4//3379T77rrrroqfDxw4MLp167ZT76tPPv744xg9enTFukOHDnH11VdX69mWLVvGDTfcUOnatv677tKlS6X1woULqx80YqvTKTVhAVBbrh1edeP3L0ZMj8KSsirrAAAAAAAA9cVj7y+ID+avzVjbpW2zuPLEgckGAhKjX6p69EoBAAAAAAAAAEB2NYkBWDk5OXHGGWdEOp2OdDodv/71r+PDDz/coXfdeuutMW7cuIj45DTDCy64oDajZt2rr75aaX3sscdGy5Ytq/38qaeeWtE4FxExc+bMWLJkScZ7Bw0aVGk9f/78GiTd+v6dOaUSAP7T0O7t4vR9dstYW7KuMP701txkAwEAAAAAANTQqo1FcfsLU6us//C0IdG6WV6CiYAk6ZeqHr1SAAAAAAAAAACQXU1iAFZExI033hgFBQWRSqWiuLg4hg8fHu+++261ny8rK4vrr78+brrppoqmpfbt28d3v/vduoqcFXPmzKm07tu3b42eb9++fXTo0KHStc+ePvipzzZhTZ48uUZ7TZkyZZvvA4CdcdWJgyI/N5Wx9utRM2Pt5uKEEwEAAAAAAFTfT16YGuu2lGSsHT2wS5w8dNeEEwFJ0y+1fXqlAAAAAAAAAAAgu5rMAKzevXvHD37wg0in05FKpWLFihVxxBFHxAUXXBAvv/xyrFq1KiIi0ul0RHzSwLVy5cp455134sc//nH0798/7rzzzopTEVOpVPzyl7+MNm3aZPOXVeuKiooqrfPyan7aa35+fqV1WVlZxvv23XffSuu33nqr2nuUlpbG2LFjt/k+ANgZvTq1jK8c0jtjbX1hafx29KyEEwEAAAAAAFTPu7NXxT/GLcxYa5aXE7ecMaRimA3QeOmX2j69UgAAAAAAAAAAkF0179hpwH7wgx/EzJkz489//nOkUqkoKyuLRx55JB555JFK96XT6Rg+fPhW1yIiUqlUpNPpuOKKK+KrX/1qYtmT0qlTp0rrxYsX1+j5oqKiiua4T3Xp0iXjvaeeemql9VtvvRWbNm2KVq1abXefN998MzZv3lyxHjhwYAwcOLBGWQFge7577O7xj3ELY2NR6Va1h96aGxce1id2a98iC8kAAAAAAAAyKy4tjx88NbHK+reH7R69O23/c3mgcdAvtW16pQAAAAAAAAAAILtysh0gaQ8++GDccMMNlU4y/c9TCj/98em1/6xFfNLQ9ZOf/CTuuuuubP0S6lSfPn0qrUePHl3RzFYdr732WpSW/ntISLNmzaJ79+4Z7+3Zs2fst99+FeuNGzfG448/Xq19/vCHP1Ran3HGGdXOCADV1al1s/jmUf0y1opLy+PnI6YnnAgAAAAAAGDb/vDGnJixfGPGWr/OreKbR2f+7ANovPRLVU2vFAAAAAAAAAAAZFeTG4CVk5MTN998c4wZMyZOPPHEKhuWPm3s+lQ6nY5hw4bFmDFj4tprr00qbuKOO+64Suv58+dXu9EqnU7H7bffXunaEUccEc2aNavymUsuuaTS+vbbb4/CwsJt7jNlypR47LHHKtY5OTlx0UUXVSsjANTUJUf2jc6tM/+z7J8fLIypS9cnnAgAAAAAACCzhWs2xz2vzqiyfuuZQ6NZXm6CiYD6QL9U1fRKAQAAAAAAAABAdjW5AVifOuyww+LFF1+MyZMnx89+9rM488wzY+DAgdGpU6fIzc2NNm3aRN++feO4446L2267Ld5///149dVX47DDDst29DrVv3//OPTQQytdu+yyy+Ljjz/e5nPpdDquv/76GDVqVKXrF1544Tafu/TSS6NXr14V6+nTp8cVV1xRZaPd+vXr42tf+1oUFxdXXDv//PNjzz333OY+ALCjWhbkxfePH5Cxlk5H/PTFaQknAgAAAAAAyOymZybHlpKyjLUz9t0tDt+9c8KJgPpEv9TW9EoBAAAAAAAAAEB25WU7QLYNHjw4Bg8eHFdccUW2o1Tbm2++GVu2bNnq+kcffVRpXVhYGK+88krGd+y2225VNkLdfvvtMWzYsIrGqjVr1sTnPve5uO666+LSSy+NXXfdteLe8vLyePvtt+PWW2+Nl156qdJ79tprr/jKV76yzV9LQUFB3H777XH++edXXLvvvvti5cqV8eMf/zgGDPj3wJGRI0fGFVdcUanBrHXr1nHLLbdscw8A2FnnHNQzHnxjTsxeuWmr2qtTl8e7s1fFIf06ZSEZAAAAAADAJ0ZMXhavTFmWsdameV7836l7JJwIqK8aWr+UXim9UgAAAAAAAAAANF6pdFXHx1Fv9enTJ+bNm7dT77jwwgvjj3/8Y5X1O+64I6677roq9+/atWsUFRXF3LlzY926dVvd06VLl3jnnXeiX79+1cpz+eWXx29/+9tK11KpVPTs2TO6dOkS8+bNi5UrV1aq5+TkxGOPPRZf/vKXq7VHXZo0aVIMHTq0Yj1x4sQYMmRIFlI6O8YAAQAASURBVBMBUNtemLAkLvvrBxlr+/VqH09cdlikUqmEUwEAAAAAAERsLi6NE34+Jhat3XpATETELWcMia99rk+yoaAe0M/ROOiV+kR96pWK8PcXAAAAAAAAAEB90pB7OfKyHYD66dprr4327dvHlVdeGZs3b65Umzt3bsydO7fKZw844IB45JFHqt3QFRFx7733RvPmzeMXv/hFxbV0Oh3z58+P+fPnb3V/y5Yt46GHHqo3DV0ANH7Dh+4a+/RsHx8tWLtV7cP5a+OlSUtj+NBuyQcDAAAAAACavF++OqPK4Vd792gXXzmkd8KJABoWvVIAAAAAAAAAAJAdOdkOQP31zW9+MyZPnhxXXXVVdOnSZZv3plKpOPjgg+Ohhx6Kt99+OwYOHFijvXJycuLnP/95jBw5Mo488sgq7ysoKIivfOUrMXHixDj77LNrtAcA7IxUKhXXnzy4yvqdL06L0rLyBBMBAAAAAABETFu6If7w+pyMtVQq4rYzh0ZuTirhVAANj14pAAAAAAAAAABIXiqdTqezHYL6L51Ox4wZM+LDDz+MlStXxrp16yI/Pz/at28fvXr1ioMPPjg6dOhQa/stXLgw3nrrrZg/f34UFhZGmzZtYsCAAXHEEUdE27Zta22f2jJp0qQYOnRoxXrixIkxZMiQLCYCoK58/Y/vxcipyzPWfvSFoU5QBwAAAAAAEpNOp+Oc370TY+euzlj/2ud6xy1nDM1Yg6ZAPwc7Sq/U9vn7CwAAAAAAAACg/mjIvRx52Q5Aw5BKpWLgwIE1Pq1wR/Xo0cOphQDUS9cMHxSjpi2PTCNE735lRnxhv+7RssBvsQAAAAAAgLr3j3ELqxx+1bl1s/ifEwclnAigcdArBQAAAAB8auXGopi4aF1MWLQulq0rjKLS8sjJSUXLgtzYvUvrGNq9XQzu1iaa5eVmOyoAAAA0SE1mOkNubt384UEqlYrS0tI6eTcAUP8M3rVtfHG/HvHPDxZuVVuxoSgefGNOfOfYAVlIBgAAAAAANCVrNhXHT16YWmX9hs/vEe1a5CeYCKhv9EsBAAAAAOyYBas3x8PvzItnP1oci9cVbvf+/NxU7NOjfZx3cK/4/N7dolm+YVgAAABQXU1mAFY6nc52BACgkbjyxIHx7MeLo7i0fKvafa/NjvMP6R0dWxVkIRkAAAAAANBU3PnS1Fi9qThj7fDdO8Xp++yWcCKgvtEvBQAAAABQM+PmrYl7R86M16Yvj/Ia/BFrSVk63p+3Jt6ftyZue25ynHtQr7jsmP7R1mElAAAAsF052Q6QpFQqVeP7M/0AAJq27u1bxEWH9clY21hUGr8aOSPZQAAAAAAAQJMybt7qeHTsgoy1gtycuPWMofobgIjQLwUAAAAAUB2FJWVx678mx1n3vRWjptVs+NVnrdlcEr99bVac+IsxMWrq8toLCQAAAI1UXrYDJOWoo46qcTPW5s2bY8WKFTF37tyI+HdDWM+ePaNfv361HREAaEAuP6Z/PDp2fmwoLN2q9vA78+Lrh/eNnh1bZiEZAAAAAADQmJWWlcf/PTmxyvq3ju4X/bq0TjARUF/plwIAAAAA2L7x89fE9x8bH3NXba7V9y5dXxgX//G9OOuAHnHzGUOiZUGT+TovAAAA1EiT+Tfm0aNH7/Czq1atir/97W9x5513xoIFC2L58uXxgx/8IC699NLaCwgANCjtWxbE5cfsHne8OHWrWklZOn728rS4+9z9spAMAAB2Tjqdjo1FpVFSlo783FS0bpZX4y9KAgAAUHf++NbcmLp0Q8Zar44t4/JhuyecCKiv9EsBAAAAAGzba9OWxzcfHheFJeV1tsffxy2MWSs2xR8vPijatsivs30AAACgoWoyA7B2RqdOneLb3/52XHDBBXH22WfHyy+/HN/61reiqKgovvOd72Q7HgCQJRcf3if+9NbcWLq+cKvaU+MXxzeO7BdDu7fLQjIAAKiZqUvXxzPjF8dHC9fGxEXrY92Wkopauxb5MbR729inR/s4Y9/uMWjXNllMCgAA0LQtWbclfjFiepX1W84YEs3zcxNMBDRW+qUAAAAAgMbu9Rkr4tI/j4visrobfvWpD+avia89ODb++o1DolUzX+sFAACA/5ST7QANSdu2beOJJ56IPfbYI9LpdFxxxRXx/vvvZzsWAJAlzfNz48oTBlZZv+PFqQmmAQCAmhs5dVmcfd/bMfzu1+M3o2fFmzNXVRp+FRGxbktJvDlzVfxm9Kw46e4xcfZ9b8eoqcuzlBgAAKBpu+XZybGpuCxj7dS9usUxg7omnAho7PRLAQAAAACN0YxlG+Kbf0lm+NWnxi9YG99+5IPE9gMAAICGwgCsGmrZsmXceuutERFRXl4eV199dZYTAQDZ9MX9u8eArq0z1l6fsTLemLEy4UQAALB9azYVx/ce/TC+/sf3Y+zc1TV6duzc1XHxH9+L//7bh7FmU3EdJQQAAOCzRk1bHi9MXJqx1qogN274/J4JJwKaCv1SAAAAAEBjUlaejqv+/lFsruLQkbo0etqKeOTd+YnvCwAAAPWZAVg74NRTT40WLVpEOp2OMWPGxLx587IdCQDIkrzcnLh2+OAq63e8ODXKy9MJJgIAgG2bsmR9DP/lmHjmo8U79Z6nxy+O4b8cE1OXrq+lZAAAAFSlsKQsbnx6YpX1K08cFLu2a55gIqCp0S8FAAAAADQWvx8zKz5auC5r+//4+SmxaO2WrO0PAAAA9Y0BWDugWbNm0bdv34r1W2+9lcU0AEC2HbdH1zioT4eMtQmL1sW/JixJOBEAAGQ2Zcn6OPf378Sy9UW18r5l64vinN+9YwgWAABAHbt35MxYsDrzFyH27NY2Lvxc74QTAU2NfikAAAAAoDGYv2pz3P3KjKxm2FhUus2DTwAAAKCpMQBrB7Vq1ari5wsWLMhiEgAg21KpVFx38uAq63e9NC2KS8sTTAQAAFtbs6k4LnpobKzbUlKr7123pSQufHBsrNlUXKvvBQAA4BMzl2+M342ZlbGWSkXc9oWhkZer/QOoe/qlAAAAAICG7s/vzI2ievD9jpFTl8fsFRuzHQMAAADqBR2QO2jx4sUVP0+lUllMAgDUBwf07hgnDdklY23+6s3x6Nj5CScCAIDKfvjMpFi2vqhO3r1sfVHc9OykOnk3AABAU5ZOp+OGpyZGSVk6Y/3cg3rF/r06JJwKaKr0SwEAAAAADVlhSVn8Y9zCbMeIiIh0OuKv7/qeCQAAAEQYgLVDxo8fH4sWLapo5OrcuXOWEwEA9cHVJw2OnCr6vO95dUZsKCxJNhAAAPx/I6cui2c+Wrz9G3fC0+MXx8ipy+p0DwAAgKbm6fGL4+3ZqzLWOrUqiGuHD0o4EdBU6ZcCAAAAABq6f328ONZurj/f6/j7uAWxpbgs2zEAAAAg6wzAqqHCwsL49re/HRGfnLQaEbHffvtlMxIAUE/s3rV1nHNQz4y1VZuK4/7X5yScCAAAPnHf6NnJ7PNaMvsAAAA0Beu2lMRtz02usv6/p+wR7VsWJJgIaKr0SwEAAAAAjcGrU5ZnO0Il67eUxrh5a7IdAwAAALLOAKwaGDFiRBx22GHxzjvvVJxm2KtXr9h3332zGwwAqDe+f/zAaJ6f+bdYD7w+O5ZvKEw4EQAATd3Upetj7NzView1ds7qmLZ0QyJ7AQAANHZ3vTQtVm4szlg7pG/H+OL+3RNOBDRF+qUAAAAAgMZiwqJ12Y6wlQmL1mY7AgAAAGRdXrYDJOXrX//6Dj23ZcuWWLZsWXz88cexZs2aSKfTkUqlKv7zlltuqeWkAEBDtkvb5nHJEX3j16NmbVXbXFwW97w6I247c68sJAMAoKl6ZvziZPf7aFFcvevgRPcEAABobMYvWBsPvzsvYy0vJxW3nTm0YhANQFX0SwEAAAAAfGLNpuJYuGZLtmNspT4O5QIAAICkNZkBWH/84x93qvkznU5HRFR6x6WXXhoXXHDBTmcDABqXbx7dP/767vxYu7lkq9qjYxfE1w/vG/26tM5CMgAAmqKPFq5Ndr8FGnIAAAB2Rll5On7w1IT4/20KW7n0qH4xYJc2yYYCGiT9UgAAAAAAn5i8ZH22I2Q0aXH9zAUAAABJysl2gIbi00audDodLVq0iLvuuit++9vfZjkVAFAftW2eH98ZtnvGWll5On728vSEEwEA0FSl0+mYuCjZBpkJi9ZVfDkSAACAmvvL23Or/He57u1bxPeOHZBwIqCp0i8FAAAAADQWmQ44rw/WbamfuQAAACBJedkOkKSd+eJdly5dYv/9949TTjklvvKVr0THjh1rMRkA0Nhc8Lne8dCbc2PR2i1b1Z6bsCQuXbA29u3ZPvlgAAA0KRuLShNvkFm3pSQ2FZdF62ZN6o8eAQAAasXy9YXbPEjj5tOHRIuC3AQTAQ2dfikAAAAAgIjisvJsR8iouLR+5gIAAIAkNZlvoc2ZM6fGz6RSqWjevHm0bds2mjdvXgepAIDGqlleblx10sC44rGPMtZvf2FKPHrpoRWnJgMAQF0oKdvxLzjujOLS8ohmWdkaAACgQbv1uSmxoag0Y+2EPXeJ4/fcJeFEQEOmXwoAAAAA4BP5ufXzuxv5uTnZjgAAAABZ12QGYPXu3TvbEQCAJuaMfbrH78fMiSlL1m9Ve2f26hg9fUUMG9Q1C8kAAGgqstW0U5CnKQcAAKCmXp+xIp79aHHGWov83Ljp9CEJJwIaOv1SAAAAAACfaNciP9sRMmrbosl8xRcAAACq5JtoAAB1JCcnFdcOH1Rl/Y4XpkZZeTrBRAAANDWtm+Ul3rjTrkV+tCrITXRPAACAhq6wpCxufHpSlfXvHz8gurdvkWAiAAAAAACAxmOPbm2zHSGjPbu1y3YEAAAAyDoDsAAA6tDRA7vEYf07ZaxNXbohnvpwUcKJAABoSlKpVAztnmzjzl7d20UqlUp0TwAAgIbuvtdmxZyVmzLWBu3SJr5+RN+EEwEAAAAAADQenVs3i27tmmc7xlb26m4AFgAAABiABQBQh1KpVFw7fHCV9Z+PmB6FJWUJJgIAoKnZp0f7ZPfrqSEHAACgJuau3BS/GT2ryvptXxga+bnaOwAAAAAAAHbG3j3qX2/bXgkfcAkAAAD1kQ5JAIA6tk/P9nHq3t0y1hat3RIPvzMv4UQAADQlrZvlJbrf6ft0T3Q/AACAhiydTscNT0+M4tLyjPWzDugRB/XpmHAqAAAAAACAxufogV2yHaGS1s3y4kCfAwEAAIABWAAASbj6xEGRl5PKWLt31MxYt6Uk4UQAADR2m4tL4+q/fxR3vjQtsT0P7tsxBu3aJrH9AAAAGrrnJiyJ12eszFhr3zI/rj9lj4QTAQAAAAAANE5n7Ns92iR8oOS2nLlf92hVj/IAAABAtjTZfzueMGFCvPDCC/HBBx/EggULYt26dbFly5ZIp9M1ek8qlYpZs2bVUUoAoLHo07lVnH9Ir/jz2/O2qq3dXBL3vTYrrh0+OAvJAABojKYt3RDffuSDmLl8Y6L7XnZ0/0T3AwAAaMg2FJbELc9OrrJ+/cmDo2OrggQTAY2dfikAAAAAoClr1SwvvrB/94zf68iGCw7tne0IAAAAUC80uQFY48aNi+985zsxduzYStdr2sj1qVQqVRuxAIAm4LvHDoh/jlsYm4rLtqo9+MacuPBzfWLXds2zkAwAgMYinU7H395bEDc9MymKSssT3fuMfXeLYYO7JronAABAQ/bzEdNj+YaijLUDeneIsw7omXAioLHSLwUAAAAA8IkLD+sTj7w7P0rLd+zPR2vLEbt3jkG7tslqBgAAAKgvcrIdIEl/+tOf4nOf+1yMHTs20ul0pSauVCpV4x8AADXRpU2zuPSofhlrRaXlcfcr0xNOBABAY7KhsCS+97fxcf0TExIffpWbSsWVxw9MdE8AAICGbOKidfGnt+ZmrOXmpOK2M4dGTo6+BGDn6ZcCAAAAAPi3/l1ax2XH9M9qhub5OXHrmUOzmgEAAADqk7xsB0jKm2++Gd/4xjeirKysoiHr06auvLy8aN++fbRq1SrbMQGARu4bR/aLh9+ZFys3Fm9Ve/z9BXHJEX1jwC5O8QAAoGYmLFwX33n0g5i3avM278tJRRTk5URhSe0OyCpLp+OHz06KP1x4UOT6gjYAAMA2lZWn4/+emhhVHSz+9cP7xB7d2iYbCmiU9EsBAAAAAGztu8cOiBGTl8XUpRuysv81Jw2Ovp392SwAAAB8qskMwLrqqqsqmrnS6XS0bNkyvvvd78Y555wTQ4cOjby8JvNfBQCQRa2b5cX3jhsQNz49aataeTrizpemxf1fOzALyQAAaIjS6XQ89Obc+MkLU6KkrIpvTv9/3du3iHvO2y9aNcuNCx8cG8vWF9VqltHTVsQvRkyPq04aVKvvBQAAaGweHTs/PlqwNmOtW7vm8f3jByYbCGi09EsBAAAAAGytIC8n7jprn/jSb9+KotLaPUxyew7p2zEuOqxPonsCAABAfdckupjmzZsX7777bkUzV/fu3WPkyJExYMCAbEcDAJqgcw/qFX94Y07MW7V5q9qIycvi/bmr48A+HbOQDACAhmTt5uK46u8fxytTlm333hP33CV++uV9ol3L/IiIePG/j4qbnp0UT49fXKuZ7h01M/bq0S5OGrJrrb4XAACgsVixoSjufHFqlfUfnrZntGrWJFo5gDqmXwoAAAAAoGpDu7eLX523X1z21w+irHzbh0/WlsG7tonff+3AyMlJJbIfAAAANBQ52Q6QhLfeeisiItLpdKRSqfj1r3+tmQsAyJqCvJy4+qRBVdZ/8sLUSKeT+QAFAICG6f25q+OUX76+3eFXBbk5cdNpe8bvLjigYvhVRESHVgXxy3P3iwcvOjAO7luz4asH9u4Q3do1r7L+P49/FDOXb6jROwEAAJqKnzw/JdYXlmasDRvUxUBhoNbolwIAAAAA2LYTh+wavzpvvyjIrfuv2e7ZrW08/I1Dol2L/O3fDAAAAE1Mkzg2dOnSpRU/b9++fZx22mlZTAMAEHHK0G6xd4/Z8fHCdVvVxs1bEyMmL4sTfckFAIDPKC9Px29fmxU/HzF9u6fO9enUMu49f/8Y2r1dlfccO3iXOHbwLjFt6YZ45qNF8dGCdTFh0bpYt6Wk4p52LfJjr+7tYp+e7eL0fbrHoF3bxOwVG+OMe9+MDUVbf2l7Y1Fp/NdfxsXT3z482jTXrAMAAPCpt2etiic+XJSx1iwvJ245Y2ikUk78BmqHfikAAPh/7N13eFR12sbx+0x6IQkQeodAIIQOohQRVASUJhZQsCsWytp711VEXUUU0bWLYAcREAFFKdJrIKGF0CG0hJCQOuf9w9eskTOTAMmZSeb7uS6vN5P7NzN39lU3zD7nOQAAAEDx+rWqpajQAN335XodPJFdJu9xWcsaGn9VG0Ww/AoAAAAAAEs+sQArJydHkmQYhho3bszAKAAA8DiHw9AjfZrruv8ut8xfmbtFvZpXl78NdxIBAABA+XA4I0f3fbVOi7YdKfbswLa19eLgVgoPKtnHf7E1K+nBms0lSaZpKjO3QLn5TgX6OxQW6Hfa52mNq4XrP9e21W2frrJ8veTDmbrvq/WaPLyDHA4+iwMAAACA3Hynnpi+0WU+5uKmqlcl1MZGACo65qUAAAAAAAAAoGS6NInWz/deqOd/3KyvV+8ttdetHBqgZwe01IC2dUrtNQEAAAAAqIh8YqNC9erVC7/Oz8/3YBMAAID/6RITrR7Nqllm21NP6ts1pfc/nAAAAKB8W7L9iPpNWFTs8qvgAIdeGdJab1zbtsTLr/7JMAyFB/mrSligwoP8XV4ceUlcDY29uKnL15m3+ZDe/nX7WXUAAAAAgIrm/UXJ2nE40zJrUi1Mt3dvbHMjABUd81IAAAAAAAAAUHIRIQEaf3UbfXJzJ3VsUPmcXis00E/Xd66vn+/twfIrAAAAAABK4OyugitnOnbsKEkyTVN79uzxcBsAAID/ebhPc/2+7bBM8/Ts9XlbNaBNHYUE+tlfDAAAAF4hv8CpCQu26a1ft1v+zvh3TauH6+3r26tZjUr2lJM09uKmStiXrgVJqZb56/O3Kr5OpHo2r26ZAwAAAIAv2HMsSxMWbHOZPz8oXoH+PnH/MgA2Yl4KAAAAAAAAAM5cj9jq6hFbXYkHTujzZbs0c/1+ncgu2U0GmtUI13WdG2hI+zqqFBxQxk0BAAAAAKg4fGIBVuvWrRUbG6stW7bo+PHjWrlypTp16uTpWgAAAIqrHaFBbevo+7X7TssOncjRR0t36u6LYjzQDAAAAJ52IP2Uxk5dpxUpx4o9O7RTPT3dv6Xty1MdDkOvX9tWg95eop1HMk/LTVMaM22tZo7qpobRYbZ2AwAAAABvYJqmnv5hk3LynZb54HZ11KVJtM2tAPgC5qUAAAAAAAAA4Oy1qBWhFwe30ouDWyn58Ekl7EvXxn0ndOhEtnLynXIYUmign2Kqhyu+TqRa1YlUVGigp2sDAAAAAFAu+cwtRJ966qnCr5999lkPNgEAACjqvkubKdDP+teySQt36Hhmrs2NAAAA4Gm/JB1SvzcXFbv8KizQT28ObauXh7S2ffnVXyJDAjR5RAeFunj/jOx83fHZKmXmlOwueAAAAABQkczddEi/JKVaZhHB/nqsXwubGwHwJcxLAQAAAAAAAMC5a1wtXAPa1tHjl7fQhGHtNHlEB00a3kGvXdNWd10Uo+5Nq7H8CgAAAACAc+AzC7CGDRum6667TqZpas6cOQx1AQAAr1GvSqhGXNDAMsvIztfbv263uREAAAA8JTffqRdnbdYtH6/S8aw8t2db1o7Qj2O6a2DbOja1c61ZjUp69eo2LvOth07qoW83yDRNG1sBAAAAgGdl5uTr2ZmbXOYP9WmuapWCbGwEwNcwLwUAAAAAAAAAAAAAAADA2/nMAixJ+uijjzR06FCZpqnnnntOQ4YMUVJSkqdrAQAA6J6eMaoU5G+ZffrHLu09nmVzIwAAANhtz7EsXT35D72/aGexZ2/q0lDf3d1FjaLDbGhWMv1a1dJdFzVxmc/acEDv/Z5sYyMAAAAA8Kw3F2zTgfRsy6xNvShdd159mxsB8EXMSwEAAAAAAAAAAAAAAADwZtZbFiqg5557TpLUvHlzNW7cWMnJyZo+fbqmT5+uVq1aqWPHjqpevbqCg4PP+LWfeuqp0q4LAAB8TJWwQN15URONn7vltCy3wKnX523V69e0tb8YAAAAbDF74wE9/O0GZWTnuz0XEeyv8Ve30WUta9rU7Mw80DtWCfvStWjbEct83E9Jiqsdoe5Nq9ncDAAAAADslXTwhD5YbL3g2GFILw6Kl8Nh2NwKgK9hXgoAAAAAAAAAAAAAAACAtzNM0zQ9XcIODodDhlF0ePTvP/o/szNRUFBw1s9FxbBp0ybFx8cXPk5ISFDLli092AgAUB6dyi1Qj/G/KjUj57TMMKTZY7qrRa0IDzQDAABAWcnOK9ALszbr82W7iz3bvn6UJgxrp7qVQ21odvbSsnLVf+Ji7Tl2yjKPCg3QzFHdVK+Kd/8cAAAAAHC2nE5TV0/+Q6t3HbfMb+rSUM8M4H9PBuzg6/MczEuhLPn6P18AAAAAAAAAAAAAAADepDzPcjg8XcCTDMMo/Ots+MjuMAAAYJOQQD/de2kzy8w0pXE/JdncCAAAAGVpx+GTGvT2khItv7rroib6cuQFXr/8SpKiQgM1eXhHBQdYf/SYlpWnkZ+t1qlcLpIEAAAAUDF9vXqPy+VX1SsF6f7e1v9bAADYgXkpAAAAAAAAAAAAAAAAAN7EpxZgmaZZqn8BAACUtqs71FWTamGW2cIth7V0xxGbGwEAAKAsfLdmr/q/tVhJBzPcnqsaFqiPb+6kh/s0V4Bf+fkoL652hMYNae0y33zghB77fiOfsQEAAACocI5l5uqlOa5vaPHkFXGqFBxgYyMAvo55KQAAAAAAAAAAAAAAAADezN/TBezy66+/eroCAABAsfz9HHqoT3ON/Gy1ZT5uTpKm39P1rO/IDAAAAM/KzMnXUzM26ds1e4s9e0HjqnpjaFvViAi2oVnpG9i2jjbsTdcHi3da5t+v3afWdSN1c9dGNjcDAAAAgLLz8pxEpWXlWWbdm0brita1bG4EwJcxLwUAAAAAAAAAAAAAAADA2/nMAqwePXp4ugIAAECJ9I6rofb1o7Rmd9pp2fq96Zq98aAu5wIZAACAcifxwAmN+mKNdhzOdHvOYUhjL26mUb1i5Oco34tPH+3bXJv2p2tZ8jHL/IVZiWpRK0LnN65qczMAAAAAKH2rUo7pq1XWC48D/R16bmA8N7gAYCvmpQAAAAAAAAAAAAAAAAB4O4enCwAAAKAowzD0SN8WLvPxc5OUV+C0sREAAADOhWmamrJ8lwa+vaTY5Vc1IoL0xe3na+wlTcv98itJ8vdzaOJ17VUrMtgyL3CaGvXFGh1IP2VzMwAAAAAoXXkFTj3+fYLL/O6LmqhRdJiNjQAAAAAAAAAAAAAAAAAAALwfC7AAAAC80HmNquiSFtUts5SjWZq2co/NjQAAAHA2TmTnadTUtXr8+wTl5rtfYnpRbDXNHtNd5zeualM7e0SHB+nd4R0U6G/9UeSRk7m68/M1ys4rsLkZAAAAAJSeDxfv1JZDGZZZw6qhurNHE5sbAQAAAAAAAAAAAAAAAAAAeD8WYAEAAHiph/o0l8Owzt6cv02ZOfn2FgIAAMAZWb8nTVdMWKxZGw64PefvMPRYv+b68MZOqhoeZFM7e7WpF6UXBsW7zNfvSdPTMzbJNE0bWwEAAABA6diXdkpvzN/mMn9+ULyCA/xsbAQAAAAAAAAAAAAAAAAAAFA+sAALAADASzWrUUlXdahrmR05maP/LtppcyMAAACUhGma+u+iZF317lLtPpbl9mydqBB9fecFuuPCJnK42n5aQVzTsZ5GnN/AZf7lqj36YsVuGxsBAAAAQOl49odNOpVXYJld0bqWujetZnMjAAAAAAAAAAAAAAAAAACA8sHf0wU8yTRNrVq1SosWLVJiYqKOHTum9PR0OZ1Ovfbaa2rXrp2nKwIAAB9376XNNGPdfuXkO0/L3vt9h64/v76iw4M80AwAAABWjmfm6oGv12tBUmqxZ/u0rKlxQ1orMjTAhmbe4ckr4pR44IRW7TpumT/zwyY1rxmhDg0q29wMAAAAAM7OgsRD+nnzIcssPMhfT14RZ3MjAHCPeSkAAAAAAAAAAAAAAAAA3sQnF2Dl5eXpnXfe0Ztvvqldu3YVyUzTlGEYOn7c+iK8kSNHat68eZKkBg0a6Ndffy3zvgAAwHfVigzRzV0b6d3fdpyWZeYWaOIv2/XMgJYeaAYAAIB/WplyTGOmrtWB9Gy35wL9HHryihYafn4DGYZhUzvvEOjv0DvXt9cVby1WakbOaXlegam7Pl+tH0d3U/WIYA80BAAAAICSO5VboKd/2OQyf6B3M9XgzzYAvATzUgAAAAAAAAAAAAAAAAC8kcPTBey2fft2nX/++brvvvuUkpIi0zQLs79/7cq1116rlJQUpaSk6Pfff9fy5cvLsi4AAIDu6tFEkSEBltmU5bu062imzY0AAADwdwVOUxN/2aah7y0rdvlV4+gwfX9PF424oKHPLb/6S/WIYE0a3l4BftY/f2pGju6eska5+U6bmwEAAADAmXnrl23ae/yUZRZfJ0IjLmhobyEAcIF5KQAAAAAAAAAAAAAAAADeyqcWYCUnJ6tbt25at25d4Z0LpT8Huf7+2J1evXopNja28PGXX35ZZn0BAAAkKTI0QPf0bGKZ5RWYevXnrTY3AgAAwF9SM7J144cr9OrPW1XgdH+x4KC2tfXD6G5qWTvSpnbeq0ODKnq6f0uX+apdx/X8j5ttbAQAAAAAZ2bboQy9vyjZMjMM6cVBreTn8M3FxwC8C/NSAAAAAAAAAAAAAAAAALyZzyzAys3NVb9+/ZSamlr4vQYNGujNN99UYmKiTp48WeKhriFDhhR+PXfu3DLpCwAA8Hc3XNBQtSODLbOZ6/dr4950mxsBAABg8bYj6vfmYi3efsTtuZAAP71yVWv959q2Cg/yt6md97u+c31d07Guy/yzZbv09ao9NjYCAAAAgJIxTVNPTE9QXoH1IuTrO9dXm3pR9pYCAAvMSwEAAAAAAAAAAAAAAADwdj6zAOudd97R1q1bCwe2Bg8erE2bNmn06NGKjY1VaGhoiV+rb9++kv4cak1KStLRo0fLpDMAAMBfggP8dF/vWJf5yz8lyjStL7QBAABA6covcOrVuVs04sPlOnIyx+3Z2BqV9MOorrqmY70SXUjoSwzD0HMD49WmbqTLM49PT9CGvWn2lQIAAACAEvhuzT4t33nMMosOD9SDlzW3uREAWGNeCgAAAAAAAAAAAAAAAIC385kFWG+88UbhMFf79u01bdo0hYSEnNVrtW3btsgFi5s3by6VjgAAAO4MbldHsTUqWWZLth/Vom1HbG4EAADge/anndKw95dp4q/bVdz+0WHn1deMUV3V1MXvcPhz0euk4R1UNSzQMs/Nd+rOz1YXu2gMAAAAAOySlpWrf89OdJk/fnkLRYYE2NgIAFxjXgoAAAAAAAAAAAAAAACAt/OJBViJiYnavXu3zP+/KvHFF19UQMDZD5yGhYWpTp06hY937Nhxzh0BAACK4+cw9HDfWJf5y3OS5HQWs4UBAAAAZ23+5kPqN2GRVqYcd3suPMhfbw1rp5eubKXgAD+b2pVftaNC9Pb17eXnMCzz/enZGvXFGuUXOG1uBgAAAACne2XuFh3NzLXMLmhcVYPa1rHMAMBuzEsBAAAAAAAAAAAAAAAAKA98YgHW2rVrC78ODw/XJZdccs6vWbly5cKv09LSzvn1AAAASqJnbHV1blTFMtt84IRmbthvcyMAAICKLzffqed/3KzbPl2ltKw8t2db1YnUj6O7qX+b2ja1qxjOb1xVj/dr4TJflnxML89JsrERAAAAAJxu7e7jmrpit2UW4Gfo+UHxMgzr5b4AYDfmpQAAAAAAAAAAAAAAAACUBz6xAOvw4cOSJMMw1KhRIzkc5/5jh4aGFn6dlZV1zq8HAABQEoZh6JG+zV3m4+duUU5+gY2NAAAAKrZdRzN11btL9cHincWevaVrI31z1wVqGB1mQ7OK5+auDTWorevFYf9dvFMz1u2zsREAAAAA/E9+gVOPf58g07TOR17YRDHVw+0tBQBuMC8FAAAAAAAAAAAAAAAAoDzwiQVY2dnZhV8HBQWVymump6cXfh0REVEqrwkAAFAS7epXVt/4mpbZ3uOnNGWZ9d3nAQAAcGZ+3LBfV0xYrA17092eiwwJ0Ps3dNRT/eMU5O9nU7uKxzAMvXRla8XVcv1Z28PfbtDm/SdsbAUAAAAAf/rkj13afMD6zyP1qoRoVK8YmxsBgHvMSwEAAAAAAAAAAAAAAAAoD3xiAVa1atUKvz5y5Mg5v15BQYH27NlT+Dg6OvqcXxMAAOBMPHhZrPwchmX21i/bdCI7z+ZGAAAAFUd2XoEe+36jRn2xVhk5+W7PdmhQWbPHdtelcTVsalexhQT6afKIDooKDbDMs/OcGvn5KqVl5drcDAAAAIAvO5ierdd/3uIyf25AvIIDWIgMwLswLwUAAAAAAAAAAAAAAACgPPCJBVi1atWSJJmmqV27dhW5G+HZWLVqlTIzMwsfN2vW7JxeDwAA4Ew1rhauoZ3qWWbHs/L03m/JNjcCAACoGLanntSgt5foi+W73Z4zDOnui5po2h3nq05UiE3tfEO9KqF6a1g7udj3qj3HTmn01LUqcJr2FgMAAADgs57/cbMycwsssz4ta6pn8+o2NwKA4jEvBQAAAAAAAAAAAAAAAKA88IkFWF26dJG/v78Mw5Bpmvrmm2/O6fUmT55c+HVUVJTat29/rhUBAADO2NiLmyrExR3l/7s4Waknsm1uBAAAUL59s3qv+r+1WEkHM9yeiw4P1Cc3n6eH+jRXgJ9PfLxmu+5Nq+mhPs1d5ou2HdFrP2+xsREAAAAAX/Xb1sOatfGAZRYa6Ken+sfZ3AgASoZ5KQAAAAAAAAAAAAAAAADlgU9coRcZGakuXbrINE2ZpqmXXnpJWVlZZ/Vay5Yt0+effy7DMGQYhvr27VvKbQEAAEqmekSwbuveyDLLznPqjQXbbG4EAABQPmXm5Ou+L9fpga/X61RegduzXWOqavbY7rqwWTWb2vmukRc21uWtarnM31m4Q3NcXIQOAAAAAKUhO69AT81IcJnfd2kz1Y4KsbERAJQc81IAAAAAAAAAAAAAAAAAygOfWIAlSffff78kyTAM7dy5U9dff73y8vLO6DXWrVunIUOGqKCgQKZpyjAMPfLII2VRFwAAoETuuLCxqoQFWmZfrtyjHYdP2twIAACgfNm8/4T6v7VY363d5/acw5Ae6N1Mn97SWdUrBdvUzrcZhqFXrmqtZjXCXZ554Ov12nYow8ZWAAAAAHzJOwt3aNdR62UxzWtW0k1dGtpbCADOEPNSAAAAAAAAAAAAAAAAALydzyzA6t+/v3r06CHTNCVJP/zwgzp37qwFCxYU+9x9+/bp0UcfVbdu3XTgwIHCYa7rr79e8fHxZV0dAADApUrBARrdK8YyK3CaGv/TFpsbAQAAlA+maeqzZbs06J0lSj6S6fZszYhgTb39fI3q1VR+DsOmhpCksCB/vTeioyoF+1vmmbkFuuOz1TqRfWYXbgIAAABAcZIPn9S7C3e4zF8cHC9/P58ZuQBQTjEvBQAAAAAAAAAAAAAAAMDb+dQ05ldffaWGDRsWPl63bp169+6tOnXqqH///pJUOPD173//W1dccYWaN2+u+vXr65VXXlFWVpYM48+LHFu1aqV3333X9p8BAADgn67rXF/1qoRYZj9tOqg1u4/b3AgAAMC7pZ/K091T1ujJ6QnKzXe6PdureXXNHttdnRtXtakd/qlhdJjeHNpWhovdYzuPZOreaevkdJr2FgMAAABQYZmmqSdnJCi3wPrPjEM71VOHBlVsbgUAZ4d5KQAAAAAAAAAAAAAAAADezKcWYFWrVk1z585VbGxs4V0JTdPUgQMHNHv27MJzpmnq119/1Zw5c7R161aZplnkfLt27TRr1iyFhFgvmgAAALBTkL+fHugd6zJ/eXZS4dA6AACAr1u3J02XT1ikOQkH3Z7zdxh64vIW+uDGjqoSFmhTO7jSq3kN3XtJM5f5gqRUTfhlm42NAAAAAFRkP6zfryXbj1pmVcIC9XCf5jY3AoCzx7wUAAAAAAAAAAAAAAAAAG/mUwuwJKlp06ZavXq1Ro4cKT8/P0kqvEuhYRiFf/3l74/9/Pw0cuRILVmyRHXq1LG/PAAAgAv9W9dWy9oRltmKlGP6JSnV5kYAAADexek09f7vybpq0lLtPX7K7dl6VUL0zV1ddFv3xkU+J4JnjeoZo0ta1HCZvzF/mxYkHrKxEQAAAICK6ER2nl6Ylegyf6Rvc1VmUTKAcoZ5KQAAAAAAAAAAAAAAAADeyucWYElSSEiIJk2apOTkZD300EOKj4+XpMI7F/7zryZNmmjUqFHasmWLJk2apODgYA//BAAAAEU5HIYe6ev6jvPjfkpSgdO0sREAAID3OJaZq9s+XaUXZycqv5jfifq1qqkfR3dX23pR9pRDiTkchl6/to0aR4e5PPOvaeuUfPikja0AAAAAVDSvzd2iwxk5llmnhpV1Vfu6NjcCgNLBvBQAAAAAAAAAAAAAAAAAb+Tv6QKeVLduXb388st6+eWXlZaWpi1btujo0aNKS0tTaGiooqOj1ahRI+5eCAAAyoXuTaupW0y0Fm8/clq29dBJfbdmr67uWM8DzQAAADxnefJRjZ22TgdPZLs9F+jv0FNXxOn6zvVlGIZN7XCmIoID9N4NHTRw4hJl5haclmfk5GvkZ6v1/T1dFR7k0x99AgAAADgLG/em67Nluywzf4ehFwa1ksPBnxkBlG/MSwEAAAAAAAAAAAAAAADwJlwF9v+ioqLUuXNnT9cAAAA4J4/0ba4r3lpsmb0+b6v6t6mt4AA/m1sBAADYr8Bp6p1ft+s/87fKabo/27hamCYOa6+42hH2lMM5ialeSa9d01Z3fr7aMt+WelIPfr1e71zfnmVmAAAAAEqswGnq8ekbXf4Z8tbujRRbs5K9pQCgjDEvBQAAAAAAAAAAAAAAAMDTHJ4uAAAAgNITXydSA9rUtswOpGfrk6Up9hYCAADwgNQT2RrxwXK9Nq/45VdXtq+jmaO6sfyqnOkTX1Ojesa4zOckHNSk33bY2AgAAABAeTdl+S5t2JtumdWJCtHYi5va3AgAAAAAAAAAAAAAAAAAAKDi85kFWPn5+Z6uAAAAYIsHescqwM+wzN7+dbvSs/JsbgQAAGCf37ceVr8Ji7R0x1G350IC/PTq1W30+jVtFRbkb1M7lKZ7L22mHs2quczHz92i37YetrERAAAAgPIqNSNb43/a4jJ/un+cQgP5syOA8od5KQAAAAAAAAAAAAAAAADezmcWYNWqVUtjxozRqlWrPF0FAACgTNWvGqrrOzewzE5k5+ud37bb3AgAAKDs5RU4Ne6nJN3w4QodOZnr9mzzmpU0c3Q3XdWhrk3tUBb8HIYmDG2n+lVCLXPTlMZMXavdR7NsbgYAAACgvHlxVqIycqyXxFzSorp6t6xpcyMAKB3MSwEAAAAAAAAAAAAAAADwdj6zAOvo0aN6++231blzZ7Vs2VLjx4/X/v37PV0LAACgTIzuFaPwIOu70X+0JEX7007Z3AgAAKDs7Es7paHvLdOkhTuKPXt95/qafk9XxVQPt6EZylpkaIAmj+igkAA/yzz9VJ5Gfr5ap3ILbG4GAAAAoLxYsv2IZqyznh0IDnDo6f4tbW4EAKWHeSkAAAAAAAAAAAAAAAAA3s5nFmD9xTRNJSYm6pFHHlGDBg3Up08fTZs2TdnZ2Z6uBgAAUGqqhgfpjgsbW2a5+U79Z95WmxsBAACUjXmbD6nfm4u0etdxt+cqBfnr7eva68XBrRTsYlkSyqcWtSI07qrWLvPEAyf0yHcbZJqmja0AAAAAlAc5+QV6cnqCy3zsxc1Ur0qojY0AoGwwLwUAAAAAAAAAAAAAAADAW/nMAqywsLDCi9wMw5BpmiooKNC8efN0/fXXq2bNmrrjjju0ePFiDzcFAAAoHbd1b6To8CDL7Ns1e7XlYIbNjQAAAEpPTn6Bnp25Sbd/ukrpp/Lcnm1dN1KzxnTX5a1r2dQOdhvQprZu797IZT5j3X59sHinjY0AAAAAlAfv/Zas5COZllnT6uG6tZvrP2cAQHnAvBQAAAAAAAAAAAAAAAAAb+czC7AOHTqkjz/+WL169ZJhGJJU+H9N09SJEyf0wQcfqEePHoqJidHzzz+vlJQUDzYGAAA4N6GB/vrXJU0tM6cpvfJTks2NAAAASkfKkUwNmbRUHy1JKfbsbd0a6Zs7u6h+1dCyLwaPerhPc3VpUtVl/tKcJC3dccTGRgAAAAC82a6jmZr463aX+QuD4hXo7zMjFQAqKOalAAAAAAAAAAAAAAAAAHg7n5nWDA0N1Q033KD58+crJSVFL7zwgpo1a1bkLofSn8NdycnJeuaZZxQTE6OLLrpIH3/8sU6ePOnJ+gAAAGfl2k711Cg6zDJbkJSq5clHbW4EAABwbn5Yv19XvLVYCftOuD0XFRqgD27sqCeuiOOCZR/h7+fQxOvaq05UiGVe4DQ16ou12pd2yuZmAAAAALyNaZp6asYm5eQ7LfMh7euqc2PXC3YBoLxgXgoAAAAAAAAAAAAAAACAt/PJq//q1q2rxx57TImJiVq2bJnuuusuVa5c+bThLqfTqUWLFunWW29VzZo1CwfCAAAAyosAP4cevCzWZf7yT0mFvwMBAAB4s1O5BXr0uw0aM3WtTubkuz3bqWFlzR7TXRe3qGFTO3iLKmGBend4B5dLz45l5uquz1crO6/A5mYAAAAAvMmchIP6bethyywyJECP9WtucyMAKHvMSwEAAAAAAAAAAAAAAADwRj65AOvvzjvvPL399ts6cOCAvv32Ww0YMED+/v4yTbPIXQ6zsrI0ZcoUXXbZZapfv74ef/xxbdmyxcPtAQAAitc3vqba1IuyzNbuTtPcTYfsLQQAAHCGth3K0MC3F2vqij1uzxmGNLpXjKbefr5qR4XY1A7eplXdSL00uJXLfMPedD0xPYFFsAAAAICPOpmTr+dmbnaZP9ynuaqGB9nYCADsx7wUAAAAAAAAAAAAAAAAAG/h8wuw/hIQEKDBgwdr+vTp2r9/v9544w21b9/+tLscmqapvXv36uWXX1ZcXJzOP/98T9YGAAAolmEYerSv67vVvzI3SfkFThsbAQAAlIxpmvpq5R71n7hYWw+ddHs2OjxIn93SWff3jpW/Hx95+bohHerqxgsauMy/Wb1Xny/bZWMjAAAAAN7iP/O26uCJbMusXf0oDe1Uz+ZGAOA5zEsBAAAAAAAAAAAAAAAA8DSuBrRQtWpVjRkzRitXrlRCQoIefPBB1apVq3C4S/pzsMs0Ta1cudKDTQEAAErm/MZV1TO2mmWWfDhTX63aa3MjAAAA907m5OveL9fpoW83KDvP/bLObjHRmjO2u7o1jbapHcqDJ66I03kNq7jMn525WatSjtnYCAAAAICnbd5/Qh8vTbHM/ByGXhzUSg6HYW8pAPASzEsBAAAAAAAAAAAAAAAA8AQWYBUjLi5O48aN0549ezR37lxdd911CgoKKrzDIQAAQHnxcN/mcvUrzBvztyorN9/eQgAAAC5s2p+u/m8t1vR1+92e83MYevCyWH16y3mqVinIpnYoLwL8HJp4fTvViLD+eyPfaequKWt06ES2zc0AAAAAeILTaerx6RtV4DQt85u6NFRc7QibWwGAd2JeCgAAAAAAAAAAAAAAAIBdWIBVQhkZGdq1a5d27dqlnJwcT9cBAAA4Y81rRujKdnUts9SMHH24eKfNjQAAAIoyTVOf/pGiwW8v1c4jmW7P1ooM1rQ7ztc9PWPkcHDhHaxVrxSsScM7KMDP+u+Rwxk5uuvz1crNd9rcDAAAAIDdpq3co7W70yyzmhHBuvfSZvYWAoBygHkpAAAAAAAAAAAAAAAAAGWNBVhuOJ1OzZkzR8OGDVOtWrU0cuRILV26lLsZAgCAcuu+3s0U6G/9K+C7vyXrWGauzY0AAAD+lJ6Vpzs/X62nZmxSboH7ZUSXtKiu2WO6q1PDKja1Q3nWvn5lPTcw3mW+Zneanp25ycZGAAAAAOx25GSOxv2U5DJ/qn+cwoP8bWwEAN6LeSkAAAAAAAAAAAAAAAAAdmKC08KGDRv06aef6osvvtChQ4ckSaZpSpIMwyj8Ojg4WAMHDvRYTwAAgDNVJypEN17QQO8v2nladjInXxN/2a6n+sd5oBkAAPBla3Yf1+gv1mpf2im35wL8DD3St4Vu6dqQC+5wRoadV18b9qZp6oo9lvmU5bvVum6kru1U3+ZmAAAAAOzw0uwkpZ/Ks8x6NKumvvE1bW4EAN6HeSkAAAAAAAAAAAAAAAAAnsACrP+XmpqqKVOm6NNPP9WGDRskFR3i+muQyzRNdenSRTfeeKOuueYaRUZGerI2AADAGbunZ4ymrdyjjOz807LPlqXo5q4NVa9KqAeaAQAAX+N0mnp/UbLGz92ifKfp9mz9KqGaeF07ta4bZU85VDjPDGipxAMZWrcnzTJ/cvomxdaMUNt6Ubb2AgAAAFC2licf1bdr9lpmQf4OPTewJUuWAfgs5qUAAAAAAAAAAAAAAAAAeJpPL8DKzc3V9OnT9cknn2jevHkqKChwOcTVoEEDjRgxQjfccINiYmI83BwAAODsRYUG6u6LYjTup6TTsrwCU6/9vEVvDG3ngWYAAMCXHD2Zo/u/Xq+FWw4Xe/by1rX00pWtFBEcYEMzVFRB/n56d3gHXfHWYh05mXNanlvg1J2frdbM0d1UrVKQBxoCAAAAKG25+U49MT3BZX5Pzxg1qBpmYyMA8DzmpQAAAAAAAAAAAAAAAAB4E59cgLVkyRJ98skn+uabb5Seni6p6N0L/xriCgsL05AhQ3TjjTeqZ8+enqwMAABQqm7u2lCfLE3RwRPZp2XT1+3Xbd0bK74Od24GAABlY1nyUY2dtlaHTpy+hOjvgvwderp/Sw07r54Mw7CpHSqympHBeuf69rru/WXKd5qn5QdPZOueL9Zoym2dFeDn8EBDAAAAAKXpg8U7tS31pGXWODpMI3s0trkRAHgO81IAAAAAAAAAAAAAAAAAvJHPLMDauXOnPv30U33++edKTk6WJMu7F0pSz549deONN2rIkCEKC+NurwAAoOIJDvDTfZc200PfbrDMX5m7RZ/ecp7NrQAAQEVX4DT11i/bNGHBNlnsHiqiSbUwvX19ezWvGWFPOfiM8xpV0ZNXxOnpHzZZ5it2HtO/Zyfq6f4tbW4GAAAAoDTtOZalNxdsdZm/MCheQf5+NjYCAPsxLwUAAAAAAAAAAAAAAADA2/nMAqwmTZoUGdr6+xCXaZpq2rSpbrjhBo0YMUL169f3cFsAAICyd2X7Onp/UbK2pZ48Lft962Et2X5EXWOiPdAMAABURIdOZOtf09bpj+SjxZ69qkNdPTewpUIDfeajK9jshgsaaP3eNH23Zp9l/tGSFLWuG6nB7era3AwAAABAaXl25iZl5zkts4Fta6sLn38D8AHMSwEAAAAAAAAAAAAAAADwdj53FeHfh7giIyN1zTXX6MYbb1SXLl08XQ0AAMBW/n4OPdSnuW7/dJVl/vKcJM24p6scDsPmZgAAoKJZuCVV93+1Xkczc92eCw300wuD4nVle5YOoWwZhqF/D26lrYcylLDvhOWZR77dqKbVKym+TqTN7QAAAACcq583HdT8xFTLrFKwvx6/vIXNjQDAs5iXAgAAAAAAAAAAAAAAAOCtfGoBlmma8vPz06WXXqobb7xRgwYNUlBQkKdrAQAAeMwlLaqrU8PKWply/LRs4750zdp4QP3b1PZAMwAAUBHkFTj12s9b9e5vO4o926JWhCZe105NqoXb0AyQggP89O7wDur/1mIdz8o7Lc/Jd2rkZ6s1c3Q3VQkL9EBDAAAAAGcjKzdfz87c7DJ/8LJYVa8UbGMjAPAs5qUAAAAAAAAAAAAAAAAAeDOHpwvYpWXLlnrllVe0Z88ezZ49W9deey3DXAAAwOcZhqFH+jZ3mY+fu0W5+U4bGwEAgIpi7/EsXTv5jxItvxpxfgN9f3cXll/BdnUrh+rt69rLYVjn+9JOaczUtcov4HdiAAAAoLx4c8E27Us7ZZm1rhup6zs3sLkRAHgO81IAAAAAAAAAAAAAAAAAvJ2/pwvYZePGjZ6uAAAA4JU6NKii3nE19PPmQ6dlu49laeqK3bqxS0P7iwEAgHJr7qaDevDr9TqRne/2XKVgf70ypLX6tqplUzPgdF1iovVI3+b69+wky3zx9iMa//MWPdq3hc3NAAAAAJypLQcz9MGinZaZw5BeHNRKfq424AJABcS8FAAAAAAAAAAAAAAAAABv5/B0AQAAAHjeQ31i5eqanwkLtulkjvvlFQAAAJKUnVegp2ckaORnq4tdftWmXpRmj+nO8it4hdu7N9YVrV3/vTj5t2T9uGG/jY0AAAAAnCnTNPXk9ATlO03LfMT5DdSqbqTNrQAAAAAAAAAAAAAAAAAAAOAOC7AAAACgmOqVdG2nepbZ0cxcvf97ss2NAABAebPzSKaGTFqqT/7YVezZOy5srK9HXqB6VUJtaAYUzzAMvXJVazWvWcnlmYe+2aAtBzNsbAUAAADgTHyzeq9WpByzzKpVCtL9l8Xa3AgAAAAAAAAAAAAAAAAAAADF8fd0AU8zTVNr165VYmKijh07pvT0dDmdTt1www1q2LChp+sBAADYZuzFzfT92n3KznOelr2/KFnXn19f1SsFe6AZAADwdjPW7dNj321UZm6B23OVQwP02jVt1Kt5DZuaASUXGuivySM6qP9bi3UiO/+0PCu3QCM/W6UZo7opMiTAAw0BAAAAuHI8M1f/np3oMn/i8haKCOb3eAD4C/NSAAAAAAAAAAAAAAAAALyFzy7AWr9+vV577TXNmDFDJ0+ePC3v1q2b5UDXK6+8oqSkJElS/fr19cwzz5RxUwAAAHvUjAzWLV0b6Z2FO07LsnIL9NaC7Xp+ULwHmgEAAG91KrdAz/ywSV+u2lPs2fMaVdGbQ9uqVmSIDc2As9OgapgmDGunmz9eKdM8PU85mqV/TVurD27sJIfDsL8gAAAAAEvjfkrS8aw8y6xrTFUNaFPb5kYA4J2YlwIAAAAAAAAAAAAAAADgbXxuAVZubq7uvfdevfvuu5L+vKPhPxmG64vXatasqUceeUSGYcgwDN10003c+RAAAFQYd17URF+s2K00iwuFpq7YrVu6NVKj6DAPNAMAAN5m66EM3TNljbalnn6h3N8ZhjS6V1ON6RUjfz+HTe2As3dRbHXdf2kzvfrzVsv81y2H9cb8rbqvd6zNzQAAAABYWb3rmKattF7MHOjn0PMD493OAACAL2BeCgAAAAAAAAAAAAAAAIC38qmrDrOystSjRw+9++67ZzzI9ZfrrrtO1apVk2maMk1TU6ZMKYuqAAAAHhERHKBRPWMss3ynqVfnbrG5EQAA8DamaerLlbs1YOLiYpdfVasUpCm3dtZ9lzZj+RXKlbsvitFlLWu4zCf8sl0/bzpoYyMAAAAAVvILnHr8+wSX+Z09GqtxtXAbGwGA92FeCgAAAAAAAAAAAAAAAIA386krD4cNG6bly5cXPjYMQ4MHD9akSZP0448/Wg55/ZO/v78GDx5c+HjOnDll0hUAAMBTRlzQQHWiQiyzWRsPaN2eNHsLAQAAr5GRnaex09bp4W83KjvP6fZs96bRmj2mu7rERNvUDig9DoehV69uoybVwlyeue+r9dpezBI4AAAAAGXr46UpSjqYYZk1qBqqu13c8AEAfAnzUgAAAAAAAAAAAAAAAAC8mc8swJo5c6ZmzpxZeNfCpk2bat26dfr22281cuRI9evXT1LJ7mrYv39/SZJpmlqxYoVOnTpVdsUBAABsFuTvp/t7N3OZvzwnsUSD8AAAoGJJ2Jeu/m8t1g/r97s95+cw9FCfWH1y83mqVinIpnZA6asUHKD3buio8CB/y/xkTr5GfrZKGdl5NjcDAAAAIEn7007p9XlbXebPDYxXcICfjY0AwPswLwUAAAAAAAAAAAAAAADA2/nMAqznn39e0p9DWDVq1NDChQsVHx9/Vq/VqVOnwq8LCgqUmJhYKh0BAAC8xaC2ddSiVoRltiz5mBZuPWxzIwAA4CmmaeqjJTt15TtLlXI0y+3Z2pHB+mrk+br7ohg5HMVfNAd4uybVwvX6NW1c5jsOZ+r+r9bL6WRBLAAAAGC352ZuVlZugWV2eata6tGsms2NAMD7MC8FAAAAAAAAAAAAAAAAwNv5xAKsQ4cOafXq1TIMQ4Zh6Pnnn1etWrXO+vWqV6+uatX+Nyy7ZcuW0qgJAADgNRwOQw/3iXWZj5uTpAIu8gcAoMJLy8rVyM9W69mZm5Vb4HR79pIWNTR7bHd1aFDFpnaAPXq3rKkxvWJc5j9vPqR3Fm63sREAAACAX5NS9dOmg5ZZWKCfnrwizuZGAOB9mJcCAAAAAAAAAAAAAAAAUB74xAKsJUuWyDRNmaYpf39/DR069JxfMzo6uvDrI0eOnPPrAQAAeJsezarpgsZVLbOkgxmasW6fzY0AAICdVu86rssnLNbPmw+5PRfo59DT/eP0/g0dFBUaaFM7wF7/uqSZesZWc5m/Nm+rft2SamMjAAAAwHedyi3QUz8kuMzv6x2rmpHBNjYCAO/EvBQAAAAAAAAAAAAAAACA8sAnFmAdPPjnnV8Nw1BMTIzCwsLO+TUjIiIKvz558uQ5vx4AAIC3MQxDj/Rt7jJ/7eetys4rsLERAACwg9NpatLCHbpm8h/al3bK7dkGVUP17V1ddHPXRjIMw6aGgP0cDkNvDG2nhlVDLXPTlMZOXatdRzNtbgYAAAD4nrd/3a49x6z/vBpXK0I3XtDA5kYA4J2YlwIAAAAAAAAAAAAAAABQHvjEAqz09PTCr/8+iHUuMjP/dzFbSEhIqbwmAACAt2lTL0qXt65lme1LO6XPl+2yuREAAChLR07m6KaPV2rcT0kqcJpuz/ZvU1s/ju6mVnUjbWoHeFZkSIAmj+io0EA/y/xEdr5GfrZaWbn5NjcDAAAAfMf21JOa/PsOy8wwpBcHx8vfzyfGIACgWMxLAQAAAAAAAAAAAAAAACgP/D1dwA6VK1cu/Prvw13n4q+7JEpS1apVS+U1y4vMzEwtX75cW7du1fHjxyVJkZGRatSokeLj41WvXr1zfo8dO3ZoxYoV2rt3r3Jzc1W5cmU1b95cXbp0UXBw8Dm/PgAAKLkHe8dqbsJB5VsswZj463Zd3bGeIkMCPNAMAACUpqU7juhf09YpNSPH7bkgf4eeHdBS13aqJ8MwbGoHeIfYmpU0/qo2uueLNZZ50sEMPfTNBr01rB3/fAAAAAClzDRNPTk9QXkF1gubh51XX+3qV7bMAMAXMS9VupiXAgAAAAAAAAAAAAAAAMqGTyzAqlGjhqQ/B2J37typ3NxcBQYGnvXrbdu2TUeOHCl8XBoDTGdj3759WrFihZYvX64VK1Zo1apVysjIKMwbNGiglJSUUnu/RYsW6fXXX9fs2bOVm5vr8lydOnV02WWX6f7771dcXNwZvcf06dP1/PPPa80a64sIw8PDddNNN+npp59WdHT0Gb02AAA4Ow2jw3Rd5/r69I9dp2VpWXma/NsOPdSnuQeaAQCA0lDgNPXmgm1665dtMq2vIS7UtHq4Jl7XXrE1K9lTDvBCl7eupQ37Gmvyb8mW+Y8bDqh13UjdcWETm5sBAAAAFduMdfv1R/JRy6xqWKAevozPqQHg75iXKh3MSwEAAAAAAAAAAAAAAABlyycWYHXs2LHw69zcXP3yyy/q06fPWb/elClTCr8ODAzU+eeff079zsSSJUv02muvafny5dq/f78t75menq67775bX3zxRYnO79u3Tx9++KE6depU4oGunJwc3XrrrUX+s7Vy8uRJTZw4UV9++aW++eYbXXjhhSV6fQAAcG5G92qqb1bvVVZuwWnZh0t26oYLGqpmJHcdBgCgvDmYnq2x09Zq+c5jxZ69pmNdPTOgpUIDfeLjJMCtB3vHatO+E1q8/Yhl/vKcJLWsHamuMVyQCAAAAJSG9Kw8vTBrs8v8sX4tFBkaYGMjAPB+zEudG+alAAAAAAAAAAAAAAAAAHs4PF3ADvXq1VNcXJwMw5AkjRs37qxf68CBA3rrrbdkGIYMw1C3bt0UHGzfsoeVK1fq+++/t22Ya9++ferSpYvlMFeNGjXUunVrderUSTExMfL3P7sLYJ1Op6699trThrn8/PzUqFEjtW3bVpGRkUWyw4cPq2/fvvrjjz/O6j0BAMCZqVYpSLd3b2yZZec59cb8rTY3AgAA5+rXpFT1m7Co2OVXYYF+euPatnrlqjYsvwL+n7+fQ28Na6e6lUMsc6cpjfpijfYez7K5GQAAAFAxjf85SUdO5lpmnRtV0ZXt69jcCAC8H/NSZ495KQAAAAAAAAAAAAAAAMA+PrEAS5Juv/12maYpSfr999/14osvnvFrZGRk6KqrrtLx48cLX+tf//pXadY8J+Hh4aX6eidOnFCfPn20efP/7qRbuXJljRs3TsnJyTp48KDWr1+vFStWaNu2bcrMzNSyZcv01FNPqUmTJiV+n/Hjx2vGjBlFvnfnnXdq9+7dSk5O1tq1a3Xs2DF99913ql+/fuGZrKwsXXPNNUpPTz/3HxYAABTr9gsbKzo80DL7atUebU/NsLkRAAA4G3kFTr00O1E3f7xSxzKtLx7+S1ytCM0c3U2D2nEhMfBPlcMC9e7wDgryt/6I9XhWnkZ+tlrZeQU2NwMAAAAqlnV70jRl+W7LzN9h6IVB8YXLXQAARTEvdeaYlwIAAAAAAAAAAAAAAADs5TMLsO6++241bNhQkmSapp566indc889JR4Gmjt3rs477zwtW7as8G6GnTp10uWXX16GrV2rVKmSLrroIj344IP6+uuvlZKSopkzZ5bqe9x3331KSEgofNyjRw9t27ZNDz30kBo1anTa+cDAQHXu3FnPPvustm3bpqFDhxb7HkePHj1tuO6ll17SpEmTVLt27cLvORwODR48WEuXLi38/6Mk7d27V6+//vpZ/HQAAOBMhQf5a8zFTS0zpym98tMWmxsBAIAztedYlq5+9w9N/j252LM3XtBA393dRY2rle4FZEBFEl8nUi8PaeUy37T/hB77fmPhxaEAAAAAzkyB09QT0zfK1a/Ut1/YWE1rVLK3FACUI8xLnTnmpQAAAAAAAAAAAAAAAAB7+Xu6gF0CAgI0depU9erVS9nZ2TJNU++++64+/fRT9e/fXx06dJD057CXYRiaNWuW1qxZo+3bt+uXX37Rjh07CjPTNFWlShVNnTrV9p+jf//+6t27t5o3by6Ho+j+sp07d5ba+yxcuFAffvhh4eNOnTpp9uzZCg0NLdHzDcNQVFRUsedeeeUVZWRkFD6+8MIL9fDDD7s8X6dOHf33v//VJZdcUvi9//znPxozZoyqVq1aom4AAODsDe1UXx8s3qldR7NOy37efEirUo6pY8MqHmgGAACKM2fjAT307QZlZOe7PRcR7K9XrmqtPvG1bGoGlG+D29XVhr3p+mhJimX+3Zp9alM3Sjd2aWhrLwAAAKAi+OyPFCXsO2GZ1a0cojG9rG/aAAD4E/NSZ4Z5KQAAAAAAAAAAAAAAAMB+juKPVBydO3fWtGnTFBwcLMMwJEmZmZn68ssv9dBDDxWeM01Tb7zxhh5++GG9//772r59e5FhrsjISH3zzTeWd/Ura02aNFFcXNxpw1yl7b777pP5/7fR9ff313//+98SD3OVlNPp1EcffVTke88880zh/29cufjii9W9e/fCxxkZGfrqq69KtRsAALAW6O/QA71jXeYvz0kq/B0CAAB4h+y8Aj01I0F3TVlT7PKrtvWiNGtMd5ZfAWfosX4t1LmR60Wwz/+4WSt2HrOxEQAAAFD+HTqRrVd/3uoyf3ZAS4UE+tnYCADKJ+alSo55KQAAAAAAAAAAAAAAAMB+PrUAS/rzjoArVqxQXFxc4ZDWXwzDKPzLNM3Cgaa/f69ly5Zavny5LrroIg/9BGVv5cqVWrt2beHjQYMGqXXr1qX+PkuXLtXhw4cLHzdu3LjE/7neeuutRR5Pnz69FJsBAAB3Lm9VS63rRlpmq3Yd1/zEVJsbAQAAV5IPn9SV7yzVp3/sKvbsyB6N9fWdF6heldK9oAvwBQF+Dk28rr1qRQZb5vlOU3dPWa2D6dk2NwMAAADKr+d/3KyTOdaLnHvH1dDFLWrY3AgAyi/mpYrHvBQAAAAAAAAAAAAAAADgGT63AEuSWrZsqXXr1umLL77QeeedJ0mFA1x/H+T6+/dbtmypTz75ROvXr1ezZs08Vd0WH3zwQZHHw4cPL5P3mTVrVpHHl156abF3M/z72b9buHChMjMzS60bAABwzeEw9Eif5i7zcT8lKb/AaWMjAABg5fu1e3XFW4u1+cAJt+eqhAXqo5s76dG+LRTg55MfFQGlolqlIE0a3kGBLv45OnIyV3d+vlo5+QU2NwMAAADKn0XbDuvHDQcss5AAPz09oKXNjQCg/GNeyj3mpQAAAAAAAAAAAAAAAADP8Pd0AU/x8/PT0KFDNXToUB07dkyLFy9WYmKijh49qrS0NIWGhio6OlqNGjVSz549Vbt2bU9Xts0/B63K6u6N69atK/K4S5cuJX5u7dq11bBhQ6WkpEiScnNztXnzZnXq1KkUGwIAAFe6xETrwmbV9PvWw6dl21NP6ts1e3Vtp/oeaAYAALJy8/X0jE36evXeYs92blRFE4a1U42IYBuaARVf23pRen5QSz387UbLfN2eND3zwya9dGVrm5sBAAAA5Ud2XoGenJ7gMv/XJU1VJyrExkYAUHEwL+Ua81IAAAAAAAAAAAAAAACAZ/jsAqy/q1KligYMGKABAwac0fNSU1M1fvx4jR8/voya2e/gwYPau/d/F8g2bNhQkZGRkqSTJ0/q66+/1tSpU7V161YdOHBAERERqlmzprp27ar+/furX79+Jb4rYWJiYpHHcXFxZ9Q1Li6ucKDrr9djoAsAAPs83CdWi7Yd1t9uBl3oP/O2aUCbOgoJ9LO/GAAAPizp4AmN+mKttqeedHvOMKQxvZpqzMVN5eco2Z/jAZTMtZ3qa8PedE1Zvtsyn7pij1rVidJ1nVkYCwAAAFh597cdSjmaZZnF1qikW7o1srkRAFRMzEv9D/NSAAAAAAAAAAAAAAAAgOc4PF2gPDp48KDuvfdeNW7cWK+//rqn65SqlStXFnncuHFjSdL8+fMVGxurW265RfPmzdOuXbuUm5urI0eOKCEhQZMnT9YVV1yhTp06acWKFcW+z6lTp7R7d9GLAOvVq3dGXf95fsuWLWf0fAAAcG5a1o7UoLZ1LLODJ7L10dKdNjcCAMB3maapqSt2a+DEJcUuv6peKUhTbuusey9txvIroIw83b+l2tePcp3/kKA1u4/bVwgAAAAoJ1KOZOqdhTtc5i8MjleAH2MOAOAJzEsxLwUAAAAAAAAAAAAAAACUBSZDz8C+ffs0evRoNW7cWBMmTFBWlvVdZ8uz7du3F3kcERGhzz//XL1799b+/fuLff7q1avVo0cPff/9927PHTlyRKZpFj4OCAhQ9erVz6hrnTpFF26kpqae0fMBAMC5u+/SZgp0cbHRpIU7dDwz1+ZGAAD4nozsPI2eulaPfrdROflOt2d7NKum2WO7q0uTaJvaAb4p0N+hScM7qFqlIMs8r8DUXZ+vVmpGts3NAAAAAO9lmqaenJGgXBd/tr2mY111aljF5lYAAOalmJcCAAAAAAAAAAAAAAAAypK/pwuUB3v27NG///1vffzxx8rNzS0yiFTRpKWlFXm8bds23XbbbYU/c926dTV8+HC1bdtWYWFh2rt3r3788UfNmjWr8DnZ2dkaOnSoli5dqg4dOli+z8mTJ4s8Dg0NlWEYZ9Q1LCzM7WuerdTUVB0+fPiMnvPPQTgAAHxFvSqhGn5+A324ZOdpWUZ2vt5ZuF2PXx7ngWYAAPiGDXvTNOqLtdp9zP1FZ34OQw9eFqs7ujeWw3Fmf/4GcHZqRARr0vXtNfS9Zcp3nv554qETObpnyhpNue18BfpznwIAAABg1sYDWrTtiGUWFRqgR/q2sLkRAPg25qWYlyoO81IAAAAAAAAAAAAAAAAoDRV6AdbSpUu1YMECbd++XUeOHJFhGKpRo4Y6dOigK6+8UjVr1nT7/N27d+v555/XZ599pry8vMKhpr8Gj0zTVExMTJn/HHb650DXpk2bCr++6aab9Pbbbys0NLTImTvvvFO//vqrrrzyysLn5+bmatiwYdq8ebP8/U//2+yfw1fBwcFn3DUkJMTta56td955R88++2ypvBYAAL5gVK8Yfb1qjzJy8k/LPlm6Szd2aai6lUMtngkAAM6WaZr6aEmKXpqTqLwC9xee1YkK0YRh7dShQWWb2gH4S8eGVfR0/zg9OWOTZb4y5bhenLVZzw6Mt7kZAAAA4F0ysvP03MzNLvNH+zZXlbBAGxsBQPnFvNSZY16KeSkAAAAAAAAAAAAAAAB4jsPTBcrCvHnz1Lp1a3Xv3l3PPPOMPv/8c/3000+aM2eOPv74Y40ePVr169fX2LFjlZOTc9rzT506pYcfflixsbH68MMPC+9iaBiGDMOQaZpq1qyZPv30UyUmJnrgJyw7roai+vfvrw8//PC0Ya6/9OzZUzNmzJDD8b+/pbZt26avvvrK8nx2dnaRx4GBZz6sHBQUVOTxqVOnzvg1AADAuasSFqg7L2pimeUWOPX6vK02NwIAoGJLy8rV7Z+u1nM/bi52+dVlLWto9pjuLL8CPGj4+Q10dYe6LvNP/tilb1fvtbERAAAA4H1e+3mrUjNO/9/uJalDg8q6ukM9mxsBQPnDvNTZY14KAAAAAAAAAAAAAAAA8JwKtwBr0qRJ6tevnzZt2iTTNAv/+stfj/Pz8zVx4kRdcsklRYa6Vq9erVatWunVV19VTk5O4SDXX8+Ni4vT1KlTtXnzZg0fPrzIAFNFYHVnQX9/f7399tuF/zm4cuGFF+qGG24o8r333nuvRO+Tm5t7hk112jDe2dwVEQAAlI6buzZU9UpBltn3a/cp8cAJmxsBAFAxrUo5pn5vLtL8xENuzwX6OfTsgJZ6d3gHRYYG2NQOgBXDMPT8oHi1rhvp8sxj32/Uxr3pNrYCAAAAvEfCvnR9+keKZebnMPTCoHg5HO7/t2oA8HXMS50b5qUAAAAAAAAAAAAAAAAAz/H3dIHStGTJEo0ePVpOp1OSigxi/X2o6+/fX7p0qR566CG9+eabWrBggQYOHKhTp04VDnL99dw2bdroiSee0JAhQ+z/wWwUHh5+2vf69OmjevVKdkfdO+64Qx9//HHh4+XLlys3N/e0Oxb+833+eYfDkvjnHQytup+Nu+++W1dfffUZPWf79u0aNGhQqbw/AADlUWigv+69tJke/W7jaZlpSq/8lKSPbj7PA80AAKgYnE5Tk37bodfnbVWB03R7tmHVUE28rr3i67hetgPAXsEBfpo0vIP6v7VYxzJPv7AxJ9+pOz9frR9GdVXVcOvFsgAAAEBFVOA09fj0BLn6o+4tXRuqRa0Ie0sBQDnDvNS5Y16KeSkAAAAAAAAAAAAAAAB4ToVagHXXXXfJ6XQWGdgKDAxUx44dVbduXZmmqb1792r16tXKzc0tHNh69913NXz4cF111VXKysqSYRiFWevWrfXcc89pwIABHv7p7GE1FNWjR48SP79Tp04KCQkpHLbKzs7Wxo0b1aFDB7fvk5WVVeTukSWRmZnp9jXPVvXq1VW9evVSeS0AAHzJ1R3q6v1FyUo+nHla9uuWw/pjx1Fd0KSqB5oBAFC+Hc7I0X1frdOibUeKPTuwbW29OLiVwoMq1Ec+QIVQJypEE69rpxEfrLBcZLcv7ZRGT12rT285T/5+Dg80BAAAAOw3dcVurd+TZpnVigzWvy5pZm8hACiHmJc6d8xLMS8FAAAAAAAAAAAAAAAAz6kwV1L98ccfSkhIKBzEkqQHH3xQhw4d0uLFizVt2jR9+eWXWrJkiQ4ePKj7779f0p93N8zPz1f//v2Vnp5e+PzKlSvrgw8+0Nq1a31mmEuSatSocdr3mjUr+VCxv7+/mjRpUuR7qampp52Ljo4uMryVl5dnec6dffv2FXnMEBYAAJ7l7+fQQ5c1d5m/PCexyF2mAQBA8ZZsP6J+ExYVu/wqOMChV4a01hvXtmX5FeDFujSJ1qN9Xf/OvHTHUY37KcnGRgAAAIDnHM7I0Stufv99un9LhfFnXABwi3mp0sG8FAAAAAAAAAAAAAAAAOA5FWYB1syZMyWp8K5448eP17hx4xQZGXna2aioKI0fP16vvPJK4fBXampq4YBRmzZttG7dOt18881ndIe9iqBFixanfS8iIuKMXuOf548fP37amZCQENWvX7/I93bv3n1G7/PP882bu754EAAA2OOyljXUvn6UZbZ+b7rmJBy0txAAAOVUfoFTr/28RcM/WK7DGTluzzarEa4fRnXTNZ3q+dznGEB5dGu3RhrYtrbL/P1FO/XD+v02NgIAAAA849+zE3UiO98y69W8ui5refoyEgBAUcxLlQ7mpQAAAAAAAAAAAAAAAADPqTALsFavXl34dbNmzXTfffcV+5z7779fsbGxklR4J8Pq1atr3rx5qlu3bpl19WZxcXGnfS8nx/2Ftv+UnZ1d5HFoaKjluX8OYG3evPmM3icxMdHt6wEAAPsZhqFH+p4+IP6X8XO3KK/AaWMjAADKnwPpp3Td+8v11i/b9f/Xobk0tFM9zbinm5rVqGRPOQDnzDAMvXxla7Wo5foiyoe/2aDEAydsbAUAAADYa+mOI/p+7T7LLDjAoWcHtPS55SsAcDaYlyodzEsBAAAAAAAAAAAAAAAAnlNhFmBt3bpV0p+DWVdddVWJn3fVVVfJNM3COyHee++9io6OLquaXq9q1aqn3Wnw0KFDZ/Qaqampp72mlbZt2xZ5vHTp0hK/x4EDB5SSklL4OCAgwHIYDQAA2O+8RlV0SYvqltnOI5matnKPzY0AACg/fkk6pH5vLtKKlGNuz4UF+unNoW318pDWCgn0s6kdgNISEuinycM7KDIkwDI/lVegkZ+tVlpWrs3NAAAAgLKXm+/Uk9MTXOajezVVvSrWS0MAAEUxL1U6mJcCAAAAAAAAAAAAAAAAPKfCLMBKT08v/LpVq1Ylft4/z/br16/UOpVXAwYMKPL473eLLM6hQ4e0d+/eIt9r1qyZ5dkrrriiyOP58+fLNM0Svc/PP/9c5HHPnj0VHh5e4p4AAKBsPdSnuRyGdfbm/G3KzMm3txAAAF4uN9+pF37crFs+XqXjWXluz8bXidCsMd01sG0dm9oBKAv1q4bqrWHtXP7evPtYlsZOW6cCZ8k+LwMAAADKi/cXJWvH4UzLrEm1MN3evbHNjQCg/GJeqvQwLwUAAAAAAAAAAAAAAAB4RoVZgHXixAkZxp9Xi1WuXLnEz4uKiiryuHFjhmkHDx5c5PH06dPldDpL9NxvvvmmyOMWLVqoRo0alme7dOlS5O6RycnJWrhwYYne54MPPijyeODAgSV6HgAAsEezGpV0VYe6ltmRkzn6YPFOmxsBAOC9dh/N0tXvLtV/S/Dfjzd1aahv7+qihtFhNjQDUNYubFZND1wW6zL/beth/WfeVhsbAQAAAGVrz7EsTViwzWX+wqBWCvSvMGMMAFDmmJcqPcxLAQAAAAAAAAAAAAAAAJ5RYSZH/z5w5OfnV+Ln/fNsaGhoqXUqr3r06KHY2P9deLd792598sknxT4vKytLr732WpHvXXPNNS7POxwO3XTTTUW+9+yzzxZ7V8MFCxZo0aJFhY8rVark9n0AAIBn/OuSZgpycaHS5N926MjJHJsbAQDgfWZvPKDLJyzS+r3pbs9FBPtr8ogOemZASwX5l/xzDwDe764eTdQ3vqbLfOKv2/VTwkEbGwEAAABlwzRNPf3DJuXkWy8TubJdHV3QpKrNrQCgfGNeqvQwLwUAAAAAAAAAAAAAAAB4RoVZgIXS4+fnpxdeeKHI9+69916tWbPG5XMKCgp06623aufOnYXfCwsL0+jRo92+18MPP6zw8PDCx7/99pvGjRvn8vy+fft02223Ffne2LFji9wZEQAAeIfaUSG6qWtDyywzt0ATf9lubyEAALxIdl6Bnpi+UXdPWaOMnHy3Z9vXj9Lssd11WUvXC3IAlF+GYWj81W3UtHq4yzP3f7VO21MzbGwFAAAAlL65mw7pl6RUyywi2F+PXd7C5kYAAPwP81IAAAAAAAAAAAAAAACAZ/h7ugDO3JIlS3Tq1KnTvr9+/foij7OzszV//nzL16hdu7bi4uJcvsdVV12lHj166LfffpMkpaenq2fPnnruued08803KyIiovDsqlWr9OCDD2rhwoVFXuP1119X1aru79AbHR2txx57TI899ljh9x599FHt3r1bTzzxhGrXri3pzztW/vDDDxo7dqx2795d5Oe4//773b4HAADwnLt7xGjaij1KP5V3WjZl+S7d3LWhGlQN80AzAAA8Z3vqSY36Yo2SDha/zOaui5rovkubKcCPHeZARRYe5K/JIzpo4MQllkvxMnMLdMenqzV9VFdFBAd4oCEAAABwbjJz8vXszE0u84f6NFd0eJCNjQAA5Q3zUsxLAQAAAAAAAAAAAAAAoGIyTNM0PV2iNDgcDhmGIUmaN2+eevXqVaLnLViwQJdeeqkkyTAMFRQUlFnH0tKwYUPt2rXrnF7jxhtv1Mcff+z2zIEDB9S1a9cidymUpMDAQDVp0kRhYWHau3evDh48eNpzb7/9dr333nsl6uJ0OjVw4ED9+OOPRb7v5+enBg0aKDIyUjt37lRaWlqRPCQkRPPmzVPXrl1L9D5ladOmTYqPjy98nJCQoJYtW3qwEQAA3uO933fo37OTLLMBbWprwrB2NjcCAMBzvl29V0/OSFBWrvvPH6qGBer1a9uqR7NqNjUD4A0WJB7SrZ+scplf0qKG3hvRQQ6HYWMrAAAA4Ny9OGuz3l+00zJrUy9K39/Vhd9zAZSJij7PwbzUmWFeqnRV9H++AAAAAAAAAAAAAAAAypPyPMvh7+kCZWH9+vXy9y/Zj/bPuwAuWrRIZ7oT7MILLzyj8+VFrVq19Pvvv2vw4MFatep/F97l5uYqMTHR8jkOh0NPPfWUnn766RK/j8Ph0Ndff62bb75Z06ZNK/x+QUGBkpOTLZ9TtWpVffPNN14xzAUAANy74YKG+nhJivanZ5+W/bB+v27v3lit6kZ6oBkAAPbJzMnXUzM26ds1e4s9e0HjqnpjaFvViAi2oRkAb3Jxixr61yVN9cb8bZb5/MRDmvjrdo25uKnNzQAAAICzl3jghD5ckmKZOQzpxUHxLL8CgFLAvFTpYF4KAAAAAAAAAAAAAAAAsFeFW4BlmqYeeOCBs37uRRdddEbPMQxD+fn5Z/V+5UHdunX1xx9/aPLkyfrPf/6jHTt2WJ4LCgpSv3799NxzzxXZBldSwcHBmjp1qq666iq98MILWrduneW5sLAw3XjjjXr66adVvXr1M34fAABgv+AAP917aTM9+M0Gy3zcT0n6/LbONrcCAMA+iQdOaNQXa7TjcKbbcw5DGntxM43qFSM/LvwFfNaYXk2VsC9d8xNTLfP/zN+q+DoR6tW8hs3NAAAAgDPndJp6YnqCCpzWS1VuuKCh4utwgwQAOFfMS5Uu5qUAAAAAAAAAAAAAAAAA+xjmmd6+z0s5HA4Zxp8Xh57pj/TX8872uQUFBWf0nPIsISFBa9eu1f79++V0OhUdHa0GDRqoW7duCg0NLbX32b59u5YvX659+/YpNzdXUVFRatGihbp27arg4OBSe5/SsmnTpiKDbAkJCWrZsqUHGwEA4F0KnKb6vblIWw5lWOaf3XqeujetZnMrAADKlmmamrJ8t577cbNy851uz9aICNKbQ9vp/MZVbWoHwJudyM7ToIlLlHzEenFepWB//TCqmxpFh9ncDAAAADgzX67crYe/3WiZVa8UpAX391Cl4ACbWwHwJRV9noN5KXswL2Wtov/zBQAAAAAAAAAAAAAAUJ6U51kOf08XKAt/H9Aqy+dWkN1hZyQ+Pv6s7lh4pmJiYhQTE1Pm7wMAAOzh5zD0cN9Y3fLxKsv85TlJ6tokWg7H2f8eBwCANzmRnadHv92oWRsPFHv2othqeu3qNqoaHmRDMwDlQURwgCaP6KBBby9RZu7pF5NmZOdr5Ger9P3dXRUWVCE/4gUAAEAFcCwzVy/NSXKZP9U/juVXAFCKmJcqO8xLAQAAAAAAAAAAAAAAAGWnwlwdVb9+/XMa5AIAAEDZ6hlbXec1qqIVO4+dlm3af0IzN+zXwLZ1PNAMAIDStX5PmkZNXaM9x065PefvMPRQn1jd1q0xSyABnKZpjUp69eo2umvKGst866GTevCb9Xr7uvZ8LgoAAACv9NLsRKVl5Vlm3ZtG6/JWtWxuBAAVD/NSAAAAAAAAAAAAAAAAAMq7CrMAKyUlxdMVAAAA4IZhGHq0b3MNfmepZT5+7hb1ia+pIH8/m5sBAFA6TNPUB4t3atxPScorMN2erVs5RG8Na6d29Svb1A5AedS3VS3dfVETvbNwh2U+e+NBTf49WXf2aGJzMwAAAMC9lSnH9PXqvZZZoL9Dzw+MZ2ELAJQC5qUAAAAAAAAAAAAAAAAAlHcOTxcAAACA72hXv7L6xte0zPYeP6Upy3bb3AgAgNJxPDNXt32ySi/MSix2+VXf+JqaNaY7y68AlMj9vWN1YbNqLvNXfkrSom2HbWwEAAAAuJdX4NQT3ye4zO++qIkaRofZ2AgAAAAAAAAAAAAAAAAAAADeigVYAAAAsNUDl8XKz2FYZm/9sk0nsvNsbgQAwLlZmXJM/SYs0oKkVLfnAv0cen5gS71zfXtFhgTY1A5AeefnMDRhaFvVqxJimTtNafTUtdpzLMvmZgAAAIC1Dxfv1JZDGZZZw6qhurNHE5sbAQAAAAAAAAAAAAAAAAAAwFuxAAsAAAC2alItXNd2qmeZHc/K0/u/J9vcCACAs1PgNDXxl20a+t4yHUjPdnu2cXSYvr+ni0Zc0FCGYb0IEgBciQoN1OThHRUcYP1xblpWnkZ+tlqncgtsbgYAAAAUtS/tlN6Yv81l/vygeAUH+NnYCAAAAAAAAAAAAAAAAAAAAN6MBVgAAACw3b8ubqoQFxc5/XfRTqWecL9EBAAAT0vNyNaNH67Qqz9vVYHTdHt2cLs6+mF0N7WsHWlTOwAVUVztCI0b0tplvvnACT363QaZpvt/JwEAAABl6dkfNulUnvVi1v5taqt702o2NwIAAAAAAAAAAAAAAAAAAIA3YwEWAAAAbFc9Ili3dW9kmZ3KK9AbC7bZ3AgAgJJbtO2w+r25SIu3H3F7LiTAT+Ovaq3Xr2mj8CB/m9oBqMgGtq2j27pZ/x4tSdPX7ddHS1LsKwQAAAD8zfzNh/Tz5kOWWaUgfz15eQubGwEAAAAAAAAAAAAAAAAAAMDbsQALAAAAHnHHhY1VJSzQMvty5R7tOHzS5kYAALiXX+DU+LlJuuHDFTpyMtft2dgalTRzdFdd3bGeDMOwqSEAX/BI3+a6oHFVl/mLsxO1LPmojY0AAAAAKSs3X0//sMllfn/vZqoeEWxjIwAAAAAAAAAAAAAAAAAAAJQHLMACAACAR1QKDtDoXjGWWYHT1Ktzt9jcCAAA1/anndKw95fp7V93yDTdnx12Xn3NGNVVMdUr2VMOgE/x93No4nXtVDvSenlAgdPUPVPWaH/aKZubAQAAwJe99ct27XPxO2h8nQiNuKChvYUAAAAAAAAAAAAAAAAAAABQLrAACwAAAB5zXef6qlclxDKbk3BQa3Yft7kRAACnm7/5kPpNWKSVKe7/eyk8yF9vDWunl65speAAP5vaAfBFVcOD9O6IDgr0t/5492hmru76fLWy8wpsbgYAAABftO1Qht7/PdkyMwzpxUGt5OcwbG4FAAAAAAAAAAAAAAAAAACA8oAFWAAAAPCYIH8/PdA71mX+8uwkmaZpYyMAAP4nN9+p52Zu1m2frlJaVp7bs63qRGrWmG7q36a2Te0A+LrWdaP04qB4l/n6vel6akYCv08DAACgTJmmqSemJyjfaf175/Wd66tNvSh7SwEAAAAAAAAAAAAAAAAAAKDcYAEWAAAAPKp/69pqWTvCMluRcky/bkm1uREAANKuo5m66t2l+nDJzmLP3tK1kb656wI1qBpmQzMA+J+rO9bTDRc0cJl/tWqvpizfbWMjAAAA+Jrv1uzT8p3HLLPo8EA9eFlzmxsBAAAAAAAAAAAAAAAAAACgPGEBFgAAADzK4TD0SF/XF0GNm7NFBU7TxkYAAF/344b9umLCYm3Ym+72XGRIgN6/oaOe6h+nIH8/m9oBQFFPXB6njg0qu8yfnblJq3dZLyQAAAAAzkVaVq7+PTvRZf7E5XGKDAmwsREAAAAAAAAAAAAAAAAAAADKGxZgAQAAwOO6N62mbjHRltmWQxn6bs1emxsBAHxRdl6BHvt+o0Z9sVYZOfluz3ZsUFmzx3bXpXE1bGoHANYC/R16Z3h7Va8UZJnnFZi68/M1Sj2RbXMzAAAAVHTjftqio5m5llmXJlU1sG1tmxsBAAAAAAAAAAAAAAAAAACgvGEBFgAAALzCw32au8xen7dV2XkFNrYBAPia7akZGvT2En2xfLfbc4Yh3dOziabdcb7qRIXY1A4A3KteKViThndQgJ9hmR/OyNFdU9YoN99pczMAAABUVGt2H9fUFdZ/hg7wM/TcwHgZhvXvpwAAAAAAAAAAAAAAAAAAAMBfWIAFAAAAr9CqbqQGtKltmR1Iz9anf6TYWwgA4DO+Wb1X/d9aoqSDGW7PRYcH6pObz9ODlzWXvx8fqQDwLh0aVNYzA1q6zFfvOq7nf9xsYyMAAABUVPkFTj3+fYLLfOSFTRRTPdzGRgAAAAAAAAAAAAAAAAAAACivuFoTAAAAXuOB3rEK8DMss7d/3aH0rDybGwEAKrLMnHzd9+U6PfD1ep3KK3B7tmtMVc0e210XNqtmUzsAOHPXnVdf13as5zL/bNkufbVqj42NAAAAUBF98scuJR44YZnVqxKiUb1ibG4EAAAAAAAAAAAAAAAAAACA8ooFWAAAAPAa9auG6vrODSyz9FN5eue37TY3AgBUVJv2p6v/W4v13dp9bs85DOmB3s306S2dVb1SsE3tAODsGIahZwe2VJt6US7PPDE9Qev3pNnWCQAAABXLwfRsvf7zFpf5cwPiFRzgZ2MjAAAAAAAAAAAAAAAAAAAAlGcswAIAAIBXGd0rRuFB/pbZR0tStD/tlM2NAAAViWma+uyPFA1+Z6mSj2S6PVszIljT7rhAo3o1lZ/DsKkhAJyb4AA/vTu8vaLDAy3z3Hyn7vx8tY6czLG5GQAAACqC53/crMzcAsusb3xN9Wxe3eZGAAAAAAAAAAAAAAAAAAAAKM9YgAUAAACvUjU8SHdc2Ngyy8136j/zttrcCABQUaSfytPdU9boyRmblJvvdHu2V/Pqmj22u85rVMWmdgBQempFhujt69rL38XyvgPp2Rr1xRrlF7j/dyEAAADwdwu3pGrWxgOWWVign57qH2dzIwAAAAAAAAAAAAAAAAAAAJR3LMACAACA17m1WyNFhwdZZt+u2astBzNsbgQAKO/W7UnT5RMWaU7CQbfnAvwMPXF5C31wY0dVCQu0qR0AlL7Ojavq8ctbuMyXJR/TS3OSbGwEAACA8iw7r0BPzdjkMr/30maqFRliYyMAAAAAAAAAAAAAAAAAAABUBCzAAgAAgNcJC/LX2EuaWmZOUxo/lwv1AQAl43Saev/3ZF01aan2Hj/l9my9KiH6+s4uuq17YxmGYVNDACg7N3VpqMHt6rjMP1i8UzPW7bOxEQAAAMqrd37drt3Hsiyz5jUr6aYuDe0tBAAAAAAAAAAAAAAAAAAAgAqBBVgAAADwSkM71VOj6DDLbH5iqlbsPGZzIwBAeXMsM1e3frJSL85OVL7TdHu2X6uamjWmu9rWi7KnHADYwDAM/XtwK7WsHeHyzMPfbtCm/ek2tgIAAEB5k3z4pN79Ldll/uLgePn7MXoAAAAAAAAAAAAAAAAAAACAM8cUKgAAALxSgJ9DD14W6zJ/aU6iTNP9MhMAgO9annxU/d5cpF+3HHZ7LtDfoRcGxevt69orIjjApnYAYJ+QQD+9O7yDKoda/zsuO8+pOz9freOZuTY3AwAAQHlgmqaenJGg3AKnZT60Uz11aFDF5lYAAAAAAAAAAAAAAAAAAACoKFiABQAAAK/VN76m2tSLsszW7k7T3E2H7C0EAPB6BU5TExZs07D3l+ngiWy3ZxtXC9P0u7tq+PkNZBiGTQ0BwH71qoTqrWHt5XDxr7o9x05pzLS1KnCyYBYAAABF/bB+v5ZsP2qZVQkL1MN9mtvcCAAAAAAAAAAAAAAAAAAAABUJC7AAAADgtQzD0KN9XV9A9crcJOUXOG1sBADwZqknsjXig+V6fd5WFbfDZUj7upo5qpviakfYUw4APKxb02i3ywkWbTuiV3/eYmMjAAAAeLsT2Xl6YVaiy/zRvs1VOSzQxkYAAAAAAAAAAAAAAAAAAACoaFiABQAAAK92fuOq6hlbzTJLPpypr1bttbkRAMAb/b71sPq+uUhLdxx1ey4kwE+vXt1Gr13TRmFB/ja1AwDvcMeFjXV561ou80kLd2j2xgM2NgIAAIA3e23uFh3OyLHMzmtYRVd1qGtzIwAAAAAAAAAAAAAAAAAAAFQ0LMACAACA13uoT3MZhnX2xvytysrNt7cQAMBr5BU4Ne6nJN3w4Qodzcx1e7Z5zUqaObobF+gC8FmGYeiVIa0VW6OSyzMPfL1eWw9l2NgKAAAA3mjD3jR9umyXZebvMPTC4HgZrj60BQAAAAAAAAAAAAAAAAAAAEqIBVgAAADwei1qRWhwuzqWWWpGjj5akmJvIQCAV9iXdkpD31umSQt3FHv2+s71Nf2eroqpHm5DMwDwXmFB/po8ooMigv0t86zcAo38bLXST+XZ3AwAAADeosBp6vHvE2Sa1vmt3RupmZulqgAAAAAAAAAAAAAAAAAAAEBJsQALAAAA5cL9vWMV6G/96+u7C3foWGauzY0AAJ7086aD6vfmIq3eddztuUpB/nr7uvZ6cXArBQf42dQOALxbw+gwvTm0nQzDOt95JFP3fblOTqeLjQcAAACo0KYs36WN+9ItszpRIRp7cVObGwEAAAAAAAAAAAAAAAAAAKCiYgEWAAAAyoU6USG68YIGlllGTr4m/rLd5kYAAE/IyS/QszM36Y7PViv9VJ7bs23qRmrWmO66vHUtm9oBQPnRs3l13XdJM5f5gqRUvblgm42NAAAA4A1SM7I1/qctLvOn+8cpNNDfxkYAAAAAAAAAAAAAAAAAAACoyFiABQAAgHLj7otiVCnY+uKqz5alaM+xLJsbAQDslHIkU0MmLdVHS1KKPXtbt0b6+s4uql81tOyLAUA5dU/PGF0aV8Nl/uaCbZq3+ZCNjQAAAOBpL85KVEZOvmV2SYsa6t2yps2NAAAAAAAAAAAAAAAAAAAAUJGxAAsAAADlRuWwQN19UYxllldg6vV5W21uBACwyw/r9+uKtxYrYd8Jt+eiQgP0wY0d9cQVcQr052MPAHDH4TD0+jVt1LhamMsz9325TjsOn7SxFQAAADxlyfYjmrFuv2UWEuCnZwbE2dwIAAAAAAAAAAAAAAAAAAAAFR1XggIAAKBcublrQ9WMCLbMpq/bp037021uBAAoS6dyC/TItxs0ZupanczJd3u2U8PKmjO2uy5uUcOmdgBQ/lUKDtB7IzoqPMjfMs/IydfIz1YX++9gAAAAlG85+QV6cnqCy3zMxU1Vt3KojY0AAAAAAAAAAAAAAAAAAADgC1iABQAAgHIlOMBP917a1DIzTWncT1tsbgQAKCvbDmVo4NuLNW3lHrfnDEMa3StGU28/X7UiQ2xqBwAVR0z1cL12TRuX+fbUk3rgq/UyTdPGVgAAALDT5N+SlXwk0zJrWj1ct3ZrZHMjAAAAAAAAAAAAAAAAAAAA+AIWYAEAAKDcGdK+rppWD7fMft96WEu2H7G5EQCgNJmmqa9W7lH/iYu19dBJt2ejw4P02S2ddX/vWPn78TEHAJyty1rW1KieMS7znzYd1DsLd9jYCAAAAHbZdTRTE3/d7jJ/YVC8Av35MzcAAAAAAAAAAAAAAAAAAABKH1OqAAAAKHf8/Rx6qE9zl/nLc5LkdJo2NgIAlJaTOfm698t1eujbDcrOc7o9271ptOaM7a5uTaNtagcAFdu9lzbTRbHVXOav/rxFC7ek2tgIAAAAZc00TT01Y5Ny863/DD6kfV11blzV5lYAAAAAAAAAAAAAAAAAAADwFSzAAgAAQLl0SYvq6tigsmW2cV+6Zm08YHMjAMC5StiXrv5vLdb0dfvdnvNzGHrwslh9cvN5qlYpyKZ2AFDx+TkMvXltOzWoGmqZm6Y0dto67T6aZXMzAAAAlJU5CQf129bDlllkSIAe6+f6RgQAAAAAAAAAAAAAAAAAAADAuWIBFgAAAMolwzD0qJuLr179eYty8502NgIAnC3TNPXpHym68p2l2nkk0+3ZWpHBmnbH+bqnZ4wcDsOmhgDgOyJDAzR5RAeFBPhZ5umn8nTHZ6uUlZtvczMAAACUtpM5+Xpu5maX+SN9m6tqOIunAQAAAAAAAAAAAAAAAAAAUHZYgAUAAIByq0ODKuodV8My23U0S9NW7ra5EQDgTKVn5enOz1frqRmblFvgfnHhJS2qa/aY7urUsIpN7QDANzWvGaHxV7d2mScdzNAj326UaZo2tgIAAEBp+8+8rTp4Itsya18/Std2rGdzIwAAAAAAAAAAAAAAAAAAAPgaFmABAACgXHuoT6wchnX25vxtOpmTb28hAECJrdl9XP0mLNLcTYfcngvwM/TkFXF6/4aOqhwWaFM7APBtV7SurTsubOwy/2H9fn2weKeNjQAAAFCaNu1P10dLrH+f83MYemFQKzlcffAKAAAAAAAAAAAAAAAAAAAAlBIWYAEAAKBci6leSdd0rGeZHc3M1fu/J9vcCABQHKfT1OTfduiad//QvrRTbs/WrxKqb+/qolu7NZJhcOEtANjpocti1TWmqsv8pTlJWrrjiI2NAAAAUBqcTlNPTE+Q07TOb+rSUHG1I+wtBQAAAAAAAAAAAAAAAAAAAJ/EAiwAAACUe/+6pJmCA6x/tX1/UbIOZ+TY3AgA4MrRkzm65ZOVemlOkvJdXWn7/y5vXUs/jumm1nWj7CkHACjC38+ht4a1V52oEMu8wGlq1Bdri11mCAAAAO8ybeUerd2dZpnVjAjWvZc2s7cQAAAAAAAAAAAAAAAAAAAAfBYLsAAAAFDu1YwM1i1dG1lmWbkFmrBgm82NAABW/thxVP0mLNLCLYfdngvyd+jfg1tp4rB2iggOsKkdAMBKlbBATR7RQUH+1h8lH8vM1Z2frVZ2XoHNzQAAAHA2jpzM0bifklzmT/WPU3iQv42NAAAAAAAAAAAAAAAAAAAA4MtYgAUAAIAKYWSPJooKtV6SMnXFbu08kmlzIwDAXwqcpt6Yv1XX/3eZDp3IcXu2SbUwzRjVVdd1ri/DMGxqCABwJ75OpF66spXLfOO+dD3+fYJM07SxFQAAAM7GS7OTlH4qzzK7KLaa+sbXtLkRAAAAAAAAAAAAAAAAAAAAfBkLsAAAAFAhRIYEaFTPGMss32nq1Z+32NwIACBJh05k6/r/LtMb87fJWcxelKs71NXM0d3UvGaEPeUAACV2Zfu6uqlLQ5f5t2v26rNlu+wrBAAAgDO2LPmovl2z1zIL8nfouQHxLKMGAAAAAAAAAAAAAAAAAACArViABQAAgApjxAUNVCcqxDKbteGA1u9Js7cQAPi4hVtS1e/NRVqWfMztudBAP71+TRuNv7qNQgP9bWoHADhTj1/eQuc1rOIyf27mZq1Mcf/vfAAAAHhGbr5TT0xPcJmP6hmj+lVDbWwEAAAAAAAAAAAAAAAAAAAAsAALAAAAFUiQv5/u793MZf7ynCSZpmljIwDwTXkFTr00J1E3fbRSRzNz3Z5tUStCM0d305Xt69rUDgBwtgL8HHr7+vaqGRFsmec7Td31+RodTM+2uRkAAACK89/FydqeetIya1wtTHf0aGxzIwAAAAAAAAAAAAAAAAAAAIAFWAAAAKhgBrato+Y1K1lmfyQf1W9bD9vcCAB8y55jWbpm8h+a/FtysWdHnN9A39/dRU2qhdvQDABQGqpVCtKk4e0V6Gf90fKRkzm6a8pq5eQX2NwMAAAAruw5lqUJC7a5zF8YGK8gfz8bGwEAAAAAAAAAAAAAAAAAAAB/YgEWAAAAKhQ/h6FH+jZ3mb88J0lOp2ljIwDwHT8lHNTlExZp7e40t+cqBftr0vXt9fygeAUHcIEtAJQ37epX1nMDW7rM1+5O07MzN9vYCAAAAO48O3OTsvOcltnAtrXVJSba5kYAAAAAAAAAAAAAAAAAAADAn1iABQAAgAqnR7NquqBxVcss6WCGpq/bZ3MjAKjYsvMK9PSMBN35+WqdyM53e7ZNvSjNHtNdfVvVsqkdAKAsDD2vvoadV99l/sXy3Zq2YreNjQAAAGDl500HNT8x1TKrFOyvxy9vYXMjAAAAAAAAAAAAAAAAAAAA4H9YgAUAAIAKxzAMPdK3ucv8tZ+3KjuvwMZGAFBx7TySqSGTluqTP3YVe/aOCxvr65EXqF6VUBuaAQDK2jMD4tSufpTL/KkZm7R293H7CgEAAKCIrNx8PTtzs8v8octiVb1SsI2NAAAAAAAAAAAAAAAAAAAAgKJYgAUAAIAKqU29KF3eupZlti/tlD5fVvyiFgCAezPW7dMVExZp0/4Tbs9VDg3QRzd10mP9WijQn48iAKCiCPL306TrOyg6PMgyzy1w6q7P1+hwRo7NzQAAACBJby7Ypn1ppyyz1nUjdV3nBjY3AgAAAAAAAAAAAAAAAAAAAIriqlMAAABUWA/0jpW/w7DMJv66XSey82xuBAAVw6ncAj38zQaNnbZOmbkFbs+e16iKZo/trp7Nq9vUDgBgp5qRwZo0vL3L37sPnsjWPVPWKK/AaXMzAAAA37blYIY+WLTTMnMY0ouDWsnPxe9wAAAAAAAAAAAAAAAAAAAAgF1YgAUAAIAKq1F0mIadV98yS8vK07sLd9jcCADKv62HMjRg4mJ9uWqP23OGIY25uKm+uK2zakWG2NQOAOAJnRpW0VP941zmK1KO6cVZiTY2AgAA8G1Op6knpm9UvtO0zEec30Ct6kba3AoAAAAAAAAAAAAAAAAAAAA4HQuwAAAAUKGNubipQgP9LLMPl+zUwfRsmxsBQPlkmqamrditARMXa1vqSbdnq1UK0pRbO+u+S5vJ34+PHgDAF4w4v4GGtK/rMv94aYq+W7PXxkYAAAC+65s1e7Uy5bhlVq1SkO6/LNbmRgAAAAAAAAAAAAAAAAAAAIA1rkIFAABAhVatUpBu797YMsvOc+rNBVttbgQA5U9Gdp7GTFunR77bqOw8p9uz3ZtGa87Y7uoSE21TOwCANzAMQy8Ojld8nQiXZx79bqMS9qXb2AoAAMD3HM/M1UuzE13mT1zeQhHBATY2AgAAAAAAAAAAAAAAAAAAAFxjARYAAAAqvNsvbKyqYYGW2Zcr92h7aobNjQCg/EjYl64r3lqsmev3uz3n5zD0UJ9YfXLzeYoOD7KpHQDAmwQH+Ond4R1UxcXv3jn5To38bLWOZeba3AwAAMB3jPspScez8iyzbjHRGtCmts2NAAAAAAAAAAAAAAAAAAAAANdYgAUAAIAKLzzIX2MubmqZOU3plZ+22NwIALyfaZr6aMlOXfnOUu06muX2bJ2oEH018nzdfVGMHA7DpoYAAG9Ut3KoJg5rJ1f/dbAv7ZRGT12j/AKnvcUAAAB8wOpdxzRt5R7LLNDPoecGtpRh8Od2AAAAAAAAAAAAAAAAAAAAeA8WYAEAAMAnDDuvvhpUDbXMft58SKt3HbO5EQB4r7SsXI38bLWenblZucUsKLk0roZmjemmDg2q2NQOAODtusRE69G+LVzmS7Yf1fi5LKEFAAAoTXkFTj3+fYLL/M6LmqhxtXAbGwEAAAAAAAAAAAAAAAAAAADFYwEWAAAAfEKgv0MP9I51mb80O0mmadrYCAC80+pdx3X5hMX6efMht+cC/Rx6pn+c3hvRQVGhgTa1AwCUF7d1b6T+bWq7zCf/nqwfN+y3sREAAEDF9vGSFCUdzLDMGlQN1d0XNbG5EQAAAAAAAAAAAAAAAAAAAFA8FmABAADAZ1zeqpZa1Ym0zFbtOq75iak2NwIA7+F0mpq0cIeumfyH9qWdcnu2QdVQfXtXF93UtZEMw7CpIQCgPDEMQ+OGtFLzmpVcnnnw6w1KOnjCxlYAAAAV0/60U/rP/K0u8+cGxis4wM/GRgAAAAAAAADwf+zdd5hddbk24HdPT++F9J6QBBIIUgJBeq+CCFIsqBQpigKKCCKgogLSiygqVUB6L1ICAQJJCOmV9J6Qnsm0/f3hdzgH2XtCkpk17b6vi+s6e5531no8x6Mze37r3QAAAAAA8OVYgAUAQIORk5OKnx0+IGv++xenRll5RYKNAGqHFes3x7f/9kFc9+LUKK9IVzp79JBO8ez5+8ROXTIvFASA/9G4IC/uOn1YtGiUnzHfVFoeZ903JtZsLE24GQBA/fLrZybHxpLyjNmRO+0QX+3XLuFGAAAAAAAAAAAAAPDlWIAFAECDsneftrFvlge+ZixbH4+PXZhwI4CaNWrmijj8ppHx1vTllc4V5efE7762U9x88tBoVpR5kQkA/LfubZrETScPjVQqcz535ca48J/jtriAEQCAzF6fuixenLQkY9a0MC9+edTAhBsBAAAAAAAAAAAAwJdnARYAAA3OpYf1z5rd8Mr02FRSnmAbgJpRXpGOG16ZHqf+5f1Yvm5zpbN92zeNp364T5y8e7dIZdtgAgBZ7Ne/ffz0kOw/g78xbXn86dXpCTYCAKgfNpWUxxVPT8yaX3Rwv+jYoijBRgAAAAAAAAAAAACwdSzAAgCgwRnUqUUcN7RTxmzJ2uL426g5yRYCSNiSNcXxzT+/Fze/NiPS6cpnT9qtSzx13t7Rv2OzZMoBUC+du1/vOGxQx6z5Lf+eGS9NWpJgIwCAuu+212fG/FWbMmYDd2geZ+zVPeFGAAAAAAAAAAAAALB1LMACAKBB+skh/aMgN/OPw7e/MTNWbyxJuBFAMl6fuiyOuHlkvP/JqkrnmhTkxk0nD43fnzgkGhfkJdQOgPoqlUrFH08aEn3aN80685NHxsfMZesTbAUAUHfNXLYu7nprVsYslYq49vjBkZfl/U8AAAAAAAAAAAAAqC2ceAUAoEHq2rpxnLZn94zZuuKyuO31mQk3AqheJWUV8Zvnp8R3/vZBrNpQ+ZK/gTs0j2cvGBHHDu2cUDsAGoKmhXlx1+nDollh5sWK6zeXxQ/u+zDWFZcm3AwAoG5Jp9Nx+ZMTo7Q8nTE/ZfdusUu3Vgm3AgAAAAAAAAAAAICtZwEWAAAN1nkH9Mn68P3fR82NBZ9uTLgRQPWYv2pjnHTXu3H3W7O3OPutvbrH4+cOj55tmyTQDICGpne7pnHDN4ZmzWcv3xA/eWR8VFRkXuYAAEDEkx8tjPdmr8qYtWlSEJceOiDhRgAAAAAAAAAAAACwbSzAAgCgwWrdpCDO3q93xqykvCJufGVGwo0Aqt4LExbHETePjI/mr650rnlRXtx52q5x1bGDoyg/N5lyADRIBw/sEBcc2Ddr/vLkpXHb6zMTbAQAUHes2Vga1z43JWt+2RE7RovG+Qk2AgAAAAAAAAAAAIBtZwEWAAAN2nf27hHtmxVmzB4ftyCmLlmbcCOAqlFcWh6/fHJinPPA2FhXXFbp7C7dWsZzF4yIwwbvkFA7ABq6Hx3YNw4c0D5rfsOr0+P1acsSbAQAUDf84eWpsWJ9ScZsj56t42u7dk64EQAAAAAAAAAAAABsOwuwAABo0BoX5MWPDuqXMUunI657YWrCjQC23+zl6+P420fFfe/N3eLsWV/tFY+ctVd0bd04gWYA8B85Oam44RtDo2fbJhnzdDriwofGxZwVGxJuBgBQe300f3U88P68jFl+biquPX5wpFKphFsBAAAAAAAAAAAAwLazAAsAgAbvpN26RK92mR+8f33a8nh31sqEGwFsuyfGLYijbnk7pixeW+lc6yYFce93vhI/P3zHyM/19gAAyWvRKD/uOn1YNC7IzZivLS6Ls+4bExs2lyXcDACg9ikrr4hfPDEh0unM+fdH9Io+7ZslWwoAAAAAAAAAAAAAtpMnXAEAaPDycnPikkMHZM1/9+LUSGd7sgyglthYUhYXPzo+fvzP8bGxpLzS2T17tY4XLhwR+/dvn1A7AMisX4dm8cevD8maT1u6Li7518d+HgcAGrz73psbkxZlXnbdpVWjOP+Avgk3AgAAAAAAAAAAAIDtZwEWAABExKGDOsQu3VpmzMbPXx0vTFySbCGArTB1ydo45tZ34tExCyqdy0lF/OigvvHA9/aMDs2LEmoHAJU7Yqcd4uyv9s6aP/fx4vjzyNkJNgIAqF2Wri2O61+enjW/6phB0aggN8FGAAAAAAAAAAAAAFA1LMACAICISKVS8fPDd8ya/+GlaVFaXpFgI4AtS6fT8eD78+LYW9+JmcvWVzrbvllhPPC9PeNHB/WL3JxUQg0B4Mu5+ND+MaJv26z5716YGm/PWJFgIwCA2uPqZyfH+s1lGbNDBnaIA3fskHAjAAAAAAAAAAAAAKgaFmABAMD/t3vP1nHQju0zZp+s2BD//GB+wo0AsltXXBrnPzQuLntiQmwuq3xB31f7tYvnLxwRe/Vuk1A7ANg6uTmpuPnkXaJLq0YZ84p0xPkPjY35qzYm3AwAoGaNnLE8nv14ccascUFuXHnMoIQbAQAAAAAAAAAAAEDVsQALAAD+j4sPHRA5qczZn16dERs2lyVbCCCDjxesjiNvfjvrA7D/Iy8nFT8/fEDc++2vRNumhQm1A4Bt06pJQdx1+rAoys/8tvWnG0vj7PvHRHFpecLNAABqRnFpefzyyYlZ8x8d1Dc6t8y8QBQAAAAAAAAAAAAA6gILsAAA4P/o37FZnLBrl4zZivWb4y9vf5JwI4D/lU6n4y9vfxIn3DEq5q3aWOls55aN4pGz94qzvto7crJt9gOAWmZQpxZx3Qk7Z80nLVoblz0+IdLpdIKtAABqxp1vzoo5KzP//t+/Q7P4zt49E24EAAAAAAAAAAAAAFXLAiwAAPgvPz64XxTmZf5R+a43Z8XK9ZsTbgQQsXpjSXz/H2Pi6mcnR2l55Us/Dh3UIZ6/YETs2q1VQu0AoOocO7RzfLeSZQ6Pj1sYfx81J7lCAAA14JMVG+L212dlza89fnDk5/pzPwAAAAAAAAAAAAB1mxOxAADwXzq1bBTf3rtHxmxDSXnc8u+ZyRYCGrwP56yKI24aGa9OWVrpXEFuTlx1zKC487Rh0aJxfkLtAKDq/fyIAbFHz9ZZ86ufmxLvz16ZYCMAgOSk0+m44qmJUVJekTE/abcusVuP7D8rAQAAAAAAAAAAAEBdYQEWAABkcO5X+0TzoryM2QPvz415Kzcm3AhoiCoq0nHb6zPjG3e/F4vWFFc626NN43j83OHxreE9IpVKJdQQAKpHfm5O3HbqrrFDi6KMeXlFOn744NhYvGZTws0AAKrfsx8vjpEzVmTMWjbOj58dvmPCjQAAAAAAAAAAAACgeliABQAAGbRonB8/3L9Pxqy0PB1/fHlawo2Ahmb5us3xrXtHxx9emhblFelKZ48b2imevWBEDO7cIqF2AFD92jYtjDtPGxYFeZnfxl6xviTOvn9sbC4rT7gZAED1WVdcGlc/Ozlr/vPDB0TrJgUJNgIAAAAAAAAAAACA6mMBFgAAZPGt4T2iU4uijNnT4xfFxIVrEm4ENBTvzFwRh980MkbOWFHpXFF+Tvz+xJ3jxm8MjaaFeQm1A4DkDOnaMq45dnDWfPz81XHlU5MSbAQAUL2uf3l6LFu3OWO2W/dW8fVhXRNuBAAAAAAAAAAAAADVxwIsAADIoig/N358cL+s+e9emJpgG6AhKCuviOtfnhan/eX9WLE+88Ou/6Nfh6bx9Hn7xEm7dY1UKpVQQwBI3klf6Rqn7dkta/7wB/PjwffnJdgIAKB6TFy4Jv7x7pyMWW5OKq45fnDk5HgPAAAAAAAAAAAAAID6wwIsAACoxNd27RL9OzTLmL09c0WMnLE84UZAfbV4zab45p/fj1v+PTPS6cpnT9m9azz1w32iX5b/fAKA+uaKowbFsO6tsuZXPj0xxsz9NMFGAABVq7wiHb94YkJUZHlP4Mx9esaAjs2TLQUAAAAAAAAAAAAA1cwCLAAAqERuTiouPbx/1vx3L0yNimxPpQF8Sa9NWRpH3DQyRs9ZVelck4LcuOnkofHbr+0cjQpyE2oHADWvIC8n7jh112jfrDBjXlqejnMfGBPL1hUn3AwAoGo8OHpejF+wJmPWqUVRXHhg34QbAQAAAAAAAAAAAED1swALAAC2YP/+7WP3nq0zZpMWrY1nPl6UcCOgvigpq4hrnp0cZ/79w/h0Y2mls4M7N4/nLhgRxw7tnFA7AKhd2jcvijtO2zXyc1MZ86VrN8cPHxgbJWUVCTcDANg+y9dtjt+/ODVrfsXRg6JJYV6CjQAAAAAAAAAAAAAgGRZgAQDAFqRSqfjZ4QOy5n98eVpsLitPsBFQH8xbuTG+fueouOftT7Y4++3hPeJf5wyPHm2bJNAMAGqvYd1bxxVHD8qafzDn07jmuckJNgIA2H6/eX5KrCsuy5gdMKB9HDqoQ8KNAAAAAAAAAAAAACAZFmABAMCXsGu3VnHYoI4Zs/mrNsWD789LuBFQlz338eI48uaRMX7BmkrnWjTKj7tOHxa/OmZQFOblJtQOAGq30/boFift1iVr/o9358ZjYxYk2AgAYNuNmrUinhi3MGNWlJ8TVx0zKFKpVMKtAAAAAAAAAAAAACAZFmABAMCXdPFh/SM3J/PDZrf8e2asKy5NuBFQ1xSXlscvnpgQP3xwbKzbXFbp7K7dWsbzF46IQ7Ms3wOAhiqVSsWvjx0cQ7q0yDpz2RMTYsIWFk0CANS0krKK+OWTE7Pm5x/QN7q2bpxgIwAAAAAAAAAAAABIlgVYAADwJfVu1zS+8ZWuGbNVG0ri7rdmJ9wIqEtmLlsfx932Tjzw/rwtzp6zX+/451l7ReeWjRJoBgB1T1F+btxx2rBo06QgY15SVhFn3fdhrFy/OeFmAABf3p9Hzo5ZyzdkzPq0bxrfH9Er4UYAAAAAAAAAAAAAkCwLsAAAYCv86MC+0Sg/N2N2z8hPYtna4oQbAXXBv8YsiGNufTumLllX6VybJgXx9+/uHpceNiDyc/3KDgCV6dSyUdz6zV0jNyeVMV+0pjjOe3BclJVXJNwMAGDL5q3cGDe/NiNrfvWxg6Mgz3sDAAAAAAAAAAAAANRvTswCAMBWaN+8KL43omfGbFNpedxUyUNrQMOzYXNZXPTIR/GTR8fHxpLySmeH924TL1w4Ir7ar11C7QCg7turd5u47Igds+bvzl4Zv3thaoKNAAC2LJ1Ox5VPT4zNZZkXdX5tl86xV+82CbcCAAAAAAAAAAAAgORZgAUAAFvpB/v2ilaN8zNmD38wP2YtX59wI6A2mrJ4bRx969vx+NiFlc7lpCIuOrhf3HfmHtG+eVFC7QCg/vju3j3iuKGdsub3vP1JPPVR5f99DACQpJcmLYnXpy3PmDUvyovLjsy+4BMAAAAAAAAAAAAA6hMLsAAAYCs1K8qP8w/omzErr0jHH1+alnAjoDZJp9Nx/3tz49jb3onZyzdUOtuheWE8+P0944ID+0ZuTiqhhgBQv6RSqfjt13aOgTs0zzpz6b8+jsmL1ibYCgAgsw2by+KqZyZnzS85bEC0bVqYYCMAAAAAAAAAAAAAqDkWYAEAwDY4dc9u0aVVo4zZCxOXxNh5nybcCKgN1haXxnkPjovLn5wYJWUVlc7u379dPH/BiNizV5uE2gFA/dWoIDfuOn1YtGycnzEvLq2Is+7/MFZvLEm4GQDA5/3p1emxeE1xxmxo15bxzd27JdwIAAAAAAAAAAAAAGqOBVgAALANCvNy4+JD+2fNf/fC1Ein0wk2Amra+Pmr48ibR8ZzExZXOpeXk4pfHLFj/OVbX4k2TQsTagcA9V/X1o3jllN2iZxU5nz+qk1xwcMfRXmFn9MBgJoxZfHa+Os7czJmOamIa44bHDnZfpgBAAAAAAAAAAAAgHrIAiwAANhGR+/cKQbu0DxjNvqTVfH6tGUJNwJqQjqdjntGzo4T7xwV81dtqnS2S6tG8ejZe8X39+3lgVYAqAYj+raLiw8dkDV/a/ryuOGVaQk2AgD4j4qKdFz+5MSsyzi/NbxHDO7cIuFWAAAAAAAAAAAAAFCzLMACAIBtlJOTip8dnv3h+utemJb1gTagfvh0Q0l87+8fxjXPTYnS8sr///3wwR3juQtGxC7dWiXUDgAaprO/2iuO2Klj1vy212fFixMXJ9gIACDikQ/nx5i5n2bMOjQvjIsO7pdwIwAAAAAAAAAAAACoeRZgAQDAdti3X7vYp0/bjNm0peviiXELE24EJGX0J6viiJtHxmtTl1U6V5CXE1cfOyhuP3XXaNEoP6F2ANBwpVKp+MOJQ6Jfh6ZZZ37yyPiYsXRdgq0AgIZs1YaS+N2LU7PmvzxqYDQr8p4BAAAAAAAAAAAAAA2PBVgAALCdLj1sQNbshpenRXFpeYJtgOpWXpGOW16bESff/W4sXlNc6Wyvtk3iiXOHx+l79YhUKpVQQwCgSWFe3HX6btGsKC9jvqGkPM66b0ysLS5NuBkA0BD99vkpsXpj5p87RvRtG0futEPCjQAAAAAAAAAAAACgdrAACwAAttNOXVrE0UM6ZcwWrSmOf7w7J9lCQLVZtq44zvjr+3H9K9OjIl357PG7dI5nzt8nBnVqkUw5AOBzerZtEjedPDSy7aCcvWJDXPTPj6JiS/+lDgCwHT6YsyoeHbMgY1aQlxNXHzvY0mwAAAAAAAAAAAAAGiwLsAAAoApcfEj/yM/N/KDaba/PijUbSxNuBFS1kTOWxxE3jYx3Zq6sdK5Rfm784cSd44aThkSTwryE2gEAmRwwoEP86MB+WfNXpyyLW/49M8FGAEBDUlpeEZc/MTFr/sP9+kSPtk0SbAQAAAAAAAAAAAAAtYsFWAAAUAW6tWkcp+7RPWO2ZlNp3PHmrIQbAVWlrLwi/vDS1Djjr6NjxfqSSmf7d2gWz5y/d3x9t66RSmVeigcAJOv8A/rEQTt2yJrf+Or0eG3K0gQbAQANxV/f/iSmLV2XMevZtkmcvV+vhBsBAAAAAAAAAAAAQO1iARYAAFSR8w7oE00KcjNm977zSSxavSnhRsD2WrR6U5x893tx2+uzIp2ufPabe3SLp87bO/q0b5ZMOQDgS8nJScUN3xgSvdo2yTrzo39+FJ+s2JBgKwCgvlvw6cb406szsuZXHzs4CvMyv5cIAAAAAAAAAAAAAA2FBVgAAFBF2jYtjB/s2ztjtrmsIv706vSEGwHb49XJS+OIm0fGh3M/rXSuaWFe3HLKLvGb43eKonwPrgJAbdS8KD/uPmNY1oW164rL4gf/+DDWby5LuBkAUF9d9czk2FRanjE7ekin2Kdv24QbAQAAAAAAAAAAAEDtYwEWAABUoe+N6BltmxZmzB4bsyCmL12XcCNga5WUVcSvn5kc3/vHh7F6Y2mlszt1bhHPXbBPHD2kU0LtAIBt1ad9s7j+pCFZ8xnL1sclj42PdDqdYCsAoD56dfLSeGXy0oxZs8K8+OWROybcCAAAAAAAAAAAAABqJwuwAACgCjUpzIsLD+qbMatIR/z+xakJNwK2xtyVG+LEO0fFX9/5ZIuz3927Zzx2zl7RvU2TBJoBAFXhsME7xA/37501f37CkrjzzdkJNgIA6puNJWVx5dOTsuY/OaRftG9elGAjAAAAAAAAAAAAAKi9LMACAIAqdvJXukbPtpkX4rw6ZVmM/mRVwo2AL+OZ8YviyJvfjo8XrKl0rkWj/PjzGbvFFUcPjMK83ITaAQBV5aKD+8e+/dplzf/w0tR4a/ryBBsBAPXJLf+eGQtXb8qY7dS5RZy+V49kCwEAAAAAAAAAAABALWYBFgAAVLH83Jy4+ND+WfPfvTAl0ul0go2AyhSXlsfPH58Q5z80LtZvLqt0drfureL5C0fEwQM7JNQOAKhquTmpuPnkodGtdeOMeUU64vyHxsX8VRsTbgYA1HUzlq6LP781O2OWSkVce/zgyM1JJdwKAAAAAAAAAAAAAGqvvJouAJnMmjUrRo8eHQsWLIiSkpJo1apVDBgwIIYPHx5FRUU1XQ8AYIsOH9wxhnRtGePnr/5CNnbe6nh58tI4dFDH5IsBnzNz2bo478FxMXXJukrnUqmIc/frHT8+qF/k5dolDQB1XcvGBXHX6cPia7ePik2l5V/I12wqjR/cNyYeP2d4NCrIrYGGAEBdk06n4xdPToyyisyL70/bo3vs3KVlsqUAgDrFeSkAAAAAAAAAABoiC7DqsIULF8bo0aPj/fffj9GjR8eHH34Y69b970Pb3bt3jzlz5lTb/SdMmBDDhg2L0tLSz3393nvvjW9/+9vbdM0nn3wyrr766hg7dmzGvGnTpvHtb387rrzyymjbtu023QMAIAmpVCp+dtiAOOXP72XMf//i1DhwQHuLdKCGpNPpeGzMgrjiqUkZl178X22bFsSN3xgaI/q2S6gdAJCEHXdoHteduHNc8NC4jPmUxWvjZ49/HH/6xtBIpVIJtwMA6pp/jV0Yoz9ZlTFr27Qwfnpo/4QbAUD95LyU81IAAAAAAAAAANQvFmDVMe+8805cf/318f7778eiRYtqrEd5eXmceeaZXzjMta02b94cZ555ZjzwwAOVzq1fvz5uvfXW+Oc//xmPPfZY7LvvvlVyfwCA6rBX7zaxX/928ca05V/IZi3fEI+OWRCn7N6tBppBw7Z+c1n88smJ8cS4hVuc3btPm7jxG0OjfTOfrA4A9dExQzrFhAWr488jP8mYP/XRoti5S8s4c5+eCTcDAOqS1RtL4jfPT8maX37kjtGiUX6CjQCgfnFeynkpAAAAAAAAAADqr5yaLsDW+eCDD+KJJ56o0cNcERE33nhjfPDBB1VyrYqKivjGN77xhcNcubm50bNnzxg6dGi0aNHic9ny5cvj8MMPj3fffbdKOgAAVJdLDxsQqVTm7MZXpsemkvJkC0EDN2nRmjjmlre3uPwqJxXx00P6xT++u4flVwBQz1162IAY3rtN1vw3z0+Jd2etTLARAFDXXPfitFi1oSRjNrx3mzh2aKeEGwFA/eK81H84LwUAAAAAAAAAQH1kAVY90rRp00TuM2vWrLjiiis+e92kSZPtut4f/vCHeOqppz73tbPPPjvmzZsXs2fPjnHjxsWqVavi8ccfj27dun02s3HjxjjppJNizZo123V/AIDqtOMOzeP4XTpnzJat2xx/feeThBtBw5ROp+O+d+fE8bePitkrNlQ627F5UTz8g73ivAP6Rm5Olg12AEC9kZebE7ecskt0btkoY15ekY7zHhwbi1ZvSrgZAFAXjJ33aTw0el7GLD83Fb8+dnCksm3IBwC2m/NSAAAAAAAAAABQt1mAVUc1a9Ys9ttvv7j44ovj0UcfjTlz5sQzzzxT7fdNp9Px/e9/PzZt+s/DXkcffXTstttu23y9lStXxrXXXvu5r/32t7+NO+64Izp1+t9PQs7JyYnjjz8+Ro0aFT169Pjs6wsWLIgbbrhhm+8PAJCEiw7uFwW5mX/0vvONWbFqQ0nCjaBhWbOpNM59YGz88qlJUVJWUensgQPax/MXjojde7ZOqB0AUBu0aVoYd542LAryMv/cvnJDSZx9/5goLi1PuBkAUJuVlVfEL56YmDU/+6u9o0/7ZJZyAEBD4LzUfzgvBQAAAAAAAABAfWIBVh1z9NFHx6RJk2L16tXx+uuvx+9///s48cQTo3v37onc/89//nO8/vrrEfGfT1C87bbbtut6v//972PdunWfvd53333j0ksvzTrfuXPnuOeeez73tRtvvDFWrly5XT0AAKpTl1aN41vDM/+8tm5zWdz2+syEG0HDMW7ep3HkzSPjhYlLKp3Lz03F5UfuGPd8a7do3aQgoXYAQG2yU5cW8Zvjd8qaf7xgTfzyyYmRTqcTbAUA1GZ/f3duTFm8NmPWrXXj+OH+fRJuBAD1k/NSzksBAAAAAAAAAFB/WYBVx/Tu3TsGDhwYOTnJ/59u4cKFcckll3z2+tprr42uXbtu8/UqKiri3nvv/dzXfvWrX0Uqlar0+w488MAYMWLEZ6/XrVsXjzzyyDb3AABIwrn79YlmRXkZs/venRvzV21MuBHUbxUV6fjzW7Pj63e+Gws+3VTpbNfWjeLRs4fH90b02uLvIwBA/XbisC5xxl7ZH559dMyCuP/9eQk2AgBqq8VrNsUNL0/Lml917KAoys9NsBEA1F/OSzkvBQAAAAAAAABA/WUBFl/aueeeG2vWrImIiN133z3OO++87breqFGjYvny5Z+97tWrV+y3335f6nvPPPPMz71+8sknt6sLAEB1a9WkIM7Zr3fGrKS8Im54ZXrCjaD+WrWhJM78+wdx7fNToqwiXenskTvtEM9dMCKGdm2ZTDkAoNa7/MiB8ZUerbLmv35mUnw4Z1WCjQCA2ujqZyfHhpLyjNnhgzvG/v3bJ9wIAKgOzksBAAAAAAAAAED1sgCLL+Xhhx+Op59+OiIi8vLy4s9//vN2f6ric88997nXBx988BY/zfD/zv5fb7zxRmzYsGG7+gAAVLfv7t0zOjYvypg9+dHCmLRoTcKNoP55b/bKOPymt+L1acsrnSvIy4lrjx8ct35zl2helJ9QOwCgLijIy4nbTt01OjQvzJiXlqfjnAfGxtK1xQk3AwBqizemLYvnJyzJmDUpyI0rjh6YcCMAoDo4LwUAAAAAAAAAANXPAiy2aOXKlXHBBRd89vonP/lJ7Lzzztt93Y8++uhzr4cPH/6lv7dTp07Ro0ePz16XlJTE5MmTt7sTAEB1KsrPjR8f3Ddjlk5H/P7FaQk3gvqjvCIdN782I7755/di6drNlc72atcknvrh3nHqHt2/9EMlAEDD0r5ZUdxx2rDIz838s8LydZvj3AfGRklZRcLNAICaVlxaHlc8NSlr/uOD+8UOLRol2AgAqA7OSwEAAAAAAAAAQDIswGKLLrzwwli+fHlERPTu3TuuvPLKKrnulClTPvd64MCt+yTk/57/7+sBANRGJ+zaJfq0b5oxe3P68hg1c0XCjaDuW7a2OE7/y/txwyvToyJd+ewJu3aJZ87bJ3bcoXky5QCAOmvXbq3iqmMGZ83HzP00fv1s9uUXAED9dPvrM2Peqo0Zsx13aB7fHt4j2UIAQLVwXgoAAAAAAAAAAJJhARaVev755+OBBx747PWdd94ZjRpt/ycWb9q0KebNm/e5r3Xt2nWrrvHf89OmTdvuXgAA1S0vNycuObR/1vy3L0yNii1t8AE+8+b05XH4TSNj1KyVlc41LsiN678+JK4/aUg0KcxLqB0AUNd9c49ucfJXsr9vef978+KRD+Yn2AgAqEmzl6+PO9+cnTW/5rjBkZfrT/AAUNc5LwUAAAAAAAAAAMlx+pas1q1bF2efffZnr08//fQ46KCDquTaK1asiHT6fxc75OfnR/v27bfqGp07d/7c62XLllVJNwCA6nbwwA6xW/dWGbMJC9fE8xMXJ9wI6p7S8oq47sWp8a2/jo6VG0oqnR3QsVk8fd4+ccKwLgm1AwDqk6uOHRRDu7bMml/+5MQYP391Yn0AgJqRTqfjl09NjJLyioz5Kbt3jWFZ3vMDAOoO56UAAAAAAAAAACBZeTVdgNrr0ksvjfnz50dERNu2beOGG26osmuvX7/+c68bN24cqVRqq67RpEmTSq+5rZYtWxbLly/fqu+ZOXNmldwbAGgYUqlU/OzwAXHine9mzP/w0rQ4ZGDHKMizrxYyWbh6U5z/4NgYO2/1FmdP3aNb/PKogVGUn1v9xQCAeqkwLzfuOG3XOPqWt2PF+i8u3iwpr4iz7x8Tz5y/T7RtWlgDDQGAJDw9flG8M3Nlxqx1k4K49LABCTcCAKqD81JfnvNSAAAAAAAAAABUBQuwyGjkyJFx5513fvb6+uuvj7Zt21bZ9f/78FVRUdFWX6NRo0aVXnNb3X777XHVVVdVybUAALLZrUfrOHhgh3hl8tIvZHNXboyHP5gXZ+zVI/liUMu9PGlJXPzYx7FmU2mlc80K8+J3J+wcR+68Q0LNAID6bIcWjeK2b+4ap97zfpRVpL+QL15THD98YGzc/709Ij/XIlsAqG/WbCqNq5+dkjX/+eEDomXjggQbAQDVwXkp56UAAAAAAAAAAEieJ3H4guLi4jjzzDMjnf7Pg1wHHXRQnHHGGVV+j/+roGDrD4QXFhZ+7vWmTZu2qxMAQNIuPax/5GT5UOebX5sR6zeXJVsIarHNZeXxq6cnxQ/uG7PF5VdDurSI5y4YYfkVAFCl9ujVJi4/cses+fufrIrfPj81wUYAQFKuf3larFi/OWO2e4/WceKwLgk3AgCqmvNSAAAAAAAAAABQMyzA4guuvPLKmDFjRkT851MD/+8nG1aV//4Ew5KSkq2+xubNnz9kvi2figgAUJP6tG8WJ+3WNWO2Yn1J3DNydsKNoHaas2JDnHDHqPjbqDlbnP3ePj3j0bOHR7c2jau/GADQ4HxreI/42i6ds+Z/feeTeGLcggQbAQDV7eMFq+O+9+ZmzPJyUnHN8YMjlcqy5R4AqDOclwIAAAAAAAAAgJqRV9MFqF3Gjh0b119//Wevr7jiiujdu3eV36dp06afe/3fn3D4Zfz3Jxj+9zW31bnnnhtf//rXt+p7Zs6cGccdd1yV3B8AaFh+dFC/eGLcwthcVvGF7O63Zsepe3SPds0KM3wnNAxPj18Ulz0+IdZvLqt0rmXj/Lj+60PiwB07JNQMAGiIUqlU/OZrO8W0peti0qK1GWd+/viE6NehWQzq1CLhdgBAVSuvSMcvnpgY6XTm/HsjekW/Ds2SLQUAVDnnpZyXAgAAAAAAAACg5liAxWfKysriu9/9bpSXl0dExM477xw//elPq+Ve/334auPGjZFOp7fq05E3bNhQ6TW3Vfv27aN9+/ZVci0AgC3p2KIovrtPz7jjjVlfyDaWlMct/54Rvz52cA00g5q1qaQ8rnpmUjz8wfwtzu7eo3XcdMrQ2KFFowSaAQANXVF+btx1+rA4+pa349ONpV/Ii0sr4qz7xsQz5+0TrZoU1EBDAKCqPPD+3JiwcE3GrHPLRnHBgX0SbgQAVDXnpf7DeSkAAAAAAAAAAGpKTk0XoPa4//77Y/z48RERkZOTE3fffXfk5VXPjrS2bdt+7vBWaWlpLFu2bKuusXDhws+9dggLAKirzv5q72jZOD9j9uD782LOig0ZM6ivZixdF8fe9vYWl1+lUhHnH9AnHvz+HpZfAQCJ6tKqcdxyyq6Rk+X51AWfbooLHh4X5RXpZIsBAFVm2dri+MOL07LmvzpmUDQu8HlTAFDXOS8FAAAAAAAAAAA1ywIsPrN69erP/ueKiorYc889I5VKbfGfN99883PX+c53vvO5/LjjjvvCvRo1ahTdunX73NfmzZu3VX3/e37AgAFb9f0AALVFi0b5cd7+fTJmZRXp+MPL2R+0g/oknU7HIx/Mj6NvfTumL11f6WzbpoVx/5l7xE8O6R95uX61BQCSt0/ftvGzw7O/Jzlyxor4w0t+lgeAuuqa56bEus1lGbODduwQBw/skHAjAKA6OC8FAAAAAAAAAAA1y1PC1Jj/PoA1efLkrfr+KVOmVHo9AIC65LQ9u0fnlo0yZs99vDjGz1+dbCFI2PrNZfGjf34Ul/zr4ygurah0dkTftvHChSNi7z5tE2oHAJDZ90f0iqN23iFrfuebs+K5jxcn2AgAqApvz1gRT49flDFrlJ8bvzpmYMKNAID6wnkpAAAAAAAAAAD4PAuwqDFDhw793OtRo0Z96e9dvHhxzJkz57PX+fn5MXCgg+YAQN1VlJ8bPzmkX9b8dy9MjXQ6nWAjSM7EhWvi6Fvejqc+yvxg6f/IzUnFxYf2j79/Z/do16wwoXYAANmlUqn4/Yk7R/8OzbLOXPzY+Ji2ZF2CrQCA7bG5rDyueGpi1vyCA/tGl1aNE2wEANQnzksBAAAAAAAAAMDn5dV0AWqPE044IQYPHrzV3/eTn/wkPv74489eX3zxxXHIIYd89rp9+/YZv++oo46K66677rPXr776aqTT6UilUlu858svv/y51/vvv380bdp0a6sDANQqxw7tHHe/NTumZng4/t3ZK+PN6ctjv/6Zf7aCuiidTsc/3p0b1z43JUrKKyqd7dSiKG4+ZZfYrUfrhNoBAHw5jQvy4q7Th8Uxt74da4vLvpBvLCmPs+77MJ46b59o0Si/BhoCAFvjrjdnx+wVGzJm/To0je+N6JlwIwCgOjkvBQAAAAAAAAAANcsCLD7TtWvX6Nq161Z/X6tWrT73euDAgXHQQQdt8fuGDx8ebdu2jRUrVkRExOzZs+ONN96I/ffff4vf+5e//OVzr4899titaAwAUDvl5qTi0sMHxHfu/SBj/rsXpsa+fdtFTs6WD8BDbbdmY2lc8q/x8dKkpVucPWjH9vGHE4dEqyYFCTQDANh6Pdo2iZtO2SW++7cPIp3+Yj5n5cb40cPj4i/f+oqf5wGgFpu7ckPc+vrMrPk1x+0U+bk5CTYCAKqb81IAAAAAAAAAAFCznM6lxuTk5MS3v/3tz33tqquuinSmJ8T+j9deey1Gjhz52etmzZrFSSedVB0VAQASt1+/drFXrzYZs6lL1sVT4xcm3Aiq3th5n8YRN4/c4vKr/NxU/PKogfHnM3az/AoAqPX2798+fnJwv6z569OWx59em5FgIwBga6TT6bjiqUlRUlaRMT9xWJfYvWfrhFsBAPWN81IAAAAAAAAAAPB5FmBRoy699NJo2rTpZ6/ffPPNuO6667LOL1y4ML73ve997msXXnhhtG3btto6AgAkKZVKxc8OH5A1/+NL02NzWXmCjaDqVFSk4843Z8VJd74bC1dvqnS2W+vG8a9zhseZ+/SMVCqVUEMAgO1z7n594pCBHbLmN782I16ZXPkSUACgZjw/YUm8OX15xqxFo/z4eSXv2QEAbA3npQAAAAAAAAAA4H/l1XQBtt4777wTmzZ98WHx8ePHf+51cXFxvPrqqxmv0alTpxg4cGC19Nsabdu2jcsuuywuu+yyz77285//PObNmxeXX355dOrUKSIiKioq4umnn44LL7ww5s2b99lsp06d4ic/+UnivQEAqtOQri3jyJ12iOcmLP5CtnD1prjv3bnxvRG9aqAZbLuV6zfHRY+Mz/og6f915M47xG+/tlM0L8pPoBkAQNXJyUnF9ScNieNueydmLd+QcebH//wonjpv7+jdrmnGHABI3rri0vj1s5Oy5j87fEC0aVqYYCMA4L85L+W8FAAAAAAAAAAA9ZMFWHXQqaeeGnPnzt3i3NKlS+Pggw/OmH3rW9+Kv/3tb1XcbNtceumlMWrUqHj22Wc/+9odd9wRd999d3Tv3j1atGgRn3zySaxevfpz39eoUaN45JFHomXLlskWBgBIwE8P7R8vTVoSZRXpL2S3vj4zTvpKV8uBqDPenbUyLnx4XCxbt7nSucK8nLjy6EFxyu5dI5VKJdQOAKBqNSvKj7tO3y2Ou+2dWL+57Av5+s1lcdZ9Y+LJH+4dTQu9RQ8AtcGNr8yIpWszv2+xa7eW8Y3duibcCAD4b85L/YfzUgAAAAAAAAAA1Dc5NV0AcnJy4tFHH42TTz75c18vLy+P2bNnx7hx475wmKtNmzbx/PPPx957751gUwCA5PRs2yRO2b1bxmz1xtK4681ZCTeCrVdekY4/vTo9Tr3nvS0uv+rdrkk8dd7e8c09ull+BQDUeX3aN40bThqSNZ+5bH385JGPoiLDwlsAIFmTFq2Jv436JGOWm5OKa47bKXJyvFcBAFQt56UAAAAAAAAAAOA/LMCiVigqKoqHHnooHnvssRg6dGjWuSZNmsS5554bkydPjv322y+xfgAANeH8A/tE44LcjNlf3v4klqwpTrgRfHlL1xbHqfe8F396dUZsaa/D14d1iWfO3ycGdGyeTDkAgAQcMqhjnH9An6z5S5OWxh0W2wJAjaqoSMflT07M+t7Fd4b3iIGdvF8BAFQP56UAAAAAAAAAACAir6YLsPXmzJlT0xU+54033qiya51wwglxwgknxMyZM+P999+PhQsXRklJSbRs2TJ23HHH2HvvvaOoqKjK7gcAUJu1b1YU3xvRK25+bcYXsuLSirjptenx26/tXAPNoHJvTFsWFz0yPlZtKKl0rnFBblx7/OA4fpcuCTUDAEjWjw7qFxMXronXpy3PmP/x5WkxqFPz2K9/+4SbAQAREQ9/MD/GzVudMevYvCh+dHC/ZAsBAFk5L+W8FAAAAAAAAAAA9ZMFWNRKffr0iT59+tR0DQCAGveDfXvFA+/NjZUZFgn984P5ceY+vaJP+6Y10Ay+qLS8Iv748rS4683ZW5zdcYfmces3d4ne7fz7FwCov3JzUvGnb+wSx9z2dsxdufELeTodccFD4+KZ8/eJ7m2a1EBDAGi4VqzfHL97YUrW/MqjB0bTQn9OBwCS47wUAAAAAAAAAAANUU5NFwAAALJrWpgXFxzYN2NWkY74w0tTE24Emc1ftTFOuuvdL7X86vQ9u8cT5w63/AoAaBBaNM6Pu0/fLRoX5GbM1xaXxVn3jYmNJWUJNwOAhu03z0+JtcWZ//t3v/7t4rDBHRNuBAAAAAAAAAAAAAANjwVYAABQy52ye7fo1rpxxuylSUtjzNxVCTeCz3tx4pI48uaRMW7e6krnmhXlxR2n7hpXHzc4ivIzL4AAAKiP+ndsFr8/cees+dQl6+LSf02IdDqdYCsAaLjem70yHh+7MGNWmJcTvz5mcKRSqYRbAQAAAAAAAAAAAEDDYwEWAADUcgV5OfHTQ/tnzX/3wlQPylMjikvL48qnJsbZ94+JtcVllc4O6doynr9gRBy+0w4JtQMAqF2O2rlTnLVvr6z5M+MXxT0jP0mwEQA0TCVlFXH5kxOz5uft3ye6tcm8jB4AAAAAAAAAAAAAqFoWYAEAQB1w1E47xE6dW2TMPpjzabw2ZVnCjWjoPlmxIU64Y1T8/d25W5z9wb694tGz9oqurT08CgA0bBcf2j/26dM2a/7bF6bEqJkrEmwEAA3PPW/PjpnL1mfMerVrEj/4avaFlQAAAAAAAAAAAABA1bIACwAA6oCcnFT87PABWfPrXpwaZeUVCTaiIXvqo4Vx1M0jY9KitZXOtWqcH/d++ytx2RE7RkGeXz8BAPJyc+KWU3aJzi0bZcwr0hHnPTQuFny6MeFmANAwzF+1MW5+bUbW/JpjB0dhXm6CjQAAAAAAAAAAAACgYfMEMgAA1BF792kbI/q2zZjNWLY+Hh+7MOFGNDQbS8riksfGx4UPfxQbSsornd29Z+t44cJ9Y/8B7RNqBwBQN7RqUhB3nT4sCrMsCF21oSTOvn9MFJdW/vMWALB10ul0/OrpSVFcmnmJ/HFDO8XwPpnfewMAAAAAAAAAAAAAqocFWAAAUIf87PABWbMbXpnuIXmqzbQl6+LYW9+JRz5cUOlcKhVxwYF948Hv7REdWxQl1A4AoG4Z3LlF/PZrO2XNJy5cG5c9MSHS6XSCrQCgfnt58tJ4beqyjFmzorz4xZEDE24EAAAAAAAAAAAAAFiABQAAdcigTi3iuKGdMmZL1hbHve/MSbYQ9V46nY6HR8+LY259O2YsW1/pbLtmhfHAmXvERQf3i7xcv24CAFTma7t2iW8P75E1f3zswvjHu3OTKwQA9diGzWVx1dOTsuaXHNo/2jUrTLARAAAAAAAAAAAAABBhARYAANQ5PzmkfxRkWS50+xszY/XGkoQbUV+tKy6NCx7+KH72+ITYXFZR6eyIvm3jhQtHxPA+bRNqBwBQ9/3iyB1j956ts+ZXPzs5Rn+yKsFGAFA/3fzajFi0pjhjtnOXFvHNPbon3AgAAAAAAAAAAAAAiLAACwAA6pyurRvHaXtmfihvXXFZ3P7GrIQbUR9NWLAmjrrl7Xhm/KJK53JzUnHpYQPi79/ZPdo2LUyoHQBA/ZCfmxO3fXPX6Ni8KGNeVpGOcx8YG0uyLOwAALZs2pJ18Ze3P8mY5aQirj1up8jNSSXcCgAAAAAAAAAAAACIsAALAADqpPMO6BNNC/MyZn8bNScWrt6UcCPqi3Q6Hfe+80l87Y53Yu7KjZXOdm7ZKB45a884Z7/ekeNBUQCAbdKuWWHcefqwKMjN/Hb9ivWb4+z7x8TmsvKEmwFA3VdRkY7Ln5wQZRXpjPkZe/WInbq0SLgVAAAAAAAAAAAAAPA/LMACAIA6qHWTgjj7q70yZiVlFXHDy9MTbkR9sHpjSZx135i46pnJUVqe+cHQ/3HwwA7x3AX7xLDurRNqBwBQfw3t2jKuPm5Q1vyj+avjV09PTrARANQPj41dEB/M+TRj1q5ZYVx0SL+EGwEAAAAAAAAAAAAA/5cFWAAAUEd9d5+e0b5ZYcbs8XELYuqStQk3oi4bM3dVHHnz2/Hy5KWVzhXk5sSvjh4Yd58+LFo2LkioHQBA/feNr3SLb+7RLWv+0Oh58dDoeQk2AoC67dMNJfHb56dkzX951MBoXpSfYCMAAAAAAAAAAAAA4L9ZgAUAAHVU44K8+NFB/TJm6XTE71+clnAj6qKKinTc/sbMOOmu92Lh6k2VznZv0zj+dc7w+PbePSOVSiXUEACg4bjy6IGxS7eW2fOnJsW4eZ8mVwgA6rDfvTA1Pt1YmjHbp0/bOHrnHRJuBAAAAAAAAAAAAAD8NwuwAACgDjtpty7Rq22TjNm/py6L92avTLgRdcmK9ZvjW/eOjt+/OC3KK9KVzh49pFM8e/4+sVOXFgm1AwBoeArzcuPO04ZFu2aFGfOS8oo45/6xsXzd5oSbAUDd8uGcVfHPD+dnzApyc+LXxw6y3BsAAAAAAAAAAAAAagELsAAAoA7Ly82JSw7rnzX/7QtTI52ufLERDdOomSvi8JtGxsgZKyqdK8rPid99bae4+eSh0awoP6F2AAANV4fmRXH7qbtGXk7mpRxL1hbHDx8YG6XlFQk3A4C6obS8Ii5/cmLW/Oz9ekevdk0TbAQAAAAAAAAAAAAAZGMBFgAA1HGHDuoYu3RrmTEbP391vDhxSbKFqNXKyivihpenxal/eT+Wr9tc6Wzf9k3jqR/uEyfv3i1SqcwLGAAAqHpf6dE6rjx6YNZ89JxVce1zUxJsBAB1x9/emRNTl6zLmHVv0zjO3a93wo0AAAAAAAAAAAAAgGwswAIAgDoulUrFzw4bkDX/w0vTorS8IsFG1FZL1hTHN+95P27+98xIpyuf/cZuXePp8/aJ/h2bJVMOAIDPOW3P7nHisC5Z87+NmhP/GrMgwUYAUPstWr0pbnx1etb818cOjqL83AQbAQAAAAAAAAAAAACVsQALAADqgT16tYkDB7TPmM1esSH++cH8hBtR27w+dVkcftNbMfqTVZXONSnIjZtOHhrXnbhzNCrwQCgAQE1JpVJxzXGDY6fOLbLOXPbEhJi4cE2CrQCgdvv1M5NjY0l5xuzInXeIr/Zrl3AjAAAAAAAAAAAAAKAyFmABAEA9cclhAyInlTn706szYsPmsmQLUSuUlFXEb56fEt/52wfx6cbSSmcHdWoez14wIo4d2jmhdgAAVKYoPzfuPH1YtG5SkDHfXFYRZ903JlZtKEm4GQDUPv+eujRenLQkY9a0MC+uOGpgwo0AAAAAAAAAAAAAgC2xAAsAAOqJ/h2bxQm7dsmYrVi/Of769icJN6KmzV+1Mb5+17tx91uztzj77eE94vFzh0fPtk0SaAYAwJfVuWWjuPWbu0Rulm23C1dvivMfGhtl5RUJNwOA2mNTSXlc8dSkrPlFB/eLDs2LEmwEAAAAAAAAAAAAAHwZFmABAEA98uOD+0VBXuYf8+96a3asXL854UbUlBcmLI4jbh4Z4+evrnSueVFe3HnasPjVMYOiMC83mXIAAGyV4b3bxs8PH5A1f2fmyvj9S9MSbAQAtcutr8+IBZ9uypgN3KF5nLFX94QbAQAAAAAAAAAAAABfhgVYAABQj3Rq2Si+M7xHxmz95rK45d8zky1E4opLy+OXT06Mcx4YG+uKyyqd3aVby3jughFx2OCOCbUDAGBbnblPzzhmSKes+d1vzY5nxi9KsBEA1A4zl62Lu9+anTFLpSKuPX5w5OX6szgAAAAAAAAAAAAA1EZO+gIAQD1z7n59onlRXsbsgffnxryVGxNuRFJmL18fx98+Ku57b+4WZ8/6aq945Ky9omvrxgk0AwBge6VSqbjuhJ1jQMdmWWcueezjmLpkbYKtAKBmpdPpuPzJiVFans6Yf3P3brFLt1YJtwIAAAAAAAAAAAAAviwLsAAAoJ5p0Tg/frh/n4xZaXk6/vjytIQbkYTHxy6Io255O6YsrnzhQZsmBfG373wlfn74jpGf61dCAIC6pFFBbtx9+m7RolF+xnxTaXn84B9jYs3G0oSbAUDNePKjhfHe7FUZs7ZNC+KSQwck3AgAAAAAAAAAAAAA2BqedgYAgHroW8N7xA4tijJmT49fFBMXrkm4EdVlY0lZ/PTR8XHRI+NjY0l5pbN79modz184Ivbr3z6hdgAAVLVubRrHzafsEqlU5nzeqo1x4T/HRXlFOtliAJCwNRtL49rnpmTNLztix2jROPPSSAAAAAAAAAAAAACgdrAACwAA6qGi/Ny46OB+WfPrXpyaYBuqy9Qla+PoW96Ox8YsqHQuJxXxo4P6xgPf2zM6NM+8GA0AgLrjq/3axU8P6Z81f2Pa8rjxlekJNgKA5P3+pamxYn1JxmzPXq3j+F06J9wIAAAAAAAAAAAAANhaFmABAEA99bVdu0S/Dk0zZiNnrIiRM5Yn3Iiqkk6n48H358Wxt74Ts5ZvqHS2fbPCeOB7e8aPDuoXuTmphBoCAFDdzt2vdxw+uGPW/NbXZ8ZLk5Yk2AgAkvPR/NXx4Oh5GbP83FRcc9zgSKW8DwIAAAAAAAAAAAAAtZ0FWAAAUE/l5qTi0sMGZM1/98LUqKhIJ9iIqrC2uDTOe2hcXPbEhNhcVlHp7H7928ULF46IvXq3SagdAABJSaVS8YevD4m+7TMvvY2I+Mkj42PmsnUJtgKA6ldWXhG/eGJCpLO8rfX9Eb2iT/tmyZYCAAAAAAAAAAAAALaJBVgAAFCPHTCgfezeo3XGbNKitfHMx4sSbsT2+HjB6jjq5rfjuY8XVzqXl5OKnx8+IP76ra9Em6aFCbUDACBpTQvz4q7Th0WzwryM+frNZfGD+8bEuuLShJsBQPW57725MWnR2oxZl1aN4vwD+ibcCAAAAAAAAAAAAADYVhZgAQBAPZZKpeJnRwzImv/x5WlRUlaRYCO2RTqdjr+8/UmccMeomLdqY6WznVs2ikfO3ivO+mrvyMlJJdQQAICa0qtd07jxG0Oz5rOXb4iLHhkfFRXp5EoBQDVZurY4rn95etb818cOikYFuQk2AgAAAAAAAAAAAAC2hwVYAABQz+3arVUcNqhjxmz+qk3xwPtzE27E1vh0Q0l8/x9j4upnJ0dpeeVLCw4d1CGev2BE7NqtVULtAACoDQ4a2CEuPLBv1vyVyUvjttdnJtgIAKrH1c9OjvWbyzJmhw7qEAcM6JBwIwAAAAAAAAAAAABge1iABQAADcDFh/WP3JxUxuyWf8+MdcWlCTfiy/hgzqo44uaR8eqUpZXOFeTmxK+PHRR3njYsWjTOT6gdAAC1yYUH9o0DB7TPmt/w6vR4feqyBBsBQNV6a/ryePbjxRmzxgW5ceXRgxJuBAAAAAAAAAAAAABsLwuwAACgAejdrml84ytdM2arNpTEn9+anXAjKlNRkY7bXp8ZJ9/9XixeU1zpbI82jePxc4fHGXv1iFQq85IzAADqv5ycVNx48tDo2bZJxjydjrjg4XExZ8WGhJsBwPYrLi2PK56amDX/0UF9o1PLRgk2AgAAAAAAAAAAAACqggVYAADQQPzowL7RKD83Y/bnkZ/EsnWVL1oiGcvXbY5v3Ts6/vDStCivSFc6e9zQTvHsBSNicOcWCbUDAKA2a16UH3edPiwaF2T+uX9dcVn84L4PY8PmsoSbAcD2ueONWTFn5caMWf8OzeI7e/dMuBEAAAAAAAAAAAAAUBUswAIAgAaiffOiOHOfzA8Dbiotj5tenZFwI/7b2zNWxOE3jYyRM1ZUOleUnxO/P3HnuPEbQ6NpYV5C7QAAqAv6dWgW1399SNZ8+tL1ccm/Po50uvJlqwBQW3yyYkPc8casrPm1xw+O/Fx/9gYAAAAAAAAAAACAushJYAAAaEB+8NVe0apxfsbs4Q/mx+zl6xNuREREWXlF/PGlaXH6X9+PFes3Vzrbr0PTeOa8feKk3bpGKpVKqCEAAHXJ4TvtEOfs1ztr/tzHi+Put2Yn2AgAtk06nY4rnpoYJeUVGfNv7NY1duvROuFWAAAAAAAAAAAAAEBVsQALAAAakOZF+XH+AX0zZuUV6fjjy9MSbsTiNZvilD+/F7e+PjPS6cpnT9m9azz1w32ib4dmyZQDAKDO+ukh/WNE37ZZ8+tenBojZyxPsBEAbL1nP14cI2esyJi1apwfPzt8QMKNAAAAAAAAAAAAAICqZAEWAAA0MKfu2S26tGqUMXt+wpIYN+/ThBs1XK9NWRpH3DQyPphT+f/Omxbmxc2n7BK//drO0aggN6F2AADUZbk5qbjllF2ia+vMP/tXpCPOf2hczF+1MeFmAPDlrC0ujaufnZw1//nhO0arJgUJNgIAAAAAAAAAAAAAqpoFWAAA0MAU5uXGTw/pnzX/7QtTI51OJ9io4Skpq4hrnp0cZ/79w/h0Y2mls4M7N49nz98njhnSKaF2AADUFy0bF8Rdp+0WRfmZ/xSwemNpnHXfmNhUUp5wMwDYshtenh7L1m3OmO3WvVWcOKxLwo0AAAAAAAAAAAAAgKpmARYAADRAxwzpFAN3aJ4xG/3Jqnhj2vKEGzUc81ZujK/fOSruefuTLc5+Z+8e8a9zhkePtk0SaAYAQH00sFPzuO6EnbPmkxevjcuemGAJLgC1ysSFa+If787JmOXmpOKa4wdHTk4q2VIAAAAAAAAAAAAAQJWzAAsAABqgnJxU/OzwAVnz616cGuUVHoCvas99vDiOvHlkjF+wptK5Fo3y467Th8WVRw+KwrzchNoBAFBfHTu0c5y5T8+s+RPjFsbfRs1JrhAAVKK8Ih2/eGJCZHtr6sx9esaAjpkXuwMAAAAAAAAAAAAAdYsFWAAA0ECN6Ns29u7TJmM2dcm6eGLcwoQb1V/FpeXxiycmxA8fHBvrNpdVOjuse6t4/sIRceigjgm1AwCgIfj54QNiz16ts+bXPDcl3pu9MsFGAJDZg6PnZV0e3qlFUVx4YN+EGwEAAAAAAAAAAAAA1cUCLAAAaKBSqVT87LAds+Y3vDwtikvLE2xUP81ctj6Ou+2deOD9eVucPXe/3vHwD/aMzi0bJdAMAICGJC83J2795q7RqUVRxry8Ih3nPTg2Fq/ZlHAzAPhfy9dtjt+/ODVrfuUxg6JJYV6CjQAAAAAAAAAAAACA6mQBFgAANGA7dWkRRw/plDFbtKY47nt3bsKN6pfHxiyIo295O6YuWVfpXJsmBfH37+4elxw2IPJz/ZoGAED1aNu0MO48fVgU5GX+mXPF+pI4+/6xFuECUGN+8/yUWFdcljE7cED7OGRgh4QbAQAAAAAAAAAAAADVyZPVAADQwP30kH6Rl5PKmN36+sxYs7E04UZ134bNZXHRIx/FTx8dH5u2sDxgeO828cKFI+Kr/dol1A4AgIZs5y4t45rjBmfNx89fHVc+NSnS6XSCrQAgYtTMFfHEuIUZs6L8nPjVMYMilcr8HhYAAAAAAAAAAAAAUDdZgAUAAA1c9zZN4tQ9umXM1mwqjTvenJVwo7ptyuK1cfStb8fjYzM/sPk/clIRFx3cL+47c49o37wooXYAABBx0m5d4/Q9u2fN//nh/Hhw9LwEGwHQ0G0uK4/Ln5qYNT//gL7RtXXjBBsBAAAAAAAAAAAAAEmwAAsAAIjzD+wbTQpyM2b3vvNJLF6zKeFGdU86nY7735sbx972TsxevqHS2Q7NC+Oh7+8ZFxzYN3JzUgk1BACA//XLowbGbt1bZc1/9fSkGDP30wQbAdCQ/fmt2VnfT+nTvml8f0SvhBsBAAAAAAAAAAAAAEmwAAsAAIi2TQvjB/v2zphtLquIG1+ZnnCjumVtcWmc9+C4uPzJiVFSVlHp7P7928ULF+4be/Rqk1A7AAD4ooK8nLj91F2jfbPCjHlpeTrOuX9MLFtbnHAzABqaeSs3xi3/npk1v/rYwVGQ58/aAAAAAAAAAAAAAFAfOSkMAABERMT3RvSMtk0zP/z+2JgFMX3puoQb1Q3j56+OI28eGc9NWFzpXF5OKn5xxI7xl299JVo3KUioHQAAZNe+eVHccdqwyM9NZcyXrdsc5z4wdotLXgFgW6XT6bjy6YmxOct/13xt186xV29LxAEAAAAAAAAAAACgvrIACwAAiIiIJoV5ceFBfTNmFemI3784LeFGtVs6nY57Rs6OE+8cFfNXbap0tkurRvHo2XvF9/ftFTk5mZcLAABATRjWvVVcefSgrPmHcz+Nq5+dnGAjABqSlyYtidenLc+YtWiUH5cdsWPCjQAAAAAAAAAAAACAJFmABQAAfObkr3SNHm0aZ8xenbI0PpizKuFGtdOqDSVx5t8/jGuemxKl5elKZw8f3DGeu2BE7NKtVULtAABg65y6R7f4xm5ds+b3vTc3Hv1wfoKNAGgI1m8ui6ueyb5k8ZLD+kfbpoUJNgIAAAAAAAAAAAAAkmYBFgAA8Jn83Jy4+NABWfPfPj8l0unKFz7Vd6M/WRVH3DQy/j11WaVzBXk5cfWxg+L2U3eNFo3yE2oHAABbL5VKxVXHDoohXVpknfnFkxPj4wWrkysFQL33p1emx+I1xRmzoV1bxilf6ZZwIwAAAAAAAAAAAAAgaRZgAQAAn3PETh2zPvg+dt7qeHny0oQb1Q7lFem45bUZcfLd78aStZkfzvwfvdo2iSfOHR6n79UjUqlUQg0BAGDbFeXnxh2nDYs2TQoy5iVlFXH2fWNixfrNCTcDoD6asnht3DtqTsYsJxVxzXGDIyfHeyoAAAAAAAAAAAAAUN9ZgAUAAHxOKpWKnx2+Y9b89y9OjbLyigQb1bxl64rjjL++H9e/Mj0q0pXPfm2XzvHM+fvEoE6Zl4gBAEBt1allo7jt1F0jN8vCkUVriuO8B8c2uN8HAKhaFRXp+MUTE6I8y5ss3xreIwZ39r4KAAAAAAAAAAAAADQEFmABAABfsFfvNrFf/3YZs1nLN8SjYxYk3KjmjJyxPI64aWS8M3NlpXON8nPjj18fEjd8Y2g0KcxLqB0AAFStPXu1iV8ckX0h7nuzV8XvXpiaYCMA6ptHPpwfY+etzph1aF4YFx3cL9lCAAAAAAAAAAAAAECNsQALAADI6NLDBkQqlTm78ZXpsamkPNlCCSsrr4g/vDQ1zvjr6FixvqTS2f4dmsUz5+8dJw7rklA7AACoPt/Zu0ccv0vnrPk9b38ST320MMFGANQXqzaUxO9ezL5I8YqjBkWzovwEGwEAAAAAAAAAAAAANckCLAAAIKMdd2ie9aH3Zes2x1/f+SThRslZtHpTnHz3e3Hb67Mina589pt7dIunzts7+rRvlkw5AACoZqlUKn5z/E4xcIfmWWcu/dfHMXnR2gRbAVAf/Pb5KbF6Y2nGbN9+7eKInTom3AgAAAAAAAAAAAAAqEkWYAEAAFlddHC/KMjN/GvDnW/Mik83lCTcqPq9MnlpHHHzyPhw7qeVzjUrzItbv7lL/Ob4naIoPzehdgAAkIxGBblx1+nDomXj/Ix5cWlFnHX/h7F6Y/37nQCA6jH6k1Xx6JgFGbOCvJz49TGDIpVKJdwKAAAAAAAAAAAAAKhJFmABAABZdWnVOM7Yq3vGbN3msrj19ZkJN6o+m8vK46pnJsX3//FhrN5YWunsTp1bxLMX7BNH7dwpoXYAAJC8rq0bxy2n7BI5WXaRzF+1Kc5/aFyUV6STLQZAnVNaXhGXPzkha/7D/fpEj7ZNEmwEAAAAAAAAAAAAANQGFmABAACV+uH+faJZUV7G7L5358b8VRsTblT15q7cECfe8W7c+86cLc5+d++e8dg5e0X3Nh7KBACg/hvRt11cctiArPnIGSvi+penJdgIgLroL29/EtOXrs+Y9WzbJM7er1fCjQAAAAAAAAAAAACA2sACLAAAoFKtmhTEOfv1zpiVlFfEja9MT7hR1Xpm/KI48ua3Y8LCNZXOtWycH/ecsVtccfTAKMzLTagdAADUvLP27RVH7rRD1vz2N2bFCxMWJ9gIgLpkwacb46ZXZ2TNrz52sPdaAAAAAAAAAAAAAKCBsgALAADYou8M7xkdmhdmzJ74aGFMXrQ24Ubbr7i0PH7++IQ4/6FxsX5zWaWzu3VvFc9fMCIOGtghoXYAAFB7pFKp+P2JO0e/Dk2zzvz00fExY+m6BFsBUFdc9czk2FRanjE7Zkin2Kdv24QbAQAAAAAAAAAAAAC1hQVYAADAFjUqyI0fH9QvY5ZOR1z34tSEG22fGUvXxbG3vhMPjZ5X6VwqFXHe/n3i4R/sGZ1aNkqoHQAA1D5NCvPi7tN3i2ZFeRnzDSXl8YP7xsTa4tKEmwFQm706eWm8MnlpxqxZYV5cftSOCTcCAAAAAAAAAAAAAGoTC7AAAIAv5cRhXaJP+6YZszenL49RM1ck3GjrpdPpePTD+XHMre/EtKXrKp1t27Qg/vHd3eOnh/aPvFy/OgEAQI+2TeKmk4dGKpU5/2TFhvjxwx9FRUU62WIA1EobS8riyqcnZc1/emj/aN+sKMFGAAAAAAAAAAAAAEBt4yluAADgS8nLzYlLDu2fNf/di1Nr9YPu6zeXxUWPjI+LH/s4NpWWVzq7d5828fyFI2JE33YJtQMAgLrhgAEd4scH9cuavzZ1Wdz87xkJNgKgtrr5tZmxcPWmjNlOnVvEaXt2T7gRAAAAAAAAAAAAAFDbWIAFAAB8aQcP7BDDurfKmH28YE08P3Fxwo2+nEmL1sQxt7wdT4xbWOlcTirip4f0i398d49o36wooXYAAFC3nLd/nzhoxw5Z8z+9OiNenbw0wUYA1DbTl66Le0bOzpilUhHXHj84cnNSCbcCAAAAAAAAAAAAAGobC7AAAIAvLZVKxc8PH5A1/8NL06K0vCLBRpVLp9Nx37tz4vjbR8XsFRsqne3YvCge/sFecd4BfT2ACQAAlcjJScUN3xgSvdo1yTrz439+FLOXr0+wFQC1RTqdjsufnBhlFemM+Wl7dI+du7RMthQAAAAAAAAAAAAAUCtZgAUAAGyV3Xq0joMHdsiYzV25MR4ePS/hRpmt2VQa5z4wNn751KQoKat8KdeBA9rH8xeOiN17tk6oHQAA1G3Ni/Lj7tOHRZOC3Iz5us1lcdZ9Y2L95rKEmwFQ0/41dmGM/mRVxqxt08L46aH9E24EAAAAAAAAAAAAANRWFmABAABb7ZJD+0dOKnN202szavwh93HzPo0jbx4ZL0xcUulcfm4qLj9yx7jnW7tF6yYFCbUDAID6oU/7ZnH9SUOz5jOWrY+LHx0f6XQ6uVIA1KjVG0viN89PyZr/8qgdo0Wj/AQbAQAAAAAAAAAAAAC1mQVYAADAVuvboVl8fVjXjNmK9SVxz8jZCTf6j4qKdNz91qz4+p3vxoJPN1U627V1o3js7OHxvRG9IpXKss0LAACo1GGDO8Z5+/fJmr8wcUnc8easBBsBUJOue3FarNpQkjHbu0+bOGZIp4QbAQAAAAAAAAAAAAC1mQVYAADANvnxwf2iMC/zrxR/fmt2LF+3OdE+qzaUxJl//yB+8/zUKKtIVzp75E47xHMXjIghXVsmUw4AAOqxHx/cL77ar13W/A8vTYs3py9PsBEANWHM3E/jodHzMmYFuTnx62MHW0IOAAAAAAAAAAAAAHxOXk0XAAAA6qaOLYriu/v0jDvemPWFbENJedzy7xnx62MHJ9Llvdkr48KHx8XStZUv3SrIy4krjx4Y39y9mwcuAQCgiuTmpOLmk3eJo299O+at2viFPJ2OuOChcfHMeftEtzaNa6AhANWtrLwiLn9yYtb8rK/2it7tmibYCAAAAACodcqKI5ZOilj0UcSaBf95nUpF5DeKaNM3otPQiLb9IlI+5x0AAAAAABoSC7AAAIBtdvZXe8dDo+fF6o2lX8gefH9efHfvntGjbZNqu395RTpu/ffMuOm16VGRrny2d7smces3d40dd2hebX0AAKChatE4P+46fVh87fZRsam0/Av5mk2l8YP7PozHzx0ejQv8aQKgvvnbqDkxZfHajFm31o3jh/v3SbgRAAAAAFArFK+OGPdAxMePRCydGFFRVvl8QZOILl+J2OX0iIHHRuTmJ1ITAAAAAACoOT4aAwAA2GYtGuXHeVkeYCyrSMcfX55WbfdetrY4Trvn/bjx1S0vvzph1y7x9Hn7WH4FAADVaMcdmsd1J+6cNZ+6ZF387F8TIp3ewg/wANQpi9dsihtfmZ41v+rYQVGUn5tgIwAAAACgxq2aHfH0+RHX7xjx0mURiz/a8vKriIiSDRGz34j415kRNw6M+PfV/1miBQAAAAAA1FsWYAEAANvltD27R+eWjTJmz368OD5esLrK7/nm9OVx+E0j493ZKyuda1yQG9d/fUhcf9KQaFKYV+U9AACAzztmSKf4wb69suZPj18Uf3n7kwQbAVDdrn52cmwoKc+YHbFTx9i/f/uEGwEAAAAANSZdEfHubRF3DI8Y+4+I0o3bfq31yyLe+mPE7XtFzHi56joCAAAAAAC1igVYAADAdinKz42LDu6XNf/dC1MjnU5Xyb1Kyyviuhenxrf+OjpWbiipdHZAx2bx9Hn7xAnDulTJvQEAgC/nkkP7x9592mTNf/vC1Bg1a0WCjQCoLm9MWxbPT1iSMWtSkBtXHDUo4UYAAAAAQI35dE7EvUdEvHRZROmmqrvu2kURD3w94slzI0rWV911AQAAAACAWsECLAAAYLsdt0vnGNCxWcZs1KyV8daM/zzcnk6nY11xaazaUBLriku3ajHWgk83xjfuejfueGPWFmdP27NbPPnDvaNP+6Zf+voAAEDVyMvNiVtO2TU6t2yUMS+vSMd5D46Lhaur8MEHABJXXFoeVzw1KWv+44P7RccWRQk2AgAAAABqzJIJEX85OGLeu9V3j48eiPj70REbV1XfPQAAAAAAgMTl1XQBAACg7svNScWlhw+I79z7Qcb8on9+FP07NotJi9bGmk2ln329RaP8GNy5eQzp0jKOHdo5+mdZovXSpCVx8aPjY21xWaU9mhXmxXUn7hxH7LTDtv+LAQAAtlvrJgVx1+nD4oQ7RsXmsoov5Ks2lMQ594+JR87aK4ryc2ugIQDb67bXZ8a8VRszZjvu0Dy+PbxHsoUAAAAAgJqxbMp/FlNt+rT677VwbMQ/jo349rMRRS2q/34AAAAAAEC1y6npAgAAQP2wX792sWev1hmzlRtKYtSslZ9bfhURsWZTabwzc2Xc/sasOPRPb8VJd74br09d9lm+uaw8fvX0pDjrvjFbXH41pEuLeO6CEZZfAQBALTG4c4v4zfE7Zc0/XrAmLn9yYqTT6QRbAVAVZi1fH3e+OStrfs1xgyMv15+iAQAAAKDe27A84r7jkll+9T+WfBzx8KkR6S9+CAsAAAAAAFD3OHUMAABUiVQqFT87fMftusboOaviO3/7IC58eFyMn786TrhjVPxt1Jwtft/3R/SMR88eHt3aNN6u+wMAAFXrhGFd4lt7dc+aPzZmQdz/3twEGwGwvdLpdPzyyYlRWp55geEpu3eNYd1bJdwKAAAAAKgRz14UsW5J8vedMzLivduTvy8AAAAAAFDl8mq6AAAAUH8U5uVEYV5ObC7bvk/Xe+qjRfH0R4si82OU/6tV4/y4/qQhccCADtt1PwAAoPpcftTAmLJ4XYyesypjftUzk2PHHZrHbj1aJ9wMgG3x9PhFMWrWyoxZ6yYFcelhAxJuBAAAAADUiImPR0x5uubu/+9rIvodFtGmT811AAAAAAAAtltOTRcAAADqhymL18bJd7+33cuv/seWll/t3qN1PH/hCMuvAACglsvPzYlbT90lOjQvzJiXVaTjnAfGxtK1xQk3A2BrrdlUGlc/OyVrftkRO0bLxgUJNgIAAAAAakTxmojnf1qzHUo3RTx9fs12AAAAAAAAtpsFWAAAwHb7dENJfPve0bFmU2m13yuVijj/gD7x4Pf3iB1aNKr2+wEAANuvfbOiuOO0YVGQm/nPEsvXbY5z7h8TJVW0UBeA6nH9y9NixfrNGbPde7aOE3btnHAjAAAAAKBGfPRAxMaVNd0iYu6oiIVjaroFAAAAAACwHSzAAgAAttuVT0+KpWszP/xYldo2LYz7z9wjfnJI/8jL8uA8AABQO+3arVVcdeygrPnYeavjqmcmJdgIgK3x8YLVcd97czNmeTmpuOa4wZFKpRJuBQAAAADUiA/+UtMN/tcH99R0AwAAAAAAYDt4YhwAANgu/566NJ4ev6ja7zOoU/N44cIRsXefttV+LwAAoHqcsnu3OGX3rlnzB96fF//8YF6CjQD4Msor0vGLJyZGOp05/96IXtGvQ7NkSwEAAAAANWP2GxErZ9Z0i/818fGITZ/WdAsAAAAAAGAbWYAFAABslzvfmJ3IfZoU5EW7ZoWJ3AsAAKg+vzpmUAzt2jJr/ssnJ8VH81cn1geALbv/vbkxYeGajFnnlo3iggP7JNwIAAAAAKgx056v6QafV1YcMevfNd0CAAAAAADYRhZgAQAA22zqkrUxes6qRO41es6qmLZkXSL3AgAAqk9hXm7cedqwaNs084LbkvKKOPu+MbF83eaEmwGQybK1xfHHl6ZlzX91zKBoXJCXYCMAAAAAoEYt+qimG3zRonE13QAAAAAAANhGFmABAADb7OmPFiV7v/ELE70fAABQPTq2KIrbT9018nJSGfMla4vjhw+OjdLyioSbAfDfrnluSqzbXJYxO2jHDnHwwA4JNwIAAAAAakxFecSSCTXd4otq41IuAAAAAADgS7EACwAA2GbjF6xO9n7z1yR6PwAAoPrs3rN1/PKogVnz0Z+sit88PyXBRgD8t7dnrIinx2degN4oPzd+dUz2/xwHAAAAAOqhlTMiSjfWdIsvWvJxTTcAAAAAAAC2kQVYAADANkmn0zFx4dpE7zlh4ZpIp9OJ3hMAAKg+Z+zVPb62a+es+b3vzIknxi1IsBEA/6O4tDx++dTErPmFB/WNLq0aJ9gIAAAAAKhxG1fWdIPMitdEVJTVdAsAAAAAAGAbWIAFAABsk/Wby2LNptJE77lmU2lsKClP9J4AAED1SaVS8Zvjd4rBnZtnnfnZvybExIVrEmwFQETEXW/Ojk9WbMiY9evQNM7cp2fCjQAAAACAGlee7HmxrVK2uaYbAAAAAAAA28ACLAAAYJuUlqdr5L4lZRU1cl8AAKB6FOXnxp2nDYvWTQoy5pvLKuKs+8bEqg0lCTcDaLjmrNgQt70xM2t+zXE7RX6uPzUDAAAAQIOTk1fTDbLLzfy3JgAAAAAAoHZzKhkAANgm+bmpGrlvQZ5fYwAAoL7p0qpx3HrKLpGT5deMhas3xQUPjYuycgtxAapbOp2OK56elHUJ+YnDusTuPVsn3AoAAAAAqBWKmtd0g8zyiiJy82u6BQAAAAAAsA08OQ4AAGyTpoV50aJRsoeGWjTKjyYFuYneEwAASMbwPm3j54fvmDV/e+aK+MPL0xJsBNAwPT9hSbw1fXnGrEWj/Pj54QMSbgQAAAAA1Bpt+9fORVMdB9d0AwAAAAAAYBtZgAUAAGyTVCoVgzsn+4l+O3VuEalUKtF7AgAAyfneiJ5x9JBOWfO73pwdz368KMFGAA3LuuLS+PWzk7LmPz98QLRpWphgIwAAAACgVskrjGiX/QNNaswOQ2u6AQAAAAAAsI0swAIAALbZkC4tk71f1xaJ3g8AAEhWKpWK607YKQZ0bJZ15pLHPo5pS9Yl2Aqg4bjxlRmxdO3mjNmu3VrGSbt1TbgRAAAAAFDrdBpa0w2+qDZ2AgAAAAAAvhQLsAAAgG12zNBOyd5vSOdE7wcAACSvcUFe3HX6sGhelJcx31hSHmfd92Gs2VSacDOA+m3iwjXxt1GfZMxyc1Jx7fE7RU5OKuFWAAAAAECt0/vAmm7weamciF771XQLAAAAAABgG1mABQAAbLMBHZvH7j1aJ3Kv3Xu2jv4dmyVyLwAAoGZ1b9Mkbj5ll0hl2bMyZ+XG+NHD46KiIp1sMYB6qqIiHZc/OTGy/cfqd4b3iB13aJ5sKQAAAACgdhpwZETTDjXd4n/1PSSiRdeabgEAAAAAAGwjC7AAAIDtcvZ+vRK5zzlf7Z3IfQAAgNphv/7t46eH9M+avz5tefzp1ekJNgKovx76YF58NH91xqxj86L40cH9ki0EAAAAANReufkRu55R0y3+11e+V9MNAAAAAACA7WABFgAAsF0OGNAhjhnSqVrvcezQTrH/gPbVeg8AAKD2OXe/3nHooOyfIH7zv2fGy5OWJNgIoP5ZsX5zXPfC1Kz5lUcPjKaFeQk2AgAAAABqvd2+E5FXVNMtItr2jeh7cE23AAAAAAAAtoMFWAAAwHa76phB0aF5YbVcu0PzwvjV0YOq5doAAEDtlkql4o9fHxK92zXJOnPRI+Nj5rL1CbYCqF9+8/yUWFtcljHbr3+7OGxwx4QbAQAAAAC1XvPOEftfVrMdUqmIo2+u2Q4AAAAAAMB2swALAADYbq2aFMTfv7t7tGiUX6XXbdEoP/7+3d2jVZOCKr0uAABQdzQryo+7z9gtmhbmZczXby6Ls+77MNYVlybcDKDue2/2ynh87MKMWWFeTvz6mMGRSqUSbgUAAAAA1Al7nRfRZbeau//uZ0V0H15z9wcAAAAAAKqEBVgAAECVGNCxefzzrD2jQ/PCKrleh+aF8c+z9owBHZtXyfUAAIC6q3e7pnHjN4ZmzWct3xA/eWR8VFSkkysFUMeVlFXE5U9OzJqff0Cf6NamcYKNAAAAAIA6JSc34rg7IvIbJX/vNr0jDroy+fsCAAAAAABVzgIsAACgygzo2DxevHDfOHZop+26zrFDO8WLF+5r+RUAAPCZgwd2iAsO6JM1f3ny0rj9jZkJNgKo2/48cnbMXLY+Y9arXZP4/r69Em4EAAAAANQ5bftFnHRfRG5+cvds1jHitMcj8i3wBwAAAACA+sACLAAAoEq1alIQN528S/z127vF7j1bb9X37t6zddz77a/ETSfvEq2aFFRTQwAAoK760UH9Yv/+7bLm178yPV6ftizBRgB10/xVG+OWf8/Iml9z7OAozMtNsBEAAAAAUGf1PTji63+PyCus/ns17xRxxtMRrXpU/70AAAAAAIBE5NV0AQAAoH46YECHOGBAh5i2ZF08PX5hjJ+/JiYsXBNrNpV+NtOiUX7s1LlFDOnaIo4Z0jn6d2xWg40BAIDaLicnFX86eZc49ta3Y87KjV/I0+mICx8aF8+cv090b9OkBhoC1H7pdDp+9fSkKC6tyJgfN7RTDO/TNuFWAAAAAECdNuDIiNMej3j8+xFrF1XPPToPi/j6vREtu1fP9QEAAAAAgBphARYAAFCt+ndsFhd3HBAR/3nAckNJeZSUVURBXk40KciNVCpVww0BAIC6pEWj/Ljr9N3i+NvfiY0l5V/I1xaXxVn3jYnHzx0ejQv8GQTgv708eWm8NnVZxqxZUV784siBCTcCAAAAAOqFHvtEnPtuxIuXRXz0QNVdN68wYr/LIoafH5GTW3XXBQAAAAAAaoWcmi4AAAA0HKlUKpoW5kXrJgXRtDDP8isAAGCb9O/YLP5w4pCs+dQl6+KSxz6OdDqdYCuA2m/D5rK46ulJWfNLDhsQ7ZoVJtgIAAAAAKhXilpGHHd7xKmPRXTedfuulcqJ6H94xFlvRezzI8uvAAAAAACgnvLR5wAAAAAAQJ1z5M47xMcLe8Vdb87OmD/78eLYuUuL+MG+vRNuBlB73fzajFi0pjhjNqRLi/jm7t0SbgQAAAAA1Et9D/7PP4vGRXxwT8TExyNKN365723SLmLXMyKGfTuipfcsAQAAAACgvrMACwAAAAAAqJMuOXRATF60NkbOWJEx/90LU2NQpxaxd5+2CTcDqH2mLlkbf3n7k4xZTiri2uN3itycVMKtAAAAAIB6rdMuEcfeFnHUnyKWT4lY9NF//lkzP6KsOCKVE5HfKKJN34hOQyN2GBrRxoebAAAAAABAQ2IBFgAAAAAAUCfl5qTi5pN3iaNvfTsWfLrpC3lFOuK8B8fGM+fvE11aNa6BhgC1Q0VFOi5/YmKUVaQz5mfs1SMGd26RcCsAAAAAoMHIzY/ouPN//tn1jJpuAwAAAAAA1CIWYLFF69evj0mTJsXUqVNj5cqVUVxcHC1btoz27dvHbrvtFj169Kjye06aNCnGjBkTixcvjvLy8mjTpk0MHjw49thjj8jL829bAAAAAAD+o1WTgrjztGFxwh2jYnNZxRfyTzeWxln3jYl/nTM8ivJza6AhQM17bMyC+HDupxmzds0K46JD+iXcCACgdnNeCgAAAAAAAAAAkuFkTB22cOHCGD16dLz//vsxevTo+PDDD2PdunWf5d27d485c+Zs07Xff//9ePLJJ+O1116LMWPGREXFFx8a+r/3Ofvss+Oss86KVq1abdP9IiLS6XTce++9cd1118X06dMzzrRp0ybOOeec+NnPfhZNmjTZ5nsBAAAAAFB/DO7cIn53wk7x43+Oz5hPWrQ2LntiQlz/9SGRSqUSbgdQsz7dUBK/fWFK1vyXRw2M5kX5CTYCANh2zks5LwUAAAAAAAAAQP1iAVYd884778T1118f77//fixatKjKr//RRx/FCSecELNnz/7S3zN37tz4+c9/HjfddFPce++9cdhhh231fVevXh0nnXRSvPLKK5XOrVy5Mq655pp48MEH4+mnn45BgwZt9b0AAAAAAKh/jt+lS3y8YE3c+86cjPnjYxfGkC4t41vDeyTaC6Cm/e6FqfHpxtKM2T592sbRO++QcCMAgK3jvJTzUgAAAAAAAAAA1F85NV2ArfPBBx/EE088US2HuSIiFixYkPUwV4sWLaJ///6x++67R69evSKVSn0uX7JkSRx55JHx8MMPb9U9N23aFIceeugXDnMVFBREv379YqeddvrCpxfOnj079t9//5g5c+ZW3QsAAAAAgPrrsiN2jD16ts6aX/3s5Bj9yaoEGwHUrA/nrIp/fjg/Y1aQlxNXHzf4C3/zAwCobZyX+g/npQAAAAAAAAAAqI8swKpHmjZtWuXX3HPPPePWW2+NSZMmxerVq2Pq1Knx/vvvx6xZs2Lp0qVx7bXXRuPGjT+br6ioiDPOOCPGjRv3pe9x0UUXxejRoz97nZOTE7/85S9jyZIlMW3atPj4449j1apVce+990arVq0+m1u+fHmcdNJJUV5eXjX/YgEAAAAAqNPyc3PitlN3jR1aFGXMyyrSce4DY2Lxmk0JNwNIXml5RVz+5MSs+Tlf7R092zbJmgMA1AXOSwEAAAAAAAAAQN1mAVYd1axZs9hvv/3i4osvjkcffTTmzJkTzzzzTJVcOycnJ0477bSYOHFivPvuu/HDH/4wBg4c+IW5du3axWWXXRbvvvv/2LvvMLvKcm/Az56a3klCeiM9EAiCgtKlCUlQQUCiePRIEbvooROaiopHEGkWFBBBpUdFQJASBElCSA8hCSG99+mzvz/OZ3SSvUMmmVl7yn3/967fWuv9RYLXxbXf/exXo1OnTjuuV1RUxNe+9rU92mvu3Llxzz331Lh2//33x3XXXVfj8FZRUVGcf/758dJLL0WHDh12XJ82bVr85je/qd0fEAAAAACAJqtLm+K447wxUZSf+SOQtVvL46L7p0ZZpS8LA03br15ZFHNXbsmY9evcKi46ZmDCjQAA9o3zUv/HeSkAAAAAAAAAAJoSA7AamdNPP33Hrws+//zzcfPNN8cnP/nJ6Nu3b528f/DgwfHWW2/FfffdFyNGjNijZw488MD41a9+VePaiy++GAsWLHjfZ6+55poav0g4YcKEOOecc7LeP2LEiPjhD39Y49rEiROjoqJij7oCAAAAAND0je7dIW4YPzJr/uZ7G+PaJ2Yl2AggWcs3lsT/Pvt21vy6cSOjRWF+go0AAPae81LOSwEAAAAAAAAA0HQZgNXIDBw4MIYPHx55efXzj27w4MF7fJDrP40dO3aXXz38y1/+sttnNmzYEI888siOdSqVimuvvfZ99/rc5z5X4wDbu+++G88++2ztCgMAAAAA0KSd9YHe8enD+2TNH3z9vfjta0sSbASQnIlPzort5VUZs48duH8cNXi/hBsBAOw956WclwIAAAAAAAAAoOkyAIs685GPfKTGesmS3X9xaNKkSVFZWbljfcwxx8SAAQPed5+8vLz43Oc+V+PaY489tudFAQAAAABoFq45fUQc0qdD9vyJmTF1yYbkCgEk4G9zV8XTs1ZlzNoUF8TVpw3PmAEAUHvOSwEAAAAAAAAAwL4xAIs607FjxxrrTZs27fb+SZMm1VifeOKJe7zXRz/60Rrrp556ao+fBQAAAACgeSgqyIs7zhsT+7UtzphXVKXjovunxOotpQk3A6gfJeVVcfXjs7Lm3zxxcHRr1yLBRgAATZvzUgAAAAAAAAAAsG8MwKLOLFu2rMa6c+fOu73/zTffrLE+4ogj9nivMWPGRHHxv7+wtHz58lizZs0ePw8AAAAAQPPQrV2LuOPTh0RBXipjvmpzWXzpgalRXlmdcDOAuvfT59+OpRtKMmYjerSLCR/sm3AjAICmzXkpAAAAAAAAAADYNwZgUSfS6XS8/PLLNa4NHjw46/0VFRWxYMGCGteGDx++x/sVFxfHwIEDa1ybM2fOHj8PAAAAAEDzcWi/TnHN2BFZ838u3hA3TpqdYCOAurdg9Za4+8WFGbNUKuLGM0ZFQb6PhwEA6orzUgAAAAAAAAAAsO+ccKZOvPDCC7Fo0aId61QqFSeffHLW+xcuXBiVlZU71i1btowuXbrUas/evXvXWM+bN69WzwMAAAAA0Hycd3ifOHNMr6z5r199N/4wZWmCjQDqTjqdjisfmxkVVemM+bmH9YnRvTskWwoAoIlzXgoAAAAAAAAAAPadAVjss+rq6rjssstqXDv55JOje/fuWZ9ZvXp1jXXPnj1rve/Oz+z8TgAAAAAA+JdUKhXXjx8ZB/Zqn/Weyx+dETOWbkqwFUDdeHTasvjHwvUZsy5tiuLbJw1NuBEAQNPmvBQAAAAAAAAAANSNglwXoPH74Q9/GK+99tqOdV5eXtx44427fWbr1q011q1bt671vjs/s/M799bq1atjzZo1tXpmwYIFdbI3AAAAAAD1p0Vhftx53pg4/baXY9228l3y8srquPD+KfHEJUdG5zbFOWgIUHubtlfEjZPmZM0vP3VYtG9VmGAjAICmz3kp56UAAAAAAAAAAKgbBmCxT1566aW44ooralz72te+FgcffPBun9v58FWLFi1qvXfLli13+8699bOf/SwmTpxYJ+8CAAAAAKBh6dGhZfz03EPivF+8FlXV6V3yZRtL4ssPTovf/NdhUZCfl4OGALVz89NzMw71i4j44IBOccbBPRNuBADQtDkvBQAAAAAAAAAAdcc3N9hrCxcujI9//ONRWVm549ro0aPjpptuet9nS0tLa6yLiopqvX9xcXGNdUlJSa3fAQAAAABA8/OhgZ3jslOGZs0nv7Muvv+XuQk2Atg7b763MX77+pKMWWF+Km4YPzJSqVTCrQAAmi7npQAAAAAAAAAAoG4ZgMVeWbt2bZxyyimxdu3aHde6desWjzzyyC4HrTLZ+RcMy8sz/yr17pSVle32nQAAAAAAkM3nP9w/xo3ukTW/56VF8cT05Qk2AqidyqrquOLRGZFOZ86/eNSAGNS1bbKlAACaMOelAAAAAAAAAACg7hXkugCNz5YtW+KUU06J+fPn77jWvn37ePrpp6N///579I42bdrUWO/8C4d7YudfMNz5nXvr4osvjjPPPLNWzyxYsCDGjx9fJ/sDAAAAAFD/UqlUfO/jB8b8VVtjzorNGe/5zh/eigO6tolh+7dLuB3A+/vNq+/GrOWZ//+rV8eWccmxByTcCACg6XJealfOSwEAAAAAAAAAUBcMwKJWSktLY+zYsfHGG2/suNaqVauYNGlSHHTQQXv8np0PX23btq3WXXZ+pq4OdHXt2jW6du1aJ+8CAAAAAKDhalmUH3dPGBOn//Tl2Li9Ype8pKIqLrhvSjxxyZHRoVVRDhoCZLZqc2nc8sz8rPl140ZEy6L8BBsBADRdzksBAAAAAAAAAED9yct1ARqPioqKOOuss+KFF17Yca2oqCgeeeSROPLII2v1rp0PTC1btqzWfXZ+xiEsAAAAAABqq3enVnHr2QdHXipzvmT99vjq796Mqup0ssUAduO6p2bH1rLKjNlJI7rFcUO7JdwIAKBpcl4KAAAAAAAAAADqlwFY7JHq6ur4zGc+E08++eSOa/n5+fHb3/42TjrppFq/b8CAAVFQULBjXVJSEmvWrKnVO5YsWVJjPXTo0Fr3AAAAAACAowbvF986aUjW/O/z18Qtz8xLsBFAdi/OXxOT3lqRMWtVlB/XnD4i4UYAAE2T81IAAAAAAAAAAFD/DMDifaXT6fjiF78Yv/vd73ZcS6VS8fOf/zw+8YlP7NU7CwsLY+DAgTWuzZ49e4+fLysri4ULF9a45kAXAAAAAAB766KjB8apo7pnzW9//p34y8yVCTYC2FVpRVVc/fjMrPnXTxgcPTq0TLARAEDT5LwUAAAAAAAAAAAkwwAs3tfXv/71+MUvflHj2q233hrnn3/+Pr139OjRNdaTJ0/e42enTJkSZWVlO9b7779/dO3adZ/6AAAAAADQfKVSqbj5kwfFAV3bZL3nmw+/GQtWb0mwFUBNd7zwTixetz1jNrR72zj/yH7JFgIAaKKclwIAAAAAAAAAgGQYgMVuXXXVVfGTn/ykxrWbbropLrnkkn1+92mnnVZj/cwzz+zxszvfe/rpp+9zHwAAAAAAmrc2xQVx14Qx0ba4IGO+rbwqvvibKbG5tCLhZgARi9ZuizteeCdrfsP4kVGY7+NfAIB95bwUAAAAAAAAAAAkxwlosvrBD34QN9xwQ41rl112WVx22WV18v5TTz01Cgr+/SWiF154IRYuXPi+z6XT6bj33ntrXBs3blyddAIAAAAAoHkbsF+b+N+zR2fNF67dFt94aHpUV6eTKwU0e+l0Oq56bGaUV1VnzD91aO84tF+nhFsBADQ9zksBAAAAAAAAAECyDMAio7vuuiu+/e1v17h2ySWXxE033VRne3Tq1CnGjx+/Y51Op+Paa6993+d++ctfxuLFi3es+/btGyeccEKd9QIAAAAAoHk7fli3+NoJB2TNn52zKn76/IIEGwHN3ZNvrYiXF6zNmHVsVRj/c8rQhBsBADQ9zksBAAAAAAAAAEDyDMBiF7/97W/j4osvrnHtc5/7XNx66611vtfEiRMjL+/ffw3vu+++ePDBB7PeP3v27PjWt75V49pVV10VRUVFdd4NAAAAAIDm6yvHHRAnDOuaNf/xs/Pjb3NXJdgIaK42l1bE9U/Nzppfdsqw6NjaZ2UAAPvCeSkAAAAAAAAAAMiNglwXoPZeeeWVKCkp2eX69OnTa6xLS0vj2WefzfiOHj16xPDhw3e5/uyzz8ZnP/vZqK6u3nFt6NCh8alPfSqee+65WvXs2LFjjBkzZrf3DB8+PL7whS/E3XffvePaeeedF3PmzImvf/3r0bFjx4iIqKioiAceeCC+8Y1vxMaNG3fce+CBB8ZnP/vZWvUCAAAAAID3k5eXils+NTrG//SVWLh22y55Oh3x1d+9GU9c8uHo36V1DhoCzcUtf50fa7aUZcwO7dsxPjmmV8KNAACS57zUxh33Oi8FAAAAAAAAAEBTkkqn0+lcl6B2+vXrF+++++4+veOzn/1s3Hvvvbtcv/baa2PixIn79O5/Ofroo+OFF1543/u2b98eRx99dLzxxhs1rhcVFUX//v2juLg4Fi5cGFu3bq2Rd+nSJV555ZUYPHhwnfTdF7NmzYqRI0fuWM+cOTNGjBiRw0YAAAAAANSFt1dtifG3vxLbyqsy5oO7tYlHLz4yWhf7zRGg7s1ctinG/vTlqM7wiW5BXiqe+sqHY2j3dskXA4BGwnmOpsN5qf/jvBQAAAAAAAAAAJk05rMcebkuAK1atYqnn346jjvuuBrXy8vLY968efHWW2/tcpirX79+8be//a1BHOYCAAAAAKDpOqBb2/jRWQdlzeev2hqX/mF6+L0RoK5VVafjikdnZBx+FRHx+Q/3N/wKAKCRcl4KAAAAAAAAAAD+jwFYNAidOnWKZ555Ju6+++4YNGjQbu+7/PLLY8aMGTFq1KgEGwIAAAAA0FydPHL/uPiYgVnzP81YGXe9uDDBRkBz8NvXl8T0pZsyZj3at4ivHH9Awo0AAKhLzksBAAAAAAAAAEBEKu0nyWmAZsyYEVOnTo0VK1ZEVVVVdO7cOUaOHBmHH354FBYW5rreLmbNmhUjR47csZ45c2aMGDEih40AAAAAAKhLVdXp+Ny9/4wX56/JmOelIn79X4fFRw7YL+FmQFO0ektpHP+jv8eW0sqM+V0TxsRJI7on3AoAGh/nOWhMnJcCAAAAAAAAAGBvNeazHAW5LgCZjBo1yi8WAgAAAADQYOTnpeLWs0fH6T99Od5bX7JLXp2O+PKD0+LJSz4cvTu1ykFDoCm5adKcrMOvjh/aNU4c3i3hRgAA1DfnpQAAAAAAAAAAaI7ycl0AAAAAAACgMejQqijuOu/QaFGY+eOVjdsr4oL7pkRJeVXCzYCmZPKCtfHYm8szZi0K8+LasSMilUol3AoAAAAAAAAAAAAAoO4ZgAUAAAAAALCHhvdoF9//xIFZ89krNsdlj7wV6XQ6wVZAU1FWWRVXPj4za/6V4w+I3p1aJdgIAAAAAAAAAAAAAKD+GIAFAAAAAABQC+NG94wvfLh/1vyxN5fHr15ZnFwhoMm458WFsXDNtozZAV3bxBc+PCDhRgAAAAAAAAAAAAAA9ccALAAAAAAAgFr6n1OGxocGdM6a3/inOfGPhesSbAQ0dkvWbY/b/rYga379+JFRVODjXQAAAAAAAAAAAACg6XBCGgAAAAAAoJYK8vPip+ceHD3at8iYV1Wn40sPTI3lG0sSbgY0Rul0Oq5+YmaUVVZnzD9+SM/44G6G7gEAAAAAAAAAAAAANEYGYAEAAAAAAOyFzm2K464Jh0ZRQeaPW9ZtK4+L7p8SpRVVCTcDGpu/zFwZL8xbkzFr37IwLj91WMKNAAAAAAAAAAAAAADqnwFYAAAAAAAAe2lUr/Zx4/iRWfPpSzfF1Y/PjHQ6nWAroDHZWlYZE5+cnTX/9slDokub4gQbAQAAAAAAAAAAAAAkwwAsAAATi3hNAAEAAElEQVQAAACAfXDmob3jMx/qmzV/+I2l8cBrSxJsBDQm//vM/Fi5uTRjNrp3hzjnA30SbgQAAAAAAAAAAAAAkAwDsAAAAAAAAPbRlR8bHof27Zg1n/jkrJjy7voEGwGNwZwVm+NXkxdnzPJSETeeMTLy8lLJlgIAAAAAAAAAAAAASIgBWAAAAAAAAPuoqCAvfnbeIdG1bXHGvKIqHRfePzVWby5NuBnQUFVXp+OKR2dEVXU6Y37+Ef1jRI/2CbcCAAAAAAAAAAAAAEiOAVgAAAAAAAB1oGvbFnHHeWOiMD+VMV+zpSwuemBqlFdWJ9wMaIgefuO9mLpkY8asW7vi+MaJg5MtBAAAAAAAAAAAAACQMAOwAAAAAAAA6siYvh3j2rEjsuZT3t0Q1z81O8FGQEO0bmtZfPfPc7PmV582ItoUFyTYCAAAAAAAAAAAAAAgeQZgAQAAAAAA1KFzD+sTZ3+gd9b8vn+8Gw+/8V6CjYCG5rt/nhubSioyZkcN3i9OHdU94UYAAAAAAAAAAAAAAMkzAAsAAAAAAKAOpVKpmDhuRBzUu0PWe658bGZMf29jYp2AhuP1RevjD1OWZsyKCvLiurEjIpVKJdwKAAAAAAAAAAAAACB5BmABAAAAAADUseKC/LjzvEOiS5uijHl5ZXVceP+UWLu1LOFmQC5VVFXHlY/NyJp/6ZhB0a9L6wQbAQAAAAAAAAAAAADkjgFYAAAAAAAA9WD/9i3j9nMPiYK8VMZ8xabSuOS3U6OyqjrhZkCu/OLlRTF/1daM2YAurePCYwYk3AgAAAAAAAAAAAAAIHcMwAIAAAAAAKgnhw/oHFd8bFjW/B8L18d3/zw3wUZArizdsD1+8uzbWfPrx4+M4oL8BBsBAAAAAAAAAAAAAOSWAVgAAAAAAAD16Pwj+sUZB/fMmv/i5UXx+JvLEmwE5MK1T8yOkoqqjNnYg3rEkYO6JNwIAAAAAAAAAAAAACC3DMACAAAAAACoR6lUKm46Y1SM6NEu6z3f+eNbMWv5pgRbAUl6ZvaqeHbOqoxZ2+KCuPK0YQk3AgAAAAAAAAAAAADIPQOwAAAAAAAA6lnLovy487wx0bFVYca8tKI6Lrx/SmzYVp5wM6C+bS+vjGufmJU1/9ZJQ6Jr2xYJNgIAAAAAAAAAAAAAaBgMwAIAAAAAAEhA706t4rZzDom8VOb8vfUl8ZXfTYuq6nSyxYB6detzC2LZxpKM2aie7eO8D/ZNuBEAAAAAAAAAAAAAQMNgABYAAAAAAEBCPnxAl/jOyUOz5i+9vTZ++Nd5CTYC6tP8VVvi5y8tzJilUhE3njEy8rNNxQMAAAAAAAAAAAAAaOIMwAIAAAAAAEjQF48aEB87cP+s+R0vvBN/mrEiwUZAfUin03HlYzOjsjqdMZ/wwb5xYK8OyZYCAAAAAAAAAAAAAGhADMACAAAAAABIUCqVips/cWAM6dY26z3f+v30mL9qS4KtgLr2x6nL4vVF6zNmXdoUxzdPHJJwIwAAAAAAAAAAAACAhsUALAAAAAAAgIS1Li6IuyaMiXYtCjLm28ur4oL7psSmkoqEmwF1YcO28rjpT3Oy5ledNizatyxMsBEAAAAAAAAAAAAAQMNjABYAAAAAAEAO9OvSOn5y9sGRSmXOF63dFt946M2ork4nWwzYZzc/PTfWbyvPmB05qHOMPahHwo0AAAAAAAAAAAAAABoeA7AAAAAAAABy5NihXeMbJwzOmj83d3X85Lm3E2wE7Ksp726IB19/L2NWlJ8X140bGalsk+8AAAAAAAAAAAAAAJoRA7AAAAAAAABy6EvHDoqPDu+WNf/Jc2/HM7NXJdgI2FuVVdVx5WMzs+YXHD0gBu7XJsFGAAAAAAAAAAAAAAANlwFYAAAAAAAAOZSXl4pbzjooBuzXOus933jozXhnzdYEWwF7497Ji2POis0Zsz6dWsWXjh2UcCMAAAAAAAAAAAAAgIbLACwAAAAAAIAca9uiMO6ecGi0KS7ImG8pq4wL7psSW8sqE24G7KkVm0rix8/Mz5pfN25EtCjMT7ARAAAAAAAAAAAAAEDDZgAWAAAAAABAAzCoa5v40VkHZc0XrN4a33p4eqTT6QRbAXvquidnx7byqozZqaO6xzFDuibcCAAAAAAAAAAAAACgYTMACwAAAAAAoIE4aUT3+PJxg7Lmf5m1Mn72wjsJNgL2xPPzVsefZ67MmLUuyo+rTxuRcCMAAAAAAAAAAAAAgIbPACwAAAAAAIAG5GsnDI5jhuyXNf/hX+fFC/NWJ9gI2J3Siqq45vFZWfOvf3RwdG/fIsFGAAAAAAAAAAAAAACNgwFYAAAAAAAADUh+Xip+8qmDo2/nVhnzdDriq797M5as255wMyCT259fEEvWZ/73cdj+7eL8I/olWwgAAAAAAAAAAAAAoJEwAAsAAAAAAKCBad+qMO6aMCZaFuZnzDeVVMQX73sjtpdXJtwM+E/vrNkad/79nYxZKhVx4xkjoyDfR7IAAAAAAAAAAAAAAJk4bQ0AAAAAANAADe3eLn5w5oFZ87krt8T//HFGpNPpBFsB/5JOp+Oqx2ZGRVXmfwfP/kCfOKRPx4RbAQAAAAAAAAAAAAA0HgZgAQAAAAAANFCnHdgjLjhqQNb8ienL4xcvL0qwEfAvT0xfHpPfWZcx69y6KL5z8pCEGwEAAAAAAAAAAAAANC4GYAEAAAAAADRgl540JI4c1Dlr/t0/z43JC9Ym2AjYVFIR1z81O2t+2anDokOrogQbAQAAAAAAAAAAAAA0PgZgAQAAAAAANGAF+Xlx2zmHRM8OLTPmVdXpuOTBabFsY0nCzaD5+uHT82Lt1vKM2WH9O8UnDumZcCMAAAAAAAAAAAAAgMbHACwAAAAAAIAGrlProrhrwpgoLsj80c76beVx4X1TorSiKuFm0PxMf29j3P/auxmzgrxU3DB+ZKRSqYRbAQAAAAAAAAAAAAA0PgZgAQAAAAAANAIje7aP7358VNZ8xrJNccWjMyOdTifYCpqXqup0XPnYzMj2r9kXPjIgBndrm2wpAAAAAAAAAAAAAIBGygAsAAAAAACARuLjh/SK84/olzX/49Slcd8/3k2uEDQz9//j3ZixbFPGrGeHlvGV4wcl3AgAAAAAAAAAAAAAoPEyAAsAAAAAAKARueJjw+Kwfp2y5tc9OTv+uXh9go2geVi9uTR++PS8rPnEsSOiVVFBgo0AAAAAAAAAAAAAABo3A7AAAAAAAAAakcL8vLj904dE93YtMuaV1em46P6psXJTacLNoGm7ftKc2FJWmTH76PBuccLwbgk3AgAAAAAAAAAAAABo3AzAAgAAAAAAaGT2a1scd5x3SBTlZ/6oZ+3WsrjogSlRVlmVcDNoml56e008OX15xqxlYX5cO3ZEwo0AAAAAAAAAAAAAABo/A7AAAAAAAAAaoYP7dIzrxmUfujNtycaY+OTsBBtB01RaURVXPz4ra/7VEw6Inh1aJtgIAAAAAAAAAAAAAKBpMAALAAAAAACgkTr7sD5xzmF9sua/fW1J/O71JQk2gqbnrr8vjEVrt2XMBndrE5//cP+EGwEAAAAAAAAAAAAANA0GYAEAAAAAADRi144dHgf36ZA1v/rxWTFtyYbkCkETsnjttrj9hQVZ8xvGj4rCfB+5AgAAAAAAAAAAAADsDaexAQAAAAAAGrHigvy487wx0aVNcca8vKo6Lrp/aqzZUpZwM2jc0ul0XP3ErCivrM6YnzmmVxzWv1PCrQAAAAAAAAAAAAAAmg4DsAAAAAAAABq5bu1axB3nHRIFeamM+crNpfGlB6ZGRVXmQT7Arv40Y2W8OH9NxqxDq8K47NRhCTcCAAAAAAAAAAAAAGhaDMACAAAAAABoAj7Qr1NcffrwrPnri9fHjZPmJNgIGq8tpRUx8clZWfP/OXlodGpdlGAjAAAAAAAAAAAAAICmxwAsAAAAAACAJmLCB/vGJw7plTW/d/LieGTq0gQbQeN0yzPzY/WWsozZIX06xFmH9k64EQAAAAAAAAAAAABA02MAFgAAAAAAQBORSqXixjNGxqie7bPec9kjM2Lmsk0JtoLGZeayTfHryYszZvl5qbjxjFGRl5dKthQAAAAAAAAAAAAAQBNkABYAAAAAAEAT0qIwP+6cMCY6tS7KmJdVVscF902J9dvKE24GDV91dTqufGxmVKcz5587ol8M279dsqUAAAAAAAAAAAAAAJooA7AAAAAAAACamJ4dWsZPzzk48lKZ82UbS+LLD06NyqrqZItBA/fgP5fEm+9tzJjt375FfO2jg5MtBAAAAAAAAAAAAADQhBmABQAAAAAA0AQdMahLXH7qsKz5KwvWxQ+enpdgI2jY1m4ti+//eW7W/JrTh0eb4oIEGwEAAAAAAAAAAAAANG0GYAEAAAAAADRRn/9w/zj9oB5Z87teXBhPvbU8wUbQcN00aU5sLq3MmB07ZL84aUT3hBsBAAAAAAAAAAAAADRtBmABAAAAAAA0UalUKr7/iVExtHvbrPdc+vu3Yu7KzQm2gobn1XfWxSPTlmXMigvyYuLYkZFKpRJuBQAAAAAAAAAAAADQtBmABQAAAAAA0IS1KiqIuyaMifYtCzPmJRVVccF9U2LT9oqEm0HDUF5ZHVc9PjNr/uXjBkWfzq0SbAQAAAAAAAAAAAAA0DwYgAUAAAAAANDE9e3cOn5y9uhIpTLn767bHl99aFpUVaeTLQYNwD0vLYwFq7dmzAbs1zr++6gBCTcCAAAAAAAAAAAAAGgeDMACAAAAAABoBo4Z0jW+deKQrPkL89bE/z47P8FGkHvvrd8et/3t7az5DeNHRnFBfoKNAAAAAAAAAAAAAACaDwOwAAAAAAAAmomLjxkYJ4/onjW/7W8L4ulZKxNsBLmTTqfj2idmRWlFdcb8jIN7xhEDuyTcCgAAAAAAAAAAAACg+TAACwAAAAAAoJlIpVLxw7MOikFd22S955sPT48Fq7cm2Apy46+zV8Vzc1dnzNq1KIjLTx2WcCMAAAAAAAAAAAAAgObFACwAAAAAAIBmpE1xQdw1YUy0LS7ImG8tq4wv3vdGbCmtSLgZJGdbWWVc+8SsrPmlJw+N/doWJ9gIAAAAAAAAAAAAAKD5MQALAAAAAACgmRm4X5u45VOjs+YL12yLbz48Paqr08mVggT95Lm3Y8Wm0ozZQb3ax7mH9Um4EQAAAAAAAAAAAABA82MAFgAAAAAAQDP00eHd4ivHH5A1/+vsVXH78wsSbATJmLtyc/zi5UUZs7xUxI1njIr8vFTCrQAAAAAAAAAAAAAAmh8DsAAAAAAAAJqprx1/QBw/tGvW/JZn58fz81Yn2AjqV3V1Oq58dGZUVacz5p/5UL8Y2bN9wq0AAAAAAAAAAAAAAJonA7AAAAAAAACaqby8VNzyqdHRv0vrjHk6HfHVB6fF4rXbEm4G9eMPU5bGG+9uyJh1bVsc3zhxcMKNAAAAAAAAAAAAAACaLwOwAAAAAAAAmrH2LQvjrgljolVRfsZ8c2llXHDflNhWVplwM6hbG7aVx3f/PCdrftVpw6Ndi8IEGwEAAAAAAAAAAAAANG8GYAEAAAAAADRzg7u1jR+eeVDWfN6qLfHtP74V6XQ6wVZQt77357mxYXtFxuwjB3SJ0w7cP+FGAAAAAAAAAAAAAADNmwFYAAAAAAAAxKmj9o8Ljx6YNZ/01oq456WFCTaCuvPG4vXx0BvvZcyKCvLiunEjI5VKJdwKAAAAAAAAAAAAAKB5MwALAAAAAACAiIi49KQh8ZEDumTNv/fnufHy22sTbAT7rqKqOq54dGbW/KKjB0b/Lq0TbAQAAAAAAAAAAAAAQIQBWAAAAAAAAPx/+XmpuPXsg6NXx5YZ8+p0xJcfnBrvrd+ecDPYe796ZVHMW7UlY9avc6u46JiBCTcCAAAAAAAAAAAAACDCACwAAAAAAAD+Q8fWRXHXhDHRojDzx0gbtlfEhfdPidKKqoSbQe0t31gS//vs21nz68aNjBaF+Qk2AgAAAAAAAAAAAADgXwzAAgAAAAAAoIYRPdrH9z9xYNZ81vLNcfkjMyKdTifYCmpv4pOzYnt55mFtpx24fxw1eL+EGwEAAAAAAAAAAAAA8C8GYAEAAAAAALCLcaN7xn8d2T9r/si0ZfHryYuTKwS19NycVfH0rFUZszbFBXHVacMTbgQAAAAAAAAAAAAAwH8yAAsAAAAAAICMLjt1aHxwQKes+fWT5sRrC9cl2Aj2TEl5VVzzxKys+TdPHBzd2rVIsBEAAAAAAAAAAAAAADszAAsAAAAAAICMCvPz4qfnHhL7t888KKiqOh1f+u3UWLGpJOFmsHu3/e3tWLoh89/LET3axYQP9k24EQAAAAAAAAAAAAAAOzMACwAAAAAAgKy6tCmOO88bE0UFmT9WWru1PC68f2qUVVYl3AwyW7B6S9zz0sKMWSoVceMZo6Ig38ekAAAAAAAAAAAAAAC55mQ3AAAAAAAAu3VQ7w5xw/iRWfPp722Max6flWAjyCydTseVj82Miqp0xvzcw/rE6N4dki0FAAAAAAAAAAAAAEBGBmABAAAAAADwvs46tHec98E+WfPf/fO9+O1rSxJsBLt6dNqy+MfC9RmzLm2K4tsnDU24EQAAAAAAAAAAAAAA2RiABQAAAAAAwB65+rQRMaZvx6z5NU/MjCnvbkiwEfzbpu0VceOkOVnzKz42LNq3KkywEQAAAAAAAAAAAAAAu2MAFgAAAAAAAHukqCAv7vj0IdG1bXHGvKIqHRc/MCVWbylNuBlE3Pz03Fi3rTxj9qEBnWP86J4JNwIAAAAAAAAAAAAAYHcMwAIAAAAAAGCPdW3XIu4475AozE9lzFdtLosvPTA1yiurE25GczZtyYb47etLMmaF+am4fvzISKUy/50FAAAAAAAAAAAAACA3DMACAAAAAACgVsb07RTXnD4ia/7PxRvihkmzE2xEc1ZZVR1XPDoz0unM+RePGhCDurZJthQAAAAAAAAAAAAAAO/LACwAAAAAAABq7dOH94mzDu2VNf/Nq+/GH6YsTbARzdVvXn03Zq/YnDHr1bFlXHLsAQk3AgAAAAAAAAAAAABgTxiABQAAAAAAQK2lUqm4btzIOKhX+6z3XP7ojJixdFOCrWhuVm0ujVuemZ81v27ciGhZlJ9gIwAAAAAAAAAAAAAA9pQBWAAAAAAAAOyVFoX5ccd5Y6Jz66KMeXlldVxw3xuxbmtZws1oLq57anZsLavMmJ08onscN7Rbwo0AAAAAAAAAAAAAANhTBmABAAAAAACw13p0aBm3f/qQyM9LZcyXbyqNS347LSqrqhNuRlP39/lrYtJbKzJmrYry4+rThyfcCAAAAAAAAAAAAACA2jAACwAAAAAAgH3ywQGd4/JTh2XNX124Lr7357kJNqKpK62oiqsfn5k1//oJg6NHh5YJNgIAAAAAAAAAAAAAoLYMwAIAAAAAAGCf/deR/WL86B5Z85+/vCgef3NZgo1oyn72wjvx7rrtGbOh3dvG+Uf2S7YQAAAAAAAAAAAAAAC1ZgAWAAAAAAAA+yyVSsV3P35gDN+/XdZ7vvPHt2L28s0JtqIpWrhma9z5wjtZ8xvGj4zCfB+DAgAAAAAAAAAAAAA0dE5+AwAAAAAAUCdaFuXHXRPGRIdWhRnz0orquOD+N2Lj9vKEm9FUpNPpuPrxWVFeVZ0x/9ShvePQfp0SbgUAAAAAAAAAAAAAwN4wAAsAAAAAAIA607tTq7jtnIMjL5U5f299SXzld29GVXU62WI0CU++tSJeXrA2Y9axVWH8zylDE24EAAAAAAAAAAAAAMDeMgALAAAAAACAOvWRA/aLS0/KPojoxflr4pZn5iXYiKZgc2lFXP/U7Kz5ZacOi46tixJsBAAAAAAAAAAAAADAvjAACwAAAAAAgDp34dED4tRR3bPmtz//Tvxl5ooEG9HY3fLX+bFmS1nG7AP9OsYnD+mVcCMAAAAAAAAAAAAAAPaFAVgAAAAAAADUuVQqFT/45EExuFubrPd88+Hp8faqLQm2orGasXRT/ObVxRmzgrxU3DB+VOTlpZItBQAAAAAAAAAAAADAPjEACwAAAAAAgHrRurgg7ppwaLRtUZAx31ZeFV+8b0psLq1IuBmNSVV1Oq54bEZUpzPnn/9w/xjSvW2ypQAAAAAAAAAAAAAA2GcGYAEAAAAAAFBv+ndpHT85e3SkUpnzRWu3xTceejOqs003otn77WvvxltLN2XMerRvEV85/oCEGwEAAAAAAAAAAAAAUBcMwAIAAAAAAKBeHTe0W3zt+MFZ82fnrI7b/rYgwUY0Fqu3lMbNT8/Lml8zdkS0Li5IsBEAAAAAAAAAAAAAAHXFACwAAAAAAADq3ZePGxQnDOuWNf/xs/PjuTmrEmxEY3DTpDmxpbQyY3bCsK5x4vDsf6cAAAAAAAAAAAAAAGjYDMACAAAAAACg3uXlpeKWTx0UA7q0znrP1x56Mxat3ZZgKxqyyQvWxmNvLs+YtSjMi2tOHxGpVCrhVgAAAAAAAAAAAAAA1BUDsAAAAAAAAEhEuxaFcfdnxkTrovyM+ZbSyvjib96IrWWVCTejoSmrrIorH5uZNf/K8QdE706tEmwEAAAAAAAAAAAAAEBdMwALAAAAAACAxAzq2jZ+dNZBWfO3V2+Nb/9heqTT6QRb0dDc/feFsXDttozZAV3bxBc+PCDhRgAAAAAAAAAAAAAA1DUDsAAAAAAAAEjUySP3jy8dOzBr/qcZK+POvy9MsBENyZJ12+Onzy/Iml8/fmQUFfiYEwAAAAAAAAAAAACgsXMyHAAAAAAAgMR946ND4qjB+2XNf/D03Hhx/poEG9EQpNPpuPqJmVFWWZ0x//ghPeODAzon3AoAAAAAAAAAAAAAgPpgABYAAAAAAACJy89Lxa1nj44+nVplzKvTEV9+cFq8t357ws3Ipb/MXBkvzMs8+Kx9y8K4/NRhCTcCAAAAAAAAAAAAAKC+GIAFAAAAAABATnRoVRR3TRgTLQvzM+abSirii/dNiZLyqoSbkQtbyypj4pOzs+bfOXlodGlTnGAjAAAAAAAAAAAAAADqkwFYAAAAAAAA5Myw/dvF9z95YNZ8zorN8T+PvBXpdDrBVuTC/z4zP1ZuLs2YHdynQ5z9gd4JNwIAAAAAAAAAAAAAoD4ZgAUAAAAAAEBOjT2oR/z3R/pnzR9/c3n88pXFyRUicbOXb45fTV6cMctLRdwwfmTk5aWSLQUAAAAAAAAAAAAAQL0yAAsAAAAAAICc+87JQ+OIgZ2z5jf9aU68+s66BBuRlOrqdFz52Iyoqk5nzM8/on+M6NE+4VYAAAAAAAAAAAAAANQ3A7AAAAAAAADIuYL8vLjtnIOjZ4eWGfOq6nRc8tupsXxjScLNqG8PvfFeTF2yMWPWrV1xfOPEwckWAgAAAAAAAAAAAAAgEQW5LkDjUVpaGpMnT465c+fGhg0boqioKHr16hWHH354DBgwoE73euedd+L111+PpUuXRnl5eXTs2DGGDh0aRxxxRLRo0aJO9wIAAAAAABqGzm2K487zxsQn7pwc5ZXVu+TrtpXHhfdPiYcv+FC0KMzPQUPq2rqtZfG9P8/Nml992ohoU+wjTQAAcsN5KQAAAAAAAAAAqF9Oizdiy5Yti9dffz1ee+21eP311+ONN96ILVu27Mj79u0bixcv3ud91qxZExMnTox77703tm3blvGeMWPGxFVXXRXjxo3bp70ee+yxuP7662Pq1KkZ8zZt2sT5558f11xzTXTp0mWf9gIAAAAAABqeUb3ax01njIpv/X56xvytpZviqsdmxs2fPDBSqVTC7ahr3/3z3NhUUpExO3rwfnHqqO4JNwIAoCFzXsp5KQAAAAAAAAAAmhYDsBqZV155JX70ox/Fa6+9FsuXL6/3/V544YU488wzY+3atbu9b8qUKTF+/Pj4zGc+E/fcc08UFRXVap+ysrL4/Oc/Hw888MBu79u6dWv89Kc/jYceeij+8Ic/xFFHHVWrfQAAAAAAgIbvk2N6xYylG+PXr76bMf/9lKVxYO8OMeGDfRNuRl16beG6+MOUpRmz4oK8uG7cCEPOAABwXsp5KQAAAAAAAAAAmrC8XBegdv75z3/Go48+mshhrpdffjlOPfXUXQ5zdejQIQ4++ODo169f5Ofn18h+85vfxDnnnBPpdHqP96muro5PfepTuxzmys/Pj/79+8fo0aOjffv2NbI1a9bEKaecEq+++mot/1QAAAAAAEBjcOVpw+MD/Tpmza97cla8sXh9go2oS+WV1XHlYzOz5l86dlD07dw6wUYAADRUzkv9H+elAAAAAAAAAABoigzAakLatGlTZ+/asGFDfOpTn4qSkpId1/r27RuPPfZYrF+/PqZOnRqLFi2KxYsXxwUXXFDj2UceeSR+/OMf7/FeP/jBD+Lxxx+vce3CCy+MJUuWxMKFC2PatGmxfv36eOSRR6JPnz477tm+fXucddZZsWnTpr38UwIAAAAAAA1VYX5e3P7pQ6Jbu+KMeUVVOi56YGqs2lyacDPqwi9eXhRvr96aMRvQpXVccPSAhBsBANAYOS8FAAAAAAAAAACNmwFYjVTbtm3jmGOOiUsvvTR+//vfx+LFi+PJJ5+ss/f/4Ac/qPGrif3794/JkyfHuHHjIpVK7bjeq1evuPPOO+PGG2+s8fx1110XGzZseN991q1bt8uz3/3ud+OOO+6IHj167LiWl5cXZ5xxRkyePDn69eu34/rSpUvjlltuqe0fDwAAAAAAaAS6tm0Rd5w3JgrzUxnzNVvK4uIHpkZ5ZXXCzdgXSzdsj1ufeztrfv34kVFckJ9gIwAAGgPnpf6P81IAAAAAAAAAADQlBmA1MqeffnrMmjUrNm7cGM8//3zcfPPN8clPfjL69u1bZ3usWbMmbrvtthrX7rnnnhoHrHZ22WWXxVFHHbVjvWnTpvjhD3/4vnvdfPPNsWXLlh3ro446Kr7zne9kvb9nz57x85//vMa1H//4x7Fu3br33QsAAAAAAGh8DunTMSaOHZk1n/LuhrjuqVkJNmJfXfvE7CipqMqYjT2oRxw5qEvCjQAAaMicl3JeCgAAAAAAAACApssArEZm4MCBMXz48MjLq79/dL/73e9i69atO9ZHHXVUHH/88bt9JpVKxTXXXFPj2i9/+ctIp9NZn6muro5f/epXNa5de+21NX4xMZPjjz8+PvKRj+xYb9myJR5++OHdPgMAAAAAADRe5x7eJ845rHfW/P5/LImH//lego3YW8/MXhXPzlmVMWvboiCuPG1Ywo0AAGjonJdyXgoAAAAAAAAAgKbLACx28fjjj9dYf/7zn9+j54499tjo37//jvXKlSvjH//4R9b7J0+eHGvWrNmxHjBgQBxzzDF7tNfOnR577LE9eg4AAAAAAGicrh07Ikb37pA1v/KxmTH9vY2J9aH2tpdXxrVPzMqaX3rSkOjatkWCjQAA4P84LwUAAAAAAAAAALlhABY1bN26NV588cUa10488cQ9ejaVSsUJJ5xQ49pTTz2V9f5JkybVWH/0ox99318z/M97/9MLL7wQ27Zt26NnAQAAAACAxqe4ID/uOO+Q6NKmKGNeXlUdF94/JdZuLUu4GXvq1ucWxLKNJRmzA3u1j08f3jfhRgAA4LwUAAAAAAAAAADkkgFY1DBr1qyoqKjYse7fv3907959j58/8sgja6zffPPNrPfunB1xxBF7vE+PHj2iX79+O9bl5eUxe/bsPX4eAAAAAABofPZv3zJuP/eQKMjL/AXxFZtK40sPTI2KquqEm/F+5q3cEj9/aWHGLJWKuGH8yMjP8s8VAADqk/NSAAAAAAAAAACQOwZgUcOcOXNqrIcPH16r53e+f+f35WovAAAAAACgaTh8QOe48mPDsuavLVof3/3T3AQb8X7S6XRc9djMqKxOZ8wnfLBvHNirQ7KlAADg/3NeCgAAAAAAAAAAcscALGqYN29ejXXv3r1r9fzO97/77rtRWlq6y30lJSWxZMmSOt1r5+4AAAAAAEDT9Nkj+sXHD+6ZNf/lK4vi0WlLE2zE7vxhytJ4ffH6jFmXNsXxzROHJNwIAAD+zXkpAAAAAAAAAADIHQOwqGH16tU11r169arV8926dYuCgoId6+rq6li3bt0u961duzbS6X//yndhYWF07dq1Vnv17Fnziy07dwcAAAAAAJqmVCoVN318VIzo0S7rPZc9MiNmLd+UYCsy2bCtPL7757lZ86tOGxbtWxYm2AgAAGpyXgoAAAAAAAAAAHKn4P1voTnZunVrjXXr1q1r9XwqlYqWLVvGli1bsr4z07VWrVpFKpWq1V47d8u0z95YvXp1rFmzplbPLFiwoE72BgAAAAAA9kyLwvy4a8KYOP22l2PD9opd8tKK6rjgvinx5CUfjo6ti3LQkIiIm5+eG+u3lWfMjhzUOcYe1CPhRgAAUJPzUs5LAQAAAAAAAACQOwZgUcPOh6JatGhR63fszYGuvd1nd+/cWz/72c9i4sSJdfIuAAAAAACg/vTq2Cp+eu4hMeEXr0V1etd86YaS+MrvpsW9nzss8vNq98Vy9t2UdzfEg6+/lzErys+L68eNrPUX/gEAoK45L+W8FAAAAAAAAAAAuZOX6wI0LKWlpTXWRUW1/0X04uLiGuuSkpKc7QMAAAAAADRtRw7qEv9zytCs+Utvr40fPD0vwUZERFRWVccVj87Iml949IAYsF+bBBsBAEBmzksBAAAAAAAAAEDuGIBFDTv/smB5eXmt31FWVrbbdya5DwAAAAAA0PT990cGxGkH7p81v/Pv78Skt1Yk2Ih7Jy+OuSu3ZMz6dGoVFx87KOFGAACQmfNSAAAAAAAAAACQOwW5LkDD0qZNzV/a3vmXB/fEzr8suPM7k9xnb1x88cVx5pln1uqZBQsWxPjx4+tkfwAAAAAAoHZSqVTc/MkDY8HqrVmHLl36h+kxqGubGNK9bcLtmp8Vm0rix8/Mz5pfN25EtCjMT7ARAABk57yU81IAAAAAAAAAAOSOAVjUsPOhqG3bttXq+XQ6vVcHurZv3x7pdDpSqdQe77Vzt7o60NW1a9fo2rVrnbwLAAAAAABIRquigrhrwpg4/baXY3Np5S759vKquOC+N+LxSz4c7VsW5qBh83Hdk7NjW3lVxuzUUd3jmCE+hwEAoOFwXsp5KQAAAAAAAAAAcicv1wVoWHY+yLR06dJaPb9q1aqorPz3l0ry8vKiS5cuu9zXpUuXGoe3KioqYvXq1bXaa9myZTXWDmEBAAAAAEDz1rdz6/jJOQdHtu+PL163Pb72u2lRXZ1Otlgz8vy81fHnmSszZq2L8uPq00Yk3AgAAHbPeSkAAAAAAAAAAMgdA7CoYciQITXWS5YsqdXzO9/ft2/faNGixS73tWzZMvr06VOnew0dOrRWzwMAAAAAAE3PsUO6xjc/Ojhr/vy8NfG/z72dYKPmo7SiKq55fFbW/BsnDonu7Xf93AgAAHLJeSkAAAAAAAAAAMgdA7CoYedDUbNnz67V83PmzNnt+3K1FwAAAAAA0HxcfMygOHF4t6z5rc+9Hc/MXpVgo+bh9ucXxJL12zNmw/dvF5/9UN+EGwEAwPtzXgoAAAAAAAAAAHLHACxqGDFiRBQWFu5YL168OFasWLHHz7/yyis11qNHj856787Z5MmT93ifFStWxOLFi3esCwsLY/jw4Xv8PAAAAAAA0HTl5aXiR2cdFAP3a531nq8/9Ga8s2Zrgq2atgWrt8adf38nY5ZKRdxwxsgoyPfRJAAADY/zUgAAAAAAAAAAkDtOmVND27Zt46ijjqpx7ZlnntmjZ9PpdDz77LM1rp1++ulZ7z/ttNNqrJ999tlIp9N7tNdf//rXGutjjz022rRps0fPAgAAAAAATV/bFoVx92cOjTbFBRnzrWWVccF9U2JrWWXCzZqedDodVz02MyqqMn/Oc/YH+sQhfTom3AoAAPaM81IAAAAAAAAAAJA7BmCxi7Fjx9ZY/+IXv9ij555//vlYtGjRjnW3bt3i8MMPz3r/EUccEV26dNmxXrhwYbzwwgt7tNfOncaNG7dHzwEAAAAAAM3HwP3axC1nHZQ1X7B6a3zz4TejunrPvnBOZo+/uTxeXbguY9a5dVF85+QhCTcCAIDacV4KAAAAAAAAAABywwAsdnH22WdH69atd6xffPHF+Nvf/rbbZ9LpdEycOLHGtc997nORl5f9r1heXl6cf/75Na5NnDjxfX/V8LnnnouXXnppx7pt27Zx1lln7fYZAAAAAACgeTpxRPf4ynGDsuZPz1oVd/z9nQQbNS2bSirihkmzs+aXnTosOrQqSrARAADUnvNSAAAAAAAAAACQGwZgsYuuXbvGJZdcUuPaF77whVi+fHnWZ7773e/Giy++uGPdvn37uPTSS993r+985zvRpk2bHeu///3v8f3vfz/r/cuWLYsvfOELNa599atfrfHLiAAAAAAAAP/paycMjmOH7Jc1/+Ff58UL81Yn2Kjp+OHT82Lt1vKM2eH9O8UnDumZcCMAAKg956UAAAAAAAAAACA3CnJdgNp75ZVXoqSkZJfr06dPr7EuLS2NZ599NuM7evToEcOHD8+6x7e//e349a9/HStXroyIiEWLFsURRxwRt956a5x++umRSqUiImLp0qVxww03xF133VXj+SuuuCI6der0vn+WLl26xOWXXx6XX375jmuXXXZZLFmyJK688sro0aNHRERUV1fHE088EV/96ldjyZIlNf4c3/zmN993HwAAAAAAoPnKy0vF/37q4Bh7+8vx7rrtu+TpdMRXHpwWT375w9G3c+scNGycpr+3Me5/7d2MWUFeKm4YP3LHZ0oAALAvnJdyXgoAAAAAAAAAgKYplU6n07kuQe3069cv3n0385cJ9tRnP/vZuPfee3d7z4svvhgnnXRSlJaW1rjeoUOH6N+/f2zcuDGWLFkSVVVVNfJx48bFo48+usdfaKiuro5x48bFU089VeN6fn5+9O3bN9q3bx+LFi2KjRs31shbtmwZzzzzTBx55JF7tE99mjVrVowcOXLHeubMmTFixIgcNgIAAAAAAHY2b+WWOONnr8T28qqM+dDubeORi4+IVkV+Q+b9VFWnY9ztL8fMZZsz5hcdMzC+c/LQhFsBANTkPEfT4bzU/3FeCgAAAAAAAACATBrzWY68XBeg4TrqqKNi0qRJu/wy4caNG2PatGmxaNGiXQ5znXvuufHQQw/V6te88/Ly4ve//32cffbZNa5XVVXFwoULY9q0absc5urcuXP86U9/ahCHuQAAAAAAgMZhSPe2cfMnD8yaz125Jb7zxxnh92Pe332vLs46/Kpnh5bxleMOSLgRAADsO+elAAAAAAAAAAAgWQZgsVvHHXdczJ49Oy666KJo1apV1vsOPvjg+OMf/xgPPPBAFBcX13qfFi1axIMPPhh/+MMfYvTo0Vnva926dVx88cUxe/bsOOaYY2q9DwAAAAAA0LyddmCPuODoAVnzJ6cvj5+/tCjBRo3P6s2l8aO/zs+aTxw7IloW5SfYCAAA6o7zUgAAAAAAAAAAkJxU2k9Ys4dKSkpi8uTJMWfOnNi4cWMUFRVFz5494/DDD49BgwbV6V4LFiyI1157LZYtWxbl5eXRoUOHGDZsWBx55JHRokWLOt2rLsyaNStGjhy5Yz1z5swYMWJEDhsBAAAAAADZVFZVx/m/+me8vGBtxjwvFXH/5w+PIwZ1SbhZ4/DlB6fFk9OXZ8w+Orxb3POZQxNuBACQmfMc7CvnpbLz7xcAAAAAAAAAQMPRmM9yFOS6AI1Hy5Yt4/jjj4/jjz++3vcaNGhQnR8SAwAAAAAAiIgoyM+L2845OE677eVYtrFkl7w6HXHJg9PiiUuOjF4dW+WgYcP10ttrsg6/almYH9eObRwfkgIAwJ5wXgoAAAAAAAAAAOpXXq4LAAAAAAAAQNI6ti6KuyaMieKCzB+Xrd9WHhfePyVKK6oSbtZwlVZUxdWPz8qaf+2EA6Jnh5YJNgIAAAAAAAAAAAAAoDEzAAsAAAAAAIBmaWTP9vG9T4zKms9ctjkuf3RGpNPpBFs1XHf9fWEsWrstYzakW9v4rw/3T7gRAAAAAAAAAAAAAACNmQFYAAAAAAAANFtnHNwrzj+iX9b8kanL4jevvptcoQZq8dptcfsLC7LmN5wxMgrzffQIAAAAAAAAAAAAAMCecwodAAAAAACAZu2Kjw2Lw/p3yppf/9TseH3R+gQbNSzpdDquenxmlFdWZ8zPHNMrPtAv+/9+AAAAAAAAAAAAAACQiQFYAAAAAAAANGuF+Xlx+7mHRPd2LTLmldXpuPiBqbFyU2nCzRqGSTNWxEtvr82YdWhVGJedOizhRgAAAAAAAAAAAAAANAUGYAEAAAAAANDs7de2OO6cMCaK8jN/fLZ2a1lceP+UKKusSrhZbm0prYjrnpydNf+fk4dGp9ZFCTYCAAAAAAAAAAAAAKCpMAALAAAAAAAAImJ07w5x/fgRWfM339sY1z6RfRhUU3TLM/Nj9ZayjNmYvh3jrEN7J9wIAAAAAAAAAAAAAICmwgAsAAAAAAAA+P8+9YE+ce7hfbLmD76+JB58fUmCjXJn5rJN8evJizNm+XmpuGH8yMjLSyVbCgAAAAAAAAAAAACAJsMALAAAAAAAAPgP15w+PA7p0yF7/vismLZkQ3KFcqCqOh1XPDYzqtOZ8/86sl8M279dsqUAAAAAAAAAAAAAAGhSDMACAAAAAACA/1BckB93nDcm9mtbnDEvr6qOi+6fGqu3lCbcLDkPvr4kpr+3MWO2f/sW8bUTBidbCAAAAAAAAAAAAACAJscALAAAAAAAANhJt3Yt4mefPiQK8lIZ85WbS+OSB6ZFRVV1ws3q35otZXHzX+Zmza85fXi0Li5IsBEAAAAAAAAAAAAAAE2RAVgAAAAAAACQwQf6dYprTh+eNX998fq4cdKcBBsl47t/mhObSyszZscO2S9OGtE94UYAAAAAAAAAAAAAADRFBmABAAAAAABAFud9sG98ckyvrPm9kxfHH6csTbBR/Xr1nXXxyLRlGbPigryYOHZkpFKphFsBAAAAAAAAAAAAANAUGYAFAAAAAAAAWaRSqbhh/Mg4sFf7rPdc/uiMmLlsU4Kt6kd5ZXVc9fjMrPlXjj8g+nRulWAjAAAAAAAAAAAAAACaMgOwAAAAAAAAYDdaFObHHeeNiU6tizLmZZXVccF9U2L9tvKEm9Wte15aGAtWb82YDdyvdfz3RwYk3AgAAAAAAAAAAAAAgKbMACwAAAAAAAB4Hz07tIyfnntw5OelMubLNpbElx+cGpVV1Qk3qxvvrd8etz73dtb8+vEjo6jAR4sAAAAAAAAAAAAAANQdp9QBAAAAAABgDxwxsEtcdsrQrPkrC9bFzU/PS7BR3Uin03HNE7OirDLz8K4zDu4ZRwzsknArAAAAAAAAAAAAAACaOgOwAAAAAAAAYA99/sP9Y9zoHlnzu19cGE9OX55go3339KxV8be5qzNm7VoUxOWnDku4EQAAAAAAAAAAAAAAzYEBWAAAAAAAALCHUqlUfO/jB8bQ7m2z3vPtP7wVc1ZsTrDV3ttWVhkTn5yVNb/05KGxX9viBBsBAAAAAAAAAAAAANBcGIAFAAAAAAAAtdCyKD/unnBotG9ZmDEvqaiKC+6bEpu2VyTcrPZ+8tzbsWJTacbsoN4d4tzD+iTcCAAAAAAAAAAAAACA5sIALAAAAAAAAKilPp1bxa3nHBypVOZ8yfrt8dWHpkVVdTrZYrUwd+Xm+MXLizJmeamIG8ePjPy8LH9AAAAAAAAAAAAAAADYRwZgAQAAAAAAwF44evB+celJQ7LmL8xbEz9+Zn6CjfZcdXU6rnx0ZtYBXZ/5UL8Y2bN9wq0AAAAAAAAAAAAAAGhODMACAAAAAACAvXTR0QPjlJHds+Y/fX5BPD1rZYKN9szvp7wXb7y7IWPWtW1xfPPEwQk3AgAAAAAAAAAAAACguTEACwAAAAAAAPZSKpWKH5x5UBzQtU3We7758PRYsHpLgq12b/228vjun+dmza86bXi0bVGYYCMAAAAAAAAAAAAAAJojA7AAAAAAAABgH7QpLoi7JoyJtsUFGfOtZZXxxfumxJbSioSbZfa9P8+Jjdszd/nIAV3itAP3T7gRAAAAAAAAAAAAAADNkQFYAAAAAAAAsI8G7Ncm/vfs0VnzhWu2xTcenh7V1enkSmXwxuL18fAbSzNmRQV5cd24kZFKpRJuBQAAAAAAAAAAAABAc2QAFgAAAAAAANSB44d1i68ef0DW/JnZq+Knzy9IsFFNFVXVccWjM7PmFx8zMPp3aZ1gIwAAAAAAAAAAAAAAmjMDsAAAAAAAAKCOfPX4A+L4oV2z5j9+dn48P3d1go3+7VevLIp5q7ZkzPp1bhUXHj0w4UYAAAAAAAAAAAAAADRnBmABAAAAAABAHcnLS8WPzx4d/bu0zpin0xFf+d20WLx2W6K9lm0siR8/83bW/PrxI6NFYX6CjQAAAAAAAAAAAAAAaO4MwAIAAAAAAIA61K5FYdw9YUy0Lso8UGpLaWV88b43YltZZWKdJj4xK0oqqjJmpx24f3zkgP0S6wIAAAAAAAAAAAAAABEGYAEAAAAAAECdO6Bb2/jhmQdlzeev2hrf/uNbkU6n673Lc3NWxV9nr8qYtSkuiKtOG17vHQAAAAAAAAAAAAAAYGcGYAEAAAAAAEA9OGXU/nHRMQOz5pPeWhF3v7iwXjuUlFfFNU/Mypp/88TB0a1di3rtAAAAAAAAAAAAAAAAmRiABQAAAAAAAPXkWycOiY8c0CVr/v2/zI2X3l5Tb/vf9re3Y+mGkozZyJ7tYsIH+9bb3gAAAAAAAAAAAAAAsDsGYAEAAAAAAEA9yc9LxW3nHBy9O7XMmFenI7784LR4b/32Ot97weotcc9LCzNmqVTEjeNHRUG+jwsBAAAAAAAAAAAAAMgNJ9oBAAAAAACgHnVoVRR3nXdotCjM/NHcxu0VccF9U6KkvKrO9kyn03HFozOjoiqdMf/04X3ioN4d6mw/AAAAAAAAAAAAAACorYJcFwAAAAAAAICmbniPdvH9TxwYX/3dmxnz2Ss2x+WPzohbzjooUqnUPu/3yNRl8dqi9RmzLm2K4tKThu7zHgAAACRv0aZFMWfdnJi1blYs3bo0yirLIiKiRUGL6N22d4zoPCKGdx4efdr1yXFTAAAAAAAAAID3ZwAWAAAAAAAAJGDc6J7x1tJN8YuXF2XMH522LA7s1T4+d2T/fdpn4/byuOlPc7LmV3xsWLRvWbhPewAAAJCcxZsWx0PzHoonFz4Zm8o27dEznVp0inEDx8VZQ86KXm171XNDAAAAAAAAAIC9YwAWAAAAAAAAJOSyU4bGrOWb4h8L12fMb5g0J4bt3y4+OKDzXu9x89PzYt228ozZhwZ0jvGje+71uwEAAEjOW2veitum3RavrXgt0pGu1bPrS9fHr2b9Kn49+9dxZI8j48sHfzmGdR5WT00BAAAAAAAAAPZOXq4LAAAAAAAAQHNRkJ8Xt597SPRo3yJjXlWdjkt+OzVWbCrZq/dPW7IhHnx9ScasMD8V148fGalUaq/eDQAAQDLKqsriR2/8KCb8eUL8Y8U/aj386j9Vp6vjpWUvxbmTzo3bp90eFdUVddgUAAAAAAAAAGDfGIAFAAAAAAAACercpjjunDAmigoyf1S3dmt5XHj/1CitqMqYp9Pp2FJaEeu3lceW0opIp//vi9CVVdVxxaMzI53le9EXHDUwBnVtUyd/BgAAAOrHvPXz4swnz4x7Z90b1enqOntvZboy7nzrzjj7qbNj0aZFdfZeAAAAAAAAAIB9UZDrAgAAAAAAANDcHNirQ9w4fmRc+oe3MubT39sY1zw+K773iVGRSqVi7srN8cSby2P60o0xc9nm2FRSsePe9i0LY2TPdhERMXvF5ozv692pZVxy3KC6/4MAAABQZ6atnhZfevZLsaViS73tMX/D/Pjsnz8bd370zhjeeXi97QMAAAAAAAAAsCcMwAIAAAAAAIAcOPPQ3vHW0k1x3z/ezZg/9MZ7UVSYF/NWbInXF6/P+p5NJRXxyoJ1u93rurEjo0Vh/j71BQAAoP7MXDszLnzmwtheub3e99pQtiH++6//HfeefG8c0PGAet8PAAAAAAAAACCbvFwXAAAAAAAAgObqqtOGx6F9O2bN73v13d0Ov9oTJ4/oHscO7bpP7wAAAKD+rC1ZGxc/e3Eiw6/+ZXP55rjw2QtjU9mmxPYEAAAAAAAAANiZAVgAAAAAAACQI0UFefGzTx8SXdsW18v7UxHx6cP71Mu7AQAAqBvXvXpdbCjbkPi+q7evju+9/r3E9wUAAAAAAAAA+BcDsAAAAAAAACCHurZrEXecNyYK81N1/u50RFzy4LSYu3Jznb8bAACAfffUO0/F8+89n7v9Fz4Vzy/J3f4AAAAAAAAAQPNmABYAAAAAAADk2Ji+HePSk4bUy7s3lVTEZ3/5emzYVl4v7wcAAGDvbKvYFt/75/dyXSOu/8f1UV7lvxkBAAAAAAAAgOQZgAUAAAAAAAANwMxlm+rt3as2l8W1T86qt/cDAABQe0++82RsKqu//xbcU2tK1sTTi5/OdQ0AAAAAAAAAoBkyAAsAAAAAAABy7G9zV8UT01fU6x6Pv7k8/jZ3Vb3uAQAAwJ57eN7Dua6ww0PzHsp1BQAAAAAAAACgGTIACwAAAAAAAHLszhcWJrPP35PZBwAAgN2bsmpKvL3x7VzX2GH6mukxZ92cXNcAAAAAAAAAAJoZA7AAAAAAAAAgh+au3ByvL16fyF6vL1of81ZuSWQvAAAAspu8fHKuK+yiIXYCAAAAAAAAAJo2A7AAAAAAAAAgh554c3my+01fluh+AAAA7Gr2utm5rrCLhtgJAAAAAAAAAGjaDMACAAAAAACAHJq+dGOy+723KdH9AAAA2FVDHDbVEDsBAAAAAAAAAE2bAVgAAAAAAACQI+l0OmYu25zonjOWbYp0Op3ongAAAPzbmu1rYn3p+lzX2MXSrUtja/nWXNcAAAAAAAAAAJoRA7AAAAAAAAAgR7aWVcamkopE99xUUhHbyqsS3RMAAIB/21rRcIdMbavYlusKAAAAAAAAAEAzYgAWAAAAAAAA5EhFVTon+5ZXVudkXwAAACIqqpIdhFwbFdUNtxsAAAAAAAAA0PQYgAUAAAAAAAA5Upifysm+RQU+JgQAAMiVwvzCXFfIqiF3AwAAAAAAAACaHifbAQAAAAAAIEfaFBdE+5bJfrm4fcvCaF2Un+ieAAAA/FuH4g65rpBRXiov2hW1y3UNAAAAAAAAAKAZMQALAAAAAAAAciSVSsXInsl+uXhUz/aRSqUS3RMAAIB/69iiY3Rr1S3XNXbRt13faFnQMtc1AAAAAAAAAIBmxAAsAAAAAAAAyKGDenVIdr/e7RPdDwAAgF2N6Dwi1xV20RA7AQAAAAAAAABNmwFYAAAAAAAAkENjR/dIdr+Deia6HwAAALsa3nl4rivsoiF2AgAAAAAAAACaNgOwAAAAAAAAIIeGdm8Xh/XrlMheh/XvFEO6t01kLwAAALI7pvcxua5QQypScXSvo3NdAwAAAAAAAABoZgzAAgAAAAAAgBy78JgBiexz0dEDE9kHAACA3RvSaUgctN9Bua6xw4d6fCj6tOuT6xoAAAAAAAAAQDNjABYAAAAAAADk2HFDu8XYg3rU6x7jRveIY4d2rdc9AAAA2HPnDD0n1xV2OHvo2bmuAAAAAAAAAAA0QwZgAQAAAAAAQAMwceyI6NauuF7e3a1dcVx7+oh6eTcAAAB758S+J8b+rffPdY3o365/HN3r6FzXAAAAAAAAAACaIQOwAAAAAAAAoAHo2Loofv1fh0X7loV1+t72LQvj1/91WHRsXVSn7wUAAGDfFOYXxsQjJua0Q14qL6478rrISzlOCgAAAAAAAAAkz4kFAAAAAAAAaCCGdm8XD13wwejWrrhO3tetXXE8dMEHY2j3dnXyPgAAAOrWh3p8KD55wCdztv95w86L0V1H52x/AAAAAAAAAKB5MwALAAAAAAAAGpCh3dvFX756VIwb3WOf3jNudI/4y1ePMvwKAACggfvWB74Vvdv2TnzfQR0GxZcP/nLi+wIAAAAAAAAA/IsBWAAAAAAAANDAdGxdFD85++D45fmHxmH9O9Xq2cP6d4pfnf+B+MnZB0fH1kX11BAAAIC60rqwddz90buja6uuie3Zs03PuPOjd0aLghaJ7QkAAAAAAAAAsLOCXBcAAAAAAAAAMjtuaLc4bmi3mLdySzwxfVlMf29TzFi2KTaVVOy4p33LwhjVs30c1Lt9jD2oZwzp3jaHjQEAANgbvdr2il+e9Mv477/+d6zYtqJe9+rbrm/c89F7olurbvW6DwAAAAAAAADA+zEACwAAAAAAABq4Id3bxqXdh0ZERDqdjm3lVVFeWR1FBXnRuig/UqlUjhsCAACwr/q26xv3nXpfXPXyVfHqilfrZY+jex0dE4+YGJ1bdq6X9wMAAAAAAAAA1IYBWAAAAAAAANCIpFKpaFNcEFGc6yYAAADUtW6tusXdJ94dv5/3+/jRlB/FtoptdfLedkXt4juHfSfGDhxbJ+8DAAAAAAAAAKgLBmABAAAAAAAAAAAANCBnDjkzjux5ZPx8xs9j0sJJsb1y+169p01hmxg7cGx8ftTno2urrnXcEgAAAAAAAABg3xiABQAAAAAAAAAAANDA9GjTI67+0NXxjTHfiCcXPhmPLXgs5q+fH5Xpyt0+V5BXEMM7DY/xg8bHxwZ8LFoVtkqoMQAAAAAAAABA7RiABQAAAAAAAAAAANBAtSlqE+cMPSfOGXpOlFWVxfwN82P2utmxdMvSKKsqi4iI4vzi6NO2TwzvPDwGdxwchfmFOW4NAAAAAAAAAPD+DMACAAAAAAAAAAAAaASK84tjVJdRMarLqFxXAQAAAAAAAADYZ3m5LgAAAAAAAAAAAAAAAAAAAAAAAEDzYgAWAAAAAAAAAAAAAAAAAAAAAAAAiTIACwAAAAAAAAAAAAAAAAAAAAAAgEQZgAUAAAAAAAAAAAAAAAAAAAAAAECiDMACAAAAAAAAAAAAAAAAAAAAAAAgUQZgAQAAAAAAAAAAAAAAAAAAAAAAkCgDsAAAAAAAAAAAAAAAAAAAAAAAAEiUAVgAAAAAAAAAAAAAAAAAAAAAAAAkygAsAAAAAAAAAAAAAAAAAAAAAAAAEmUAFgAAAAAAAAAAAAAAAAAAAAAAAIkyAAsAAAAAAAAAAAAAAAAAAAAAAIBEGYAFAAAAAAAAAAAAAAAAAAAAAABAogzAAgAAAAAAAAAAAAAAAAAAAAAAIFEGYAEAAAAAAAAAAAAAAAAAAAAAAJAoA7AAAAAAAAAAAAAAAAAAAAAAAABIlAFYAAAAAAAAAAAAAAAAAAAAAAAAJMoALAAAAAAAAAAAAAAAAAAAAAAAABJlABYAAAAAAAAAAAAAAAAAAAAAAACJMgALAAAAAAAAAAAAAAAAAAAAAACARBmABQAAAAAAAAAAAAAAAAAAAADA/2PvzsN0qv8/jr/ubXZmDNmy7zsRSsqaENEi0YIoIZVfpShZUlRapLIvqSRbsn1lKUShlCX7boydGdts93J+f7juk9s6w8zcM7fn47pc3865zzn3+8z3+pz3OZ/783kfAMhUFMACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABApqIAFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIVBbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQqSiABQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgExFASwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkKgpgAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIFNRAAsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZigJYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyFQUwAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECmogAWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhUFsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCpKIAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACATEUBLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGQqCmABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgU1EACwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJmKAlgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIVHZ/BwAEguTkZJ/lXbt2+SkSAAAAAAAAAAAAAAAASJeP37h0fAeAG8d4KQAAAAAAAAAAAAAAgKwjO4+VogAWkA5iYmJ8llu3bu2fQAAAAAAAAAAAAAAAAHBFMTExql69ur/DAAIC46UAAAAAAAAAAAAAAACyruw0Vsrq7wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwa6EAFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADKVxTAMw99BANldfHy8li9fbi4XLlxYwcHBfozo1rVr1y61bt3aXJ49e7ZKlSrlv4AA3DTaNRBYaNNA4KFdA4GHdg0EHto1EHho10DgoV0DgYU2nXUkJycrJibGXK5Xr56ioqL8FxAQQBgvlTWQcwBkJK4xADIS1xgAGYlrDICMxDUGQEbiGgMgI3GNAZCRuMZkDdl5rJTd3wEAgSAqKkqtWrXydxi4glKlSqlixYr+DgNAOqJdA4GFNg0EHto1EHho10DgoV0DgYd2DQQe2jUQWGjT/lW9enV/hwAEJMZLZU3kHAAZiWsMgIzENQZARuIaAyAjcY0BkJG4xgDISFxjAGQkrjH+k13HSln9HQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABuLRTAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQKaiABYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyFQWwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkKkogAUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBMRQEsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZCoKYAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACBTUQALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmYoCWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhUFMACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABApqIAFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADKV3d8BAEB6uu2229S/f3+fZQDZG+0aCCy0aSDw0K6BwEO7BgIP7RoIPLRrIPDQroHAQpsGAGQWcg6AjMQ1BkBG4hoDICNxjQGQkbjGAMhIXGMAZCSuMQAyEtcY3CyLYRiGv4MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADArcPq7wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwa6EAFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIVBbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQqSiABQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgExFASwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkKgpgAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIFNRAAsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZigJYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyFQUwAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECmogAWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhUFsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCpKIAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACATGX3dwAAAAAAAAAAAAAAAAAAAAC4tpSUFG3btk379u1TbGyszp49K6fTqZw5cyp37tyqUqWKypcvL5vN5u9QAQAAAMCvtm/frg0bNujgwYNKSEhQaGio8uXLpzJlyqhq1aoKDg72d4gAAACm5ORk/fPPP9q6davi4uKUmJionDlzKm/evKpevbpKlSoli8Xi7zABZFNnz57VypUrdfDgQZ04cUJ2u12FChXSnXfeqdKlS/s7PAC3oKSkJP3+++/atm2b4uLiFBQUpEKFCql27doqUaKEv8ODn1AACwAAAAAAAAAAAAAAAAAAIAuaMWOGlixZolWrVmnbtm1yuVzX3D4yMlLt2rXTyy+/rHLlymVSlAAAAADgf2fPntWIESM0btw47d2796rbBQUFqVatWnrsscf08ssvZ2KEAAAAvtatW6dPP/1UM2bMUHJy8lW3u/3229W5c2e9/PLLio6OzsQIAWRnf/zxhwYOHKilS5de9felSpUq6fXXX9fTTz9NoT3gFhYbG6u1a9dqzZo1Wrt2rf766y+dPXvW/Lxo0aLat2/fTX/P8ePHNXDgQE2aNEnnz5+/4jY1atRQv3791KpVq5v+PmQvFsMwDH8HAQAAAAAAAAAAAAAAAAAAAF+FChVSbGxsmvdzOBzq27ev+vfvz4QFADetXbt2mjp1qs+69JrsACBwDRgwQAMHDrzh/Tt06KBJkyalX0AAAtq8efPUpUsXHT16NNX75MuXT0eOHMnAqABkRx07dtTXX3+dLsfiuQnA1Xg8HvXt21cfffSRPB5PqvfLly+fJk2apKZNm2ZgdACyO5fLpZdeekkjR45M9T5NmjTR1KlTlStXrgyMDEBWsmrVKn388cdas2aNDh06dM1t0+PZZtmyZWrTpo1OnDiRqu2feeYZjR07VkFBQTf1vcg+7P4OAAAAAAAAAAAAAAAAAAAAAKkTEhKiIkWKKDIyUh6PRydOnNCBAwd08ftQnU6nBg4cqJiYGI0fP96P0QLI7ubOnXtZ8SsAAICs5NNPP9Wrr77q80wkXXh2KliwoPLkyaPExEQdPnw41ZMsASA9MFEbwNV07dpV48aNu2x9WFiYSpYsqdDQUJ08eVJ79uzxucc5evSoWrVqpdmzZ6tZs2aZGTKAbMLtdqtVq1ZasGDBZZ8VLFhQBQsW1Llz57R79245nU7zs0WLFun+++/X8uXLFR4enpkhA/CTP//8Uz/++GOmfNfKlSvVvHlzJSYm+qyPiopS8eLFFRcXp5iYGLndbvOzyZMn69y5c5oxYwYvfLpFWP0dAAAAAAAAAAAAAAAAAAAAAK6sYMGCeu655/TNN99o165dOn/+vLZv3661a9fqr7/+0r59+3Ty5EmNGTNGhQoV8tl3woQJmjhxop8iB5DdnT59Wt26dfN3GAAAAFc1fvx4/d///Z9PYYhmzZrpf//7n+Lj47V7926tWbNGGzdu1PHjxxUbG6tvvvlGjz76KIVpAGS4Fi1a+DsEAFnQjBkzLit+VaFCBc2fP1+nT5/Wxo0btWbNGu3atUtHjx7VwIEDfe5bUlJS1KFDB8XFxWV26ACygbfffvuy4lctW7bUxo0bFRsbqz///FNbt27V8ePH9emnnypHjhzmduvWrVP37t0zO2QAWVBERES6HSsuLk5t27b1KX5VtGhRzZ49W6dOndLff/+tvXv3at++feratavPvrNmzdKnn36abrEga7MYl5a3BwBkCYZhUI0SAIAsjnwNAEDWQ34GAhttHAg8tGsAALI+8jUA+NfGjRtVuXLlVF+L4+Li1LhxY/3999/mugIFCujgwYOyWnlnKoC0ef755zV27FhJUnh4uM6fP29+VrRoUe3bt89PkQHIDgYMGKCBAweay8OGDVPVqlVTvX/BggVVoUKFjAgNQIDYtWuXKleurKSkJEmSw+HQ119/rXbt2qVq/7i4OOXKlSsjQwSQDW3ZskWHDh1K8347d+68rGDEhg0bVKVKlfQKDUCAqFy5sv79919z+c4779SyZcsUHh5+1X1++eUXPfDAA3K5XOa6999/X3369MnQWAFkL7t27VK5cuXkdrvNdS+99JKGDx9+1X3+/vtvNWzYUKdPnzbX/fnnn7rzzjszNFYA/vfZZ5+pV69eypEjh2rUqKGaNWuqVq1aqlmzpvbu3asGDRqY297Mb0J9+/bVkCFDzOXixYtr5cqVKliw4BW3f//99/XWW2+Zy5GRkdq7dy99OLcACmABAABkgGtNBGCSABB4aNdA9nSttuvxeJgEAgAAAADAddAXDgAAkDVt3bpVFStW1MXDQ1esWKF7773Xj1EByG6WLVumhg0byjAMWa1WDR06VL179zY/pwAWgOu5tADWr7/+qvr16/svIAABp2HDhvr111/N5WnTpqlNmzZ+jAjArezSSd133HGHT4FyAJCkPXv2qGTJkj7r1q5dq5o1a1533xdeeEGjR482l++++279/vvv6R4jgOyra9euGjNmjLlco0YNrVmzRjab7Zr7TZw4Uc8++6y53LhxYy1evDjD4gSQNezevVvJyckqV67cZXPoli1bli4FsI4fP64SJUro3Llz5rolS5aoUaNGV93HMAzVr19fK1asMNf17dtX7733Xpq/H9mL3d8BAACkffv2aceOHfr555/lcrlksVgUERGhxx57TNHR0SpSpIi5LZMFgOwhJSVFSUlJWr16tc6cOSOn06lcuXKpdu3aioqKoh0D2VBsbKwOHDigJUuWSJIsFouio6PVokUL5cyZU1FRUea25Gsge/B4PEpJSdGmTZt09uxZud1u5c2bV+XKlVNISIi/wwNwA3bu3Kn169fr559/Nt/uGRoaqkceeUSFCxdWpUqVzG3J10DWd+7cOZ07d06//vqrTp8+rZSUFIWFhalRo0bKnTu3cubM6e8QAaQRfeFA4KEvHAg85GsACAzly5dXjRo19Ndff5nrtm7dSgEsAKmWmJioLl26mIX0evbsmaqJmAAAAJnlp59+8il+1aZNG4pfAfAbj8ejb775xmddx44d/RMMgCxt+/btPsuFChVKdZ/Lo48+6lMAa9euXekaG4Dsb86cOT7Lb7zxxnWLX0nSM888o/79+ysmJkbSheI0e/fuVfHixTMkTgBZw6VFOTPC1KlTfYpf3XfffdcsfiVdmLfbv39/n+0mTJigwYMHM04pwFEACwD8KD4+Xj/99JPefPNNJSQk6OzZsz6fjxo1SuHh4erZs6caNmyo6tWry2KxyOPxXFZJE0DWsW7dOn355Zf6448/fDomrVarihUrpscff1ytW7dWrVq1/BglgNQ6e/as5s+fr759++r06dOKi4vz+Xzw4MEqXry4unbtqqZNmypv3rzkayAb2LBhgyZOnKhff/1VO3bsUHJysiQpMjJSRYoUUffu3XXfffepfPnyfo4UQGqcOnVKM2fO1BtvvKHk5GQlJib6fP7DDz/I4/GYbbtFixZ0fANZ3Jo1azRs2DD9888/2rNnj89nBQoUUL169dS5c+fr/gAGIGugLxwITPSFA4GFfA0AgadkyZI+BbBOnDjhx2gAZDf9+vXT7t27JUlFihTR4MGDfa4pAAAA/jZmzBif5f79+/spEgC4UCTi4MGD5rLD4VD79u39GBGArOrUqVM+y4ULF071vhe/qEa68PseAHht375dR44cMZdtNpsefPDBVO1rs9nUvHlznyJ7s2bN0quvvprucQK4tfz0008+y507d07Vfg0aNFDx4sW1d+9eSdKRI0e0evVq3X333ekeI7IORqABgJ/s27dPffr0UZcuXXT06FElJSXJYrEoODhYdrtdNptNZ86cUUxMjHr37q3nn39evXv3liQGEANZ1MmTJzV8+HDdddddmjRpkrZv3262Z6vVKrvdrj179ujTTz9VmzZtNH/+fH+HDOA69u/fr759++qpp57Svn37dO7cOVksFoWEhMhut8vhcOjIkSP6448/1LFjRz377LP67LPPJF3I1943oQLIOk6dOqVRo0apdu3a+vzzz7Vp0yZzkp7ValViYqI2bdqkN954Q127dtWKFSv8HTKA6/A+X/fo0UPx8fFyuVySLgwicjgcslgscjqdSkhI0LBhw9S1a1d16tRJp06dIlcDWdDx48f10UcfqU6dOpo5c6b27Nkjm81mPl87HA4dPnxYU6dO1f3336/vvvvO3yEDuA76woHAQ184EHjI1wAQmJKSknyWo6Ki/BMIgGznzz//NMc+SNKXX36piIgI/wUEAABwidjYWP3888/mcrVq1VSxYkU/RgTgVvf111/7LLdo0UJ58uTxUzQAsrLIyEif5Utf+Hotl27LdQbAxQ4cOOCzXKpUKYWFhaV6/6pVq/osz5kzJ13iAnDrOnfu3GXz8po0aZKqfS0Wixo3buyzbt68eekWG7ImRqEBgB/ExMTo7bff1tixY+V2uyVdSMSGYZidGG63Wy6Xyxww/M8//2jYsGFq3ry5Nm7cqOTkZL/FD+ByBw4cUL9+/fTaa6+Z7VqSXC6X3G63PB6PORHf7XYrJiZGLVu2pCMAyMK8xa9Gjhwpj8djrjcMQ0FBQXK5XHI6nZKkoKAgSdKCBQv0f//3f2rfvr1Onz4ti8Xil9gBXFlMTIzeeecd9ezZUykpKea9ttPplMfjkcfjkdvtlsVi0ZkzZ7Rq1Sp16NBBv/76q58jB3A1Bw8e1Ntvv63x48eb99tWq1Xh4eG6/fbbFRERIcMwzGdoq9Wqo0eP6uuvv1br1q01d+5cnT592p+nAOAi+/fvV79+/dS3b1+fAnVut9v8523roaGhkqSnn35aEyZM8Eu8AK6PvnAg8NAXDgQe8jUABCbDMPTnn3/6rKtRo4afogGQnTidTnXu3Nm8N2zTpo1atGjh56gAAAB8LVy40KePukGDBn6MBsCt7syZM/rxxx991nXs2NE/wQDI8qpVq+azvHXrVp0/fz5V+65du9ZnuVatWukVFoAAcPLkSZ/l6OjoNO2fO3dun+X169ffbEgAbnGbN282599KUvHixZU/f/5U73/PPff4LHNdCnx2fwcAALeapKQkffbZZ/rhhx/k8XhksVhUvHhxffTRRypYsKDKlSun9evXa+PGjRo3bpxiYmIUHx9vFtpYuHChjh07pu7du+vhhx9Wrly5/H1KwC0vJiZGb731lr7//nuzSE6OHDl01113qUqVKrJYLNqzZ4+2bdumLVu2yOVyKTQ0VImJiXruuecUHR2tunXr+vksAFzs/Pnz+uSTTzRt2jSzXRcpUkTvvvuuChQooFKlSun333/Xtm3bNGrUKCUkJCglJUUOh0Nut1tTp07VoUOH1K9fP9WpU8ecnA/Afw4cOKC+fftq6tSpZrsOCwtThQoVVKVKFSUmJio2NlZbtmzRsWPHJEk2m0379+/Xm2++qTFjxlz2RgsA/uV0OjVixAjz+dpms6lkyZL6/PPPdfvtt6t8+fLas2eP1q5dq2nTpumPP/7Q8ePHzefrlStX6ujRo2rbtq26deumAgUK+PuUgFuad9L9xc/WkZGRatKkiSpVqqSIiAjt3LlT27Zt07Jly5SYmKiwsDAlJCSoS5cuKlCggJo1a+bnswBwMfrCgcBDXzgQeMjXABC4JkyYoEOHDpnL5cqVYzIUgFQZMmSINm3aJEmKiorS559/7ueIAAAALndpwd+Lx3X9888/mjhxopYvX64DBw4oOTlZefPmVenSpfXAAw+oXbt2uv322zM7ZAABbNq0aUpMTDSX8+bNq+bNm/sxIgBZWaFChVSnTh39/vvvkqTk5GR9/vnn6tOnzzX3S05O1meffeazrnPnzhkVJoBsyPtCK6+LiwanxsVFaqQLRT5jY2N5fgJww7Zu3eqzXKFChTTtf+n2lx4PgYcCWACQyRYvXqzhw4ebEwPq16+viRMnqkiRIuY29erVU7169dS8eXOtWbNG/fr10969e2Wz2WSxWPT3339ryJAhOnr0qLp06aLbbrvNX6cD3PJOnz6tYcOGmRN+HA6HKlSooIkTJ6p06dIKDw83t924caOmTJmiDz/8UImJiQoKCtLJkyc1ZswYVa5c2XyLNgD/W7hwob766iuzs69hw4YaP368ihYtam5TrFgxSVLr1q21cOFCjRw5UrGxsQoODpbT6dSKFSv02muvqXfv3mrRooVy5Mjhj1MBICkuLk4fffSRWfzK4XCoTJkyGj9+vEqWLOnzpooFCxZo+vTp+vrrr+VyuWSxWLR582bNmjVLFStWlNVqveyHAQD+8csvv2jYsGEyDEOSVLduXU2ePFmFCxeWYRiyWCwqVaqUSpUqpSZNmmjnzp3q3r27NmzYIEmyWCzauXOnxowZo2PHjumtt95S4cKF/XlKwC3rzJkz+vTTT81n66CgIFWuXFkTJ05UuXLlZLf/91PGiRMn9M033+jVV19VQkKCWVRjyJAhqlSpEu0YyELoCwcCC33hQGAiXwNAYPr666/VvXt3c9lqteqLL76QxWLxY1QAsoMtW7bovffeM5c/+OCDNL2JGwBSIzk5WXv27NHJkyflcDiUO3duFSxYUGFhYf4ODUA2cmkBrBIlSujcuXN6+eWXNWHChMu2379/v/bv368lS5bonXfe0SuvvKKBAwfK4XBkVsgAAtikSZN8lp988kmfsS4AcKkPPvhA9erVM3+je+edd1SwYEF16NDhitvHx8fr6aef9in60LJlS7Vs2TJT4gWQPURHR/sse18Mn1pX2n7r1q0UwAJww7Zv3+6znNZx/pduv3//fiUlJSkkJOSmY0PWxJM0AGSikydPauDAgWbnRP78+TV+/HgVKVJEbrdbNptNkuTxeGS1WlWyZEmVLFlS999/vzp27Kjly5crISFBFotFu3fv1siRIxUfH69XXnlFBQoU8OepAbes6dOn66uvvjLfit2gQQONGTPGbNfSherXDodDVapUUfny5RUUFKTBgwcrJSVFkrR06VIdO3aMST9AFnH48GG99dZbZhsuVKiQWfzKm68Nw5BhGLJarapevboqVaqk1q1bq127dtq0aZOsVqssFos2bNigwYMHKy4uTu3atVOuXLn8fHbArWnq1KkaNWqUeZ/dsGFDjR49WkWKFDHvzb35unnz5qpYsaKCgoI0duxYGYahhIQETZkyRS+99JJPsSwA/nPmzBkNHTrULH6VJ08ejRs3ToULF/Z5vvYWwsqTJ4/y5Mmj5cuX64033tD8+fN18OBBSRd+rPvhhx8UFxenoUOHqnjx4n47L+BWNWvWLI0YMcLMy/Xq1dPYsWOv+GydJ08e9erVS0FBQerZs6f5Bs0tW7Zo9+7dPkXwAPgPfeFA4KEvHAg85GsAyL527NihAwcOmMtOp1NxcXH6999/9dNPP2nLli3mZ0FBQRozZowaNWrkj1ABZCMej0edO3c2n+HuvfdePffcc36OCkCg6dGjh/bs2aOkpCSf9Xa7XTVq1FCzZs3UvXt3iisDuK5du3b5LFutVt133336559/rruv9wVLf/75p2bNmsXLTQHclF27dmnVqlU+6zp16uSnaABkF3Xr1tUXX3yhHj16yDAMuVwudezYUV9++aUeeeQRlS1bVqGhoTpx4oTWrFmjKVOm6NSpU+b+999/v77//ns/ngGArKhEiRI+y/v27dPx48dT3c/y119/Xbbu6NGj6RIbgFvTpYX1ChUqlKb98+XLJ7vdLpfLJenCb1knT56kMF8As/o7AAC4lZw+fVpHjhyRzWaTzWbTK6+8omLFivkMIJYu/ADj5Xa7ddttt2nq1Knq2rWrihUrZk7wPXjwoCZNmqSPPvoozdV4Ady8devW6cUXXzQn95QuXVqjRo0yi2l42/XFbwdyOBzq1KmTmjVrZi4fPnxYo0aNkiSzfQPwn+PHjysuLk52u102m039+vXzKX4lSRaLxSdfOxwOVahQQStWrNCjjz6q8PBwc9L91q1b9cknn+ibb77RmTNn/HVawC1rzZo1evnll818XbZsWY0cOdLM1962fHG+Llq0qJ5++mlVr15dFotFQUFB2r17t7755htJMicFAvCfhIQE7du3T9KFZ+hOnTqpZMmScrlcPs/XFxfAcbvdypkzpz7++GP93//9n6pXr25+dvr0ac2bN0+vvvqqz8QxABnvn3/+UY8ePcxcXbJkSZ9ClZc+W3ufm7t06aKOHTtKkmw2m06dOqUxY8Zk/gkAuCL6woHAQl84EJjI1wCQfX311Ve6//77zX/NmzfXk08+qSFDhpjFrywWi5o1a6a1a9eqQ4cOfo4YQHbw+eefa/Xq1ZL+K57HiwYApLctW7ZcVvxKklwul9asWaMBAwaoaNGieuedd8y+KAC4lMfj0dmzZ33WvfTSS2bxK4vFopYtW2rkyJGaO3eupk6dqjfeeEMFCxb02WfJkiXmb84AcKO+/vprn+Xq1aurcuXKfooGQHbSrVs3LVmyRBUrVjTX/fnnn+rTp48eeeQRNWvWTE8//bS++OILs/hViRIlNGrUKC1cuFDh4eH+Ch1AFlWiRInLnnt++OGHVO177tw5zZs374rrAeBGXXoNSev9i8ViUWho6DWPicBCASwAyES//fabDh06JOnC4OD8+fNLks8A4kvZbDZ5PB7lyJFDgwcPVvfu3VWuXDnz8+PHj2vatGkaNWqUTyVvABnryJEjGjhwoPnWw5w5c+r7779XsWLFfIppXEnx4sVVp04dSf8V0PBOsmfgGOB/v/zyi44fPy6PxyO32618+fJJuna+tlgscrvdioyM1IQJE9ShQwflzZvXLIK1Z88ejRw5UrNnz1ZCQkJmnQpwy4uNjdXbb79tVnqPjIzU1KlTU5Wv69atq7vuust8q4504Y3qkq65H4DM8eeff2r//v3mM3OBAgUkXXgz8NV4tw0LC1P37t3Vu3dv875cuvCGz6VLl2rgwIHmszuAjHX8+HENGTJEiYmJkqQcOXLou+++u2au9j43BwcH67777jO3sVqtio2N9dkGgP/QFw4EDvrCgcBFvgaAwNamTRu99dZbqlq1qr9DAZAN7N27V2+//ba53KdPH5/7PADITImJiXr33XfVuHFjJjMBuKLTp09f9pKFv//+W5KUO3duLV++XHPmzNELL7ygFi1aqG3btho6dKi2b9+u9u3b++w3a9YsTZ48OdNiBxBYDMO47BpCYT0AadGwYUP9+eefeu211675G50kFSlSRK+99prat2/PWHYAV9W6dWuf5aFDhyo+Pv66+w0ZMkRnzpy5bD19MwBuxqXXkJCQkDQfgwJYtxbucgEgE3kH89vtdtlsNnMQsXfQ/9VYrVZ5PB6FhobqxRdf1EsvveQzQO3QoUOaNGmSvv/+e50/fz7jTgCA2V7/+ecf801BDodDL730kipXrnzdCT/eH1y7deumkiVLmsdbuXKlWXAHgH9526nD4VBQUJCKFSvms/5qLp74M2TIED377LMqXLiwWQRr+/bt+vjjj/XLL7/whkIgg3nz6erVq/Xvv/9KuvCW4t69e6cqX3v3f/nll5U/f35z25UrVyo5OZk2DGQBVqtVFotFNptNVqtVOXLkkCSzYN219jMMQ0FBQXrkkUfUp08fNWjQwPz87NmzmjNnjj799FOdPHkyQ88BuJV57623bNmitWvXSrrQX/b888+rSpUqMgwjVYN02rVrp0qVKsntdsvj8Wjt2rVmwUoA/kVfOJD90RcOBD7yNQAEtmnTpqlu3bq67777tGvXLn+HAyCLe/755817t3Llyqlv375+jghAILFYLKpTp47ee+89LV68WAcPHlRCQoKSkpIUGxuruXPnqmvXrpdNflq2bJmeeOIJxmgAuMzVJjrabDbNnz9f99577xU/j4iI0DfffKMmTZr4rH///fevOz4UAK7kl19+MV/+Il0Yp3ppoT0AuJZRo0apZMmSGjZs2HWffQ4cOKDu3burWLFimjBhQiZFCCC76dWrl894ntjYWD366KPX/O3+m2++0QcffHDFz7wvuAWAG5GUlOSzHBQUlOZjBAcH+yxzXQpsFMACgEzkrTLpdrvldru1bNmyVO/rnaQbEhKiZ599Vt27d1eFChUkXfhxeN++fRo1apTWrVsn6fpFOgDcGG8HwKeffqrY2FhzXYMGDWS32687QddiscgwDNlsNkVERJhtNS4uTmfOnKEKP5AFeAdTeTwepaSkaOXKleby9Xgn/oSHh6tfv37q0KGD8ufPbxbB2rRpk95//33z+sFEPyBjePPpF198oaNHj0qSwsLCVK9ePZ/Pr7d/RESEHA6HWVDnwIEDOnv27HXfsAMg44WEhMgwDDmdTnk8Hq1YsULShUm71+O9J7fb7WratKl69+7tM/jx5MmTmjFjhubPny+n05lh5wDcyrwT7YcNG2YOBHS5XGrUqJFCQkLMz6/F4/HIYrGYk/StVqucTucV30AFIPPRFw5kf/SFA4GPfA0A2ddnn30mwzDMfwkJCYqJidG8efPUuXNnn7fg/vbbb6pZs6b++usvP0YMICsbP368lixZIunCvdyYMWNuaAICAFxJkyZNtG3bNq1atUp9+/ZV48aNdfvttys0NFTBwcEqWLCgWrRooVGjRmnnzp265557fPafP3++vvrqKz9FDyCrurRgnleXLl1Uu3bta+5rtVo1cuRInz7q7du3a/ny5ekaI4Bbw9dff+2z3KJFC+XOndtP0QDITpxOpx577DF169ZNhw8fliRFR0frnXfe0dq1axUXF6eUlBQdOnRIc+bM0cMPP2yOqTt16pQ6d+6s119/3Z+nACCLKlWqlN58802fdb/88osqVqyoUaNGad++fUpJSVFcXJyWLl2qxx9/XM8884zcbrcsFosiIyN99o2IiMjM8AEEmEv7cFJSUtJ8jOTk5GseE4GFUaUAkIly5crlM1l+27Ztkv4bIHw93skCQUFBeuaZZ9S5c2eVLFnSLKqxefNmDRo0SMnJyea2ANLfqlWr9Ouvv5o/fnbp0kUNGjRI9f7ezoC77rpLFovFvOE+ceJEhsQLIG1y5Mgh6b/iVOvXr5ekVBe88RbBCg0N1Ztvvqm2bdsqV65cMgxDVqtVq1ev1iuvvGJuS74GMsbChQu1fPly88e+Z599VnXq1EnTMQoUKKA777zTJ19f7Q2CADJX3rx5FR0dLZvNJovFoj179phvh0jL87XNZlOjRo300ksvqWbNmuZn+/fv11dffaX9+/dLomglkBE2bNigzZs3m/fZnTt3VtOmTVO9v9VqVVBQkPls7XA45PF4FBMTI4kJ9oC/0RcOBAb6woHARr4GgMARGhqqQoUK6cEHH9S4ceO0ceNGVatWzfw8Pj5erVu3Vnx8vN9iBJA1HT58WK+99pq53KVLF5+XhgDAzapTp47KlCmTqm0LFSqkJUuW6O677/ZZP3jwYCUkJGREeACyqatNwH7uuedStX+JEiXUuHFjn3UUwAKQVufOndOsWbN81nXs2NE/wQDIdrp166aZM2eay7Vq1dLmzZs1cOBA1axZU1FRUXI4HCpQoIBatmypWbNmafbs2T4FH4YNG6aJEyf6I3wAWdygQYPUsmVLn3X79+9Xt27dVLx4cQUHBys6OlqNGzfW9OnTzW0GDhyoUqVK+ewXFRWVGSEDCFCX9uF45/ykRWJi4jWPicBCASwAyEQNGjRQ1apV5XK5JEmzZ882HxC8E/Ovxzs4ODg4WN26ddMTTzyhqKgoWSwWWa1W/fLLL+rRo0eajgkgbe655x717dvXnATvfetYWifFR0ZGyjAMOZ1Os3I2AP9r3ry5ypQpI7fbLUmaMmWKfvnllzQdw1sEKywsTIMHD1aLFi0kSXa7XTabTbNnz9bbb78tiXwNZJSmTZuqe/fuMgxDISEh5qCltObr6OhoGYYhl8ul8+fPk6+BLKJy5cqqUqWKXC6XDMPQqlWrNGnSJElpf7622+166KGH1LlzZ5UoUcIsWrl27Vpz0gdFK4H0V7VqVf3f//2f8uTJI0mqXr26pLTn6pw5c5q5WpLOnDkjiftswN/oCwcCA33hQGAjXwNA4CpVqpQWL16swoULm+tiY2P10Ucf+TEqAFlRjx49zOJ4+fPn14cffujfgADc8kJCQjR58mTZ7XZz3bFjx7Ro0SI/RgUgqwkNDb3shaY5cuTQHXfckepj1KtXz2f5r7/+SpfYANw6pk+frvPnz5vL+fLlU7NmzfwYEYDsYtmyZRo/fry5nDdvXs2bN0/58+e/5n4PPfSQvvzyS591r7/++mVFIQDAZrPpxx9/VK9evS57droSh8Oh999/X/369bvshfEUwAJwMy4tVnXxM1RqGIZBAaxbDAWwACCTeDweWSwW3XnnnZIu/EhrtVo1a9YsxcTEpOlYFotFHo9HISEheuONN3T//ffL4/HI4XDIarVq4cKFWrhwYUacBnDL807sGThwoHr37q1ChQqpefPmki5Mik8Nb1Gd3LlzS/pvwL93ggEA//EWyilatKgkKSgoSCkpKfr555+VmJiYpsIX3iJY4eHh+vzzz1WrVi2lpKTIZrPJYrFo0aJF2rhxY0adCnBL8+brL774Qh07dlRERIT5puK05mtvx5jH45Hb7VZycnIGRAwgLbzts0mTJrJYLOYbrSZPnqz169en6VjeiboOh0NPP/20WrdureDgYNlsNtlsNi1YsEATJkwwtwWQPry5+sUXX9Qbb7yhO+64Q23btpWU+lztPUaBAgUkyfyRnmJ1gP/RFw4EBvrCgcBGvgaAwJcnTx4NHDjQZ533JQIAIF2YrP3jjz+ay8OHD2cyE4AsoVSpUnrooYd81lEAC8Cl8ubN67NcqlSpVPddS1LZsmV9lo8dO5YucQG4dVzaz/Lkk0/6FPEEgKv5/PPPfZZfeeUV3Xbbbanat2PHjipTpoy5fPLkSc2aNStd4wMQGGw2mz755BP9+++/6ty5swoWLHjZNuHh4XrmmWe0du1a9enTR9KF68rFSpUqlSnxAghMl/bfHDx4ME37Hz161GesodVqNV++jcBEASwAyCRWq1VWq1WdO3eW1WpVUlKSPB6P5syZo+XLl0tK2xuzvUU1IiIiNHr0aJUrV86cjH/o0CEtWbIkQ84DuNVZrVZz0s7QoUP1ww8/KCgoKE3t1zspt1ChQuYxJSkhIUESk3UBf7JYLAoLC9Mrr7wiq9WqlJQUuVwuffXVV1q7dq0sFot5DUgN7zUjMjJSM2bMUNGiRZWSkiLDMPTXX38xOAvIIN57ZUmaMGGCfvzxxxvO196CeHa7XTabTU6nM/0DBpAm3vbZunVrRUREKCkpSZL0zz//6H//+1+aC9V5J+qGhoZqwIABql27tpxOp6xWq1wul5YuXZqm/A/g+i7O1a+88opGjRql0NDQNPeNSRfeoCn99yx95swZn2UAmY++cCAw0BcOBDbyNQDcGh5++GGfwv6HDh3S/v37/RgRgKzk9ddfN//7wQcf1OOPP+7HaADAV6NGjXyWt2/f7qdIAGRV5cuX91nOmTNnmva/dPu4uLibjgnArWPPnj367bfffNZ17NjRP8EAyFYMw9Avv/zis65ly5ap3t9qterBBx/0WbdixYp0iQ1AYCpXrpzGjRun2NhYxcTEaN26dfrtt9+0a9cunTp1Sl9//bWqVasmSTp+/LhOnDhh7hseHn7ZsxcApMWlBcgPHDiQpv0v3b5o0aIKCQm56biQdVEACwAykWEYqlmzpnr16iWbzSar1arExES9+OKL2rBhg8/kv9TwTj6IiorS8OHDddttt5n7jxgxQn///XdGnQpwS7PZbGZbu/vuu823YqeV90bbeywm6QJZR+3atdWmTRtZrVYFBQXp/Pnzat++vXbv3u1zDUgN7/aFChXSW2+9pcjISHOg+bBhw7Rr166MOg3glma1Ws2ces8998jhcNxQvg4LC5N0IT+73W6dPXvWXAbgPx6PR+XKldOgQYPMSfXJyckaMmSIli5dKkk3VLQyIiJCY8aMUcGCBc2Cd99//72WLVuW7ucA3Oou7gerWbOmQkNDbyhXOxwOSf+1eXI1kDXQFw4EBvrCgcBGvgaAwBcVFaXo6GifdUeOHPFTNACymvj4ePO/58+fL4vFct1/DRo08DnG/v37L9tm/fr1mXsiAAJS4cKFfZaPHz/up0gAZFUVKlTwWU7ry9K8L1vz8o4RA4DUmDx5ss/vXNWrV1flypX9GBGA7CIuLk6nT5/2WVe8ePE0HePS7WNjY286LgC3hkKFCql69eqqW7euSpYsqaCgIJ/PN23a5LNcrVo1c5w+ANyIcuXK+Sxv2bIlTftv3br1msdD4KEAFgBkIm+xi0aNGqlQoULyeDwKCQnRmTNn9PDDD2v37t1pHkjsfYCoUqWK6tatK+nCRAKLxWIm9rQcD0Dq3MgkHy/vjx3eH0u9x/JeI651bMMwdOrUqRv+bgCpEx0drWbNmkmSUlJSFBISosOHD+v555/XwYMHfQrrpIa3Xd93330qXbq0DMMwC2sdOnRIEhP+gIxw8VvN08p7D2232yX910a9BXGudWzDMMzJvAAyhje31q1bV3fddZcsFoscDofOnTunp556Slu2bJHNZktTESybzSbDMFSsWDG1bdtWVqvVfL5es2aNJJ6vgfR2M8/WXlFRUQoKCjILYXlz9/WerY8ePXrZYCIA6Ye+cCBw0BcOBC7yNQDcmrx9KAAAAFnZpfcs3rEaAOBVvXp1n+WjR4+maf9jx475LOfOnfumYwJwazAMQ5MnT/ZZ16lTJz9FAyC7uVLRTu94t9S69HkpLeNkAeBa5s+f77PsnVcHADeqYsWKPvcu+/bt0+HDh1O9/6pVq3yWq1Wrll6hIYuiABYA3ISLC1V4/zs1xSuaNm2qF154QdKFt4cEBwdr3759evbZZ7Vv3740DySWpHz58unJJ580j5mSkqLvvvtO0s1N/AeQ/rxtMmfOnD4TfK739iHDMLRp0yY9+eST+vjjjzM0RiCQXCk3Xytfez975pln1KtXL0kXcqvVatWaNWvUt29fHT58WBaLJc1Fq8qUKaPnnntOkuRyuXT+/HlNmjTpujEByHzefB0ZGSnpv0m51xtUaRiGNm7cqMcff1zff/99xgYJBJCLn6m9z8OpeS6uUaOGOnXqpKCgIDmdToWGhio+Pl5NmzbV9u3bZbPZ0vR8bbFYFBQUpGbNmsnj8SgpKUmGYeinn36Sx+NJl2I9ANJXSEiIT4HaS9/Ueynvs3WnTp00aNCgywY2A7gy+sIB3Aj6woHMRb4GAFzq7NmzlxUVzZcvn5+iAQAASL0jR474LN92221+igRAVvXggw/69Dvv3bs3TS9VWLdunc9y2bJl0y02AIFt+fLl2rt3r7kcFBSk9u3b+zEiANnJlYpuel+onlqxsbE+yzwvAUgPbrdb06dPN5dtNhtFPgHctBw5cui+++7zWbd48eJU7WsYhpYsWeKzrmXLlukWG7ImZmwBwE3wDs5NSkrS+fPnJV0+mPjSQcXewcFvvPGGunTpIunCQH+bzaZVq1apW7duiomJSdNAYu933HPPPSpdurRsNptsNpvOnDnjEyeArMXbzr3V9uPi4iRdeaK/YRj6999/NWDAAP388896/fXX9cEHH2RqvEB25c2DbrdbLpfLZ92V8rXFYjHb5XvvvadHH31U0oW2mZCQoHnz5pkT5dNSBMu7Xe3atXXbbbeZgy/i4+MliYIaQBbjvU6EhIRI+i8/e++xr5WvBw4cqEWLFunJJ5/Ut99+m0kRA4Hh9OnTOnHihCQpJSXF57NL2503tz777LN6+eWXJUmJiYkKDg7WwYMH9fDDD2vXrl2yWq1pfsNVgwYNdPfdd8tmsykoKEjnzp27LB4AWYO3WJ23SKV3UPO1cnX//v21cOFCffrppxo8eLDOnj2bqTED2RF94QBuBn3hQOYgXwMALjV//nyfa/9tt92mAgUK+DEiAFnJTz/9pMWLF6fp37Bhw3yOkS9fvsu2KVWqlJ/OCEAgWblypc9y4cKF/RQJgKwqb968uueee3zWzZo1K1X7ulwu/fjjjz7r6tevn16hAQhwX3/9tc9yy5YtFR0d7adoAGQ3QUFBl/XR/vLLL2k6xtKlS32WS5YsedNxAcCYMWMUExNjLjdv3lwFCxb0Y0QAAsVDDz3kszx+/PhU7ffrr7/6FB/Oly+fateuna6xIeux+zsAAMiuNmzYoEWLFum3337T0aNH5XQ6lT9/fpUpU0aPPfaYChcurKJFi142gNc78dZms2ngwIE6ceKEZs+eLbfbLYvFomXLlqlbt2768ssvVbRoUXk8nusWxPB+R758+RQdHa2dO3dKkk6cOKGUlBQFBQVlzB8BwE0JCQmRzWYzrwvetnxpm/dO+Hn77bc1d+5cORwOOZ1OrV+/3g9RA9nL5s2btXr1ai1dulSnT5+WYRiKjo7WnXfeqYYNG6pEiRKKiIiQxWLxybk2m03ShR8YXnvtNZ04cULLly+XdKFg1axZs2Sz2fT2228rf/78acrXZcuWVZ48eXT8+HFJ/72xwzAMJv4AWZDD4ZDkW0xPun6+DgoKUkpKiubNm6ennnoqc4MGspl169ZpxowZWrt2rWJiYpSQkKAiRYooX7586tixowoXLqzq1aub7c6bMy/O30OHDtXx48c1ceJEJScnKygoSNu2bdPDDz+smTNnqkyZMuaz+PUYhiGbzaacOXPK7XbL7XYrPj5eSUlJZlE8AFlHeHi4wsPDlZKSIqfTabbz6+Vqu90ul8ulEydOKEeOHP4IHcg26AsHcLPoCwcyHvkaAHCpxMRE9e/f32ddixYteCkPAFO9evXSvI/d7jvsPCQkRI0bN06vkABA0oWxWTNnzvRZ16hRIz9FAyAr69q1q3777Tdz+aOPPtLTTz+t4ODga+43duxYHTlyxFzOmTOnHnjggQyLE0DgOH/+vGbMmOGzrmPHjv4JBkC21ahRI58XLH/22Wfq0KHDZf0uV7J8+XL98ccflx0PAG7G7t271a9fP3PZ4XBo6NChfowIQCB54okn1LdvX/NlfitWrNAvv/yihg0bXnUfwzA0cOBAn3WdOnXit+5bAAWwACCNjh07pilTpqhv375KTk6+7C25Cxcu1OjRo1WtWjU9+uijeuWVV2Sz2Xwm5non4hUoUEADBgxQYmKifv75ZxmGoZSUFP3888/q2LGjxo8frxIlSqR6km5iYqLOnTtnLtvtdhmGkaqByMCtbsuWLXK73apUqVKmFaAJDw9XcHCwPB6PnE7nFbe5dMKPJDmdTnXo0EETJ040t6FoDuDrxIkTmj59unr37i2n06mUlBSfz6dMmaKwsDC1bNlSTZo08XkAvrRN1ahRQ6+++qoSExO1du1aSdLx48f1/fff6/z58xo8eLBuv/32VOfbhIQEJSQkmMsOh0OGYdCWgVTYvn27ChQooJw5c2b4d3nbZHh4uOx2u8814krbXpqvU1JSfPI1gMsdOXJEkydP1jvvvHNZrvYWiFywYIGio6PVqVMndenSRYULF5bD4TDzrtVqNf/7448/VmJioqZOnaqUlBQ5HA5t3rxZTZs21YIFC1SuXLlUx+ZyuXT27Flz2ftcD+DaNm7cqJiYGDVu3Pi6g4rTS3h4uEJDQ+VyuSTpim31Srna5XLpmWee0aRJk8xtaOeAL/rCgcBEXzgQWMjXABD4evfurTZt2qhmzZqp3ufUqVNq27atduzYYa6z2Wzq1atXRoQIAACQrl577TXFx8eby0FBQWrWrJn/AgKQZbVr104ffPCBNm3aJEnasWOHunbtqgkTJly1/2nNmjXq3bu3z7ru3bsrMjIyw+MFkP3NnDnTp987f/78atq0qR8jApAdPfXUUz4FsP799191795do0aNuuZvaLt27VL79u191pUuXVp33313hsUKIHs6cOCA8uTJo7CwsOtuu3XrVjVr1kwnT540173++uuqUKFCRoYI4BaSN29evfjii/rggw/MdV26dNHKlStVsGDBK+4zZMgQrVixwlyOjIzU66+/nuGxwv8YUQYAabB37169+eab6t27t5KSknw6FbwD7h0Oh5KTk80fR1q3bq2vv/5aiYmJ5ht0L1apUiX16dPHfKOatwDG8uXL1apVK23duvW6A4i9xzx79qycTqdZ8bt58+YKDg5mADFwHatWrVKlSpXUrVs3/fvvv1csbJERDMNQUlKSOdn/1KlTkv5r01ea8CNd6Oz0TvjxeDxM+AEusW/fPr355pt6+eWXdf78eXk8HvMzb44MDg5WQkKCpk+frs6dO+uZZ57Rr7/+qpSUFHPiz8X7NGnSRC+++KKqVKliro+Li9PMmTP1wgsvaM+ePWYBjqvxtm3vAC1vLE2aNJHFYiFfA9exatUqlS9fXu3bt9eZM2cy/Pu8+dVut8vlcl3WhtOarwH42rt3r/r06aO3337bzL+Xstls8ng8Onr0qIYOHaonn3xSQ4cO1blz53yer705NCoqSu+//75at24t6cJk+eDgYO3bt09169bVr7/+6nOvf6X7fu/9dVJSks6fPy+bzSar1armzZsz2BG4jlWrVqlatWrq3bu3lixZcllhu4zidDqVkJBgft+JEyckpS5Xe4tf8WwNXI6+cCAw0RcOBBbyNQDcGhYtWqRatWqpdu3a+uSTT7R+/forFhU1DEPbtm3Tu+++q7Jly2rJkiU+n/fq1UuVK1fOrLABAAA0dOhQrVu3LtXbu1wuvfrqqxo/frzP+hdeeEEFChRI7/AABACr1apPP/3Up+/466+/1gMPPHDZ9ef06dP65JNP1LhxY5/iNWXKlFHfvn0zLWYA2Zt3nInXk08+afaBA0BqPfDAA2rQoIHPurFjx6pevXpaunSp+SJIr5MnT+rjjz/WnXfeab5c1uv9999P1YtrANxa5syZoyJFiuiVV17R8uXLlZiYeNk2mzZtUu/evVWtWjXt37/fXH/33XerX79+mRkuAD9btWqVlixZctm/S/tWkpKSrrjdkiVLtGXLlmt+R+/evZU/f35zee/evapTp47mzJnjM4bx4MGDeuGFF/TWW2/57P/WW28pOjo6Hc4WWR1P2ACQSocOHVL//v01ZcoUcwJ7UFCQSpQooaioKKWkpGjDhg3mgN6QkBAlJSVpwYIF2rp1q/7880+9//77ioyMlMvlMjs5rVar6tSpo379+ikoKEiLFy+Wx+ORw+HQ5s2bdc8992jSpEm69957lStXLknyeSvuxW/YHTFihHbs2GH+iFOmTJlM/RsB2dGqVavUuHFjSdLvv/+u119/XR9++KEqV66c4ZNpvG/Y9t6geyf/2Gy2a074mTx5siTxhmzgCg4ePKh+/frp+++/N/O1zWZTvnz5FBUVpeTkZO3atcscFB4UFKSkpCR9++232rp1qx599FH17NlT4eHhZo41DENBQUF67LHH5HK59NVXX+mvv/6SJJ0/f17z58/Xli1bNG3aNNWoUcOM5Wr5evTo0dq/f795jSldunSm/X2A7GrVqlW6//77JUkLFizQ888/r9GjR2dKMRrvfbs3XycnJ0siXwM348iRIxowYIC+++47M1+HhYXpjjvuUHR0tFJSUrRx40YdPXpUbrfbLES3Zs0abd26VWvXrtXEiROVJ0+ey45drFgxffTRRwoKCtK0adOUnJys0NBQnTp1Sq1bt9Z7772npk2bqlSpUmbRyyvl648//lgbNmww79fLly+feX8gIBu6+Nl669atGjx4sDwejx544AEFBQVl2PcahiGbzeYzmNA7AIhcDdw4+sKBwERfOBBYyNcAcOtZu3at1q5dK+nCNf/2229XVFSUgoKCdPbsWcXExOjs2bNX3LdDhw4+b9QFAADIDAsXLlSfPn1Up04dPf7442rUqJHKlSt3WZGI06dPa8GCBfrwww+1fv16n89Kliypd955JxOjBpDdNGrUSEOGDNGbb75prluyZInuvPNO5c+fX4UKFdL58+e1e/fuy17ilDt3bs2YMUM5cuTI7LABZEP79+/XsmXLfNZ17NjRL7EAyP6mTJmiOnXqaO/evea6lStXqnHjxoqIiFDx4sUVGhqqkydPas+ePVd8udWrr76qxx57LDPDBpCNnDx5UsOHD9fw4cNls9lUvHhx5cqVS4mJiTp8+LBOnjx52T41a9bU3LlzFRIS4oeIAfjLk08+6VMI72qOHj1qzu27VIcOHS4rGHyx6Oho/fDDD3rggQeUlJQk6cIzVqtWrRQVFaXixYsrPj5eBw4cuOxlfq1atdJrr72W+hNC9mYAAFKlf//+ht1uNywWi+FwOIyqVasaa9euNU6ePGlus2LFCmPUqFFGvnz5DJvNZlgsFsNqtRoWi8WwWCzG3XffbW7vdrsNwzAMj8djGIZhuFwuY926dUarVq3M7cPCwgyLxWJEREQYL774orFo0aKrxjd8+HAjMjLS3Ld58+YZ+NcAAsOff/5pBAcHGxaLxQgNDTXb6wMPPGBs2LDBbJ8Z5fjx40aePHmMkJAQw2KxGK+++qphGBeuC5s2bTIeeughs01bLBbj6aefNvf1XkMA/Mfj8Rh9+/b1ydeVKlUyVqxYYRw4cMAwDMNITEw0Zs6cabz11ltGeHi4TxuzWCxG7ty5jbZt2xrx8fGGYVzIz95jG4ZhJCUlGT/++KNx3333mft423DOnDmNDz74wFi3bt1VYxw+fLjP9z700EMZ/FcBsr81a9aY+TosLMzM1xe31Yy0bds2Izw83AgNDTUsFovx/vvvG4ZBvgZuxuDBg818HRQUZNSoUcNYv369cf78eXObrVu3GrNnzzaqVq1qREVFmc/X3v1Kly5tbNy48arfceLECaNjx46X5evQ0FCjVatWxvfff3/VfT/77DMjOjra3LdJkybpev5AoFm3bp2ZJy9+tr7rrruMOXPmGMnJyRn6/U6n0yhWrJgRHBxsWK1Wo2PHjoZhXMjVGzduJFcDN4C+cCDw0BcOBB7yNQDcOqpWrWpIuqF/OXPmNL766qsMv98DcOv49ddffa4zRYsW9XdIALKwevXqXXZ/EhwcbJQsWdKoXr26UbNmTaNEiRKG1Wq94r1M/vz5jR07dvj7NABkE59//rnhcDhS/bxUtmxZrjEA0mTQoEE+15EaNWr4OyQA2dyBAweM+vXrp7nf1+FwGEOHDqXfF8BVjRgxIk3XFYvFYnTp0sU4d+6cv0MH4AdFixa94d+jvf86dOiQqu9aunSpER0dnerjtm/f3khKSsrYPwCyFApgAUAqrFq1ymcw8L333mvs37/fMIwLk+wutXPnTqNnz55G6dKlDYvFYthsNiMoKMiwWCxGuXLlzH2vZO/evcYzzzxjfpfD4TD/N1euXMaLL75ofP/998bu3buNXbt2GStXrjReeuklw+FwmDFWqVLFWLx4sWEYTAwArmb//v1G/fr1DYvFYk6StdlsmTrx58SJE0ZUVJTZzrt3724YhmFs2LCBCT/ADfj111992k39+vXNwlfeQlYXW79+vfHggw8a+fPnNyf+eK8BDRs2NE6dOmUYxn+53ns9SElJMZYtW2a0bNnysqIaISEhRvny5Y0BAwYYq1atMk6cOGEcPXrU+Pfff43XXnvNZ4Jh1apVjRUrVhiGQbsGrmbv3r3G3Xff7ZOv7XZ7phbB2rlzpxESEmLez/fv398wDPI1cKPWrl1rTtC1WCxGnTp1jH379hmGcSHnevOttw3FxMQYH3/8sXHHHXcYFovFsNvtZt4tUaKEsWLFiqu2N4/HY7z88svmd3mvHd7/bdeunTF06FDjr7/+MtatW2fMmTPHeOGFF3y2qVSpkjF//nzzeAB8xcTEGE2bNr3qs3VmFMFKTk42ChUqZE7ob9u2rWEY5GrgRtEXDgQe+sKBwEO+BoBby5YtW4wPPvjAaNy4sZEzZ85UTVKoUqWK8dFHHxnHjh3zd/gAAgwFsACkxZUKYKX2X/PmzY2jR4/6+xQAZDNbt2412rZte81CWMWLFzeGDx+e4S9yAhB4SpYs6XM9GTFihL9DAhAA3G63MW3aNKN+/fpXLQ7s/RcZGWl069bN2LZtm7/DBpDFbdq0yejQoYORP3/+a15XgoODjUcffdRYs2aNv0MG4EeZWQDLMAzjyJEjRrdu3YywsLCrHu+OO+4wZs6cmXEnjSzLYhiGIQDAFRmGIbfbrY4dO2rKlCmSpKioKP3xxx8qW7asPB6PrFarzz7edfHx8Vq+fLk++OADrV69WjabTXa7XcnJySpVqpRmzpypypUrX/EYktS/f3998cUXio+Pl2EYcjgccjqdkiS73a4cOXLI7Xab3+VVtmxZ9ezZUx06dFB4eHjG/XGAbCw5OVkjR47U4MGDFR8fL4/HY35mt9vldrtlGIaaNGmiDz/8UJUrV5bFYknXGAzD0LFjx1SiRAklJiZKktq0aaN+/fqpT58+mj9/vrntU089pcmTJ0vSVa8ZwK3MMAwlJyerbdu2mjt3riQpOjpaf/zxh0qXLn3NfH3kyBH98MMPGjdunDZv3iyr1Sqr1SqXy6U77rhDixcvVnR0tNxut2w2m893njp1Sv3799dXX31lrrdareY1JTIyUmFhYXK73bJYLDp69Ki5XZkyZfTyyy+rQ4cOCgsLy8g/D5BtJSQkaMSIEfrggw909uxZud1u87PQ0FAlJSXJMAw9/vjjGj16tCIjIzMkjh07dqhcuXLmcvfu3dWjRw+9/vrrWrBggbmefA1cm2EYslgs6tGjh0aOHClJypkzp37//XdVqFDhiu3Gu09SUpK2bdumN954Q4sXL5bNZpPNZlNKSooKFy6sL774Qs2aNZPdbr9sX0n64osvNHbsWG3ZskVut1vBwcFKTk42t42IiJDL5ZLValVCQoK5vmzZsurRo4c6duyoiIiIjPzzANmS0+nU2LFjNXDgQJ04cULenxq8bcxiscgwDNWuXVt9+/bVAw88oKCgoHSNwe12KzExUaVLlzbvtxs1aqSPPvpI77zzjubNm2duS64Gro2+cCAw0RcOBBbyNQDA4/Fo586d2rVrlw4cOKAzZ87I6XQqR44cioyMVLFixVS9enXlzJnT36ECCFDLli1TgwYNzOWiRYtq3759/gsIQJa2ePFizZo1S7/99pu2bdvmM+7jSiIiItSsWTO9+OKLuu+++zIpSgCB6MyZM/r999+1c+dOnT59WhEREcqXL5+qV6+usmXL+js8ANnQypUrde+995rLQUFBOnz4sKKjo/0YFYBAc/bsWf3111/as2eP4uPjlZSUpJw5cyp37tyqUqWKKlSowG/oANJsz549+vfff83flaQLc+7Kli2r2rVrM6cNgN8kJibq999/19atWxUfH6+goCDdfvvtql27tkqVKuXv8OAnFMACgOtISUlR9erVtWXLFklS69atNWPGDBmG4VMI40rcbrd2796tl19+WT///LPPQOKSJUtq4cKFKlmypE9RjYsHFU+dOlXz5s3T1KlT5fF4zG2sVqv5Q7C30IbH41H16tXVtWtXtW3blsFswBV429fu3bv16KOPauPGjeZnb775pn777TetWrUq0yb+JCQkqEyZMjp27JhcLpfuv/9+5cyZUzNnzjS3YcIPkDpnzpxRjRo1tHv3blksFnXs2FHjx4+/rHDVxbyFMc6fP69Vq1bp3Xff1apVq2S1WmW325WSkqLKlStr2bJlypUr11WPNWLECM2cOVMrV66Ux+NRUFCQXC6XeQzpwgQgb76uVq2ann/+ebVv3558DVyBN99t3bpVbdu21b///mt+1qdPH02ePFmxsbEKCQlRcnJyhhfBOnz4sMqXL6/ExEQ5nU499thjstvtmjp1qrkN+RpIvZo1a2rdunWSpPr162vBggVyOBzXfb6WLkzef+aZZzR9+nRZrVbZbDY5nU4VLlxYEydOVMOGDX22vzh3L126VIsXL9Znn33mk5+9DMMw7w3cbrfuvPNOde3aVW3atCFfA5fw5rqDBw/qoYce0vr1683P3nzzTcXGxmrGjBlKTEzMlCJYklShQgXt2LFDhmGoVq1aypMnD8U0gBtAXzgQOOgLBwIX+RoAAAAAkB0lJCRoy5Yt2rdvnw4fPqxz587J4/EoKipKuXLlUoUKFVS5cuVU/W4MAAAAAAAAAAACDwWwAOA6du/ererVqys5OVkpKSn6v//7Pw0bNixNxzh//rzat2+vuXPn+gwkLlOmjFauXKk8efJcdSDx6dOntXbtWg0aNEgHDx7U/v37Lzt+SEiIWrZsqTfffFPly5dXSEjIzZ84EGC8k9klqWXLlpo/f745Ebd9+/b69ttvdfjwYT388MNau3Ztpkz88Xg8KlWqlA4ePCiXy3XZ50z4AVJv7dq1qlu3rqxWq1JSUjRw4ED169cv1fsbhqEtW7aoZ8+eWrZsmU++rlu3rubOnavIyEiffH3xf+/cuVO///67Bg8erPj4eJ08edK8xlysdevWev3111WtWjWFhoam3x8ACBAX5+vmzZtr4cKF5mdPP/20vv76ax04cEB33XWXjhw5kilFsOLj41WmTBmdOXPGLJpzMfI1kHqnTp1S5cqVdfLkSaWkpKhTp04aP358qva9uH09++yzmjRpkk8RrGLFimn69OmqUaPGVZ+vJWndunX65JNPtGnTJp8Ce165c+fWAw88oLffflvFixdXcHBwOpw5EDguztUPP/ywfvrpJ/O+9/HHH9fUqVN18uRJdevWTfPnz8+0Ilh33HGHNm7ceNn9t0SuBtKCvnAgMNAXDgQ28jUAAAAAAAAAAAAAAAAAINDY/R0AAGR1LpdL58+fl8fjkSSdOHHCXG+3X/8yahiGwsPD9dNPP+mxxx7TrFmzJEnBwcHasWOHmjRpol9++UVRUVHm4GGr1WpOUMiZM6fuv/9+1apVS0lJSZoyZYqOHz+u3bt3KywsTHfffbdKlSqlhg0bZtwfAQgA3sk6gwYN0v/+9z/ZbDa53W5VqVJFHTt2lMvlUoECBTRjxgy1adNGa9asMSf+LFq0SJLSdeKPx+NRYmKikpKS5HK5ZLVazUlIHo+HCT9AGhmGIZfLZU7ISUxMlCQ5nU45HI7r7m+xWFSxYkVNmjRJzz33nBYvXizDMORwOLRy5Up16NBB33zzjXLkyGHmaJvNZv536dKlVbp0aTVt2lSxsbH6/vvvdfLkSe3fv19hYWGqX7++SpYsqdatW2fknwHI9rw5tl+/flq4cKGZr6tXr65nn31WLpdLRYoU0apVq1S3bl0dPnzYLII1bdo0SUr3IljJyclKSEhQSkqKLBaLea9OvgbSLikpSfHx8WYxudjYWDmdTrOQ1bVYrVbzOXzChAkKDQ3VyJEjJUlBQUHat2+fnnjiCa1YsUIFChQwJ+pe3C49Ho9q1Kih8ePHy2azadasWTpy5Ij27Nmj0NBQVatWTaVKldKdd96ZcX8EIJvz5uoPP/xQCxYsMHN1hQoV9Mwzz8jtdit37tz64osvZLVaNXfuXLMI1po1a/T+++9LUroVwXK5XLJYLEpJSZFhGOa1hFwN3Bj6woHAQF84ENjI1wAAAAAAAAAAAAAAAACAQEMBLAC4DofDoeDgYCUlJckwDPMttqkZQCxdmGjgnXg7Y8YMtW7dWnPmzJF0YZLu+vXr1bNnT40ePVphYWHm4GHvpALv/0ZGRioyMlK9evW66ncxMQC4tsTERG3cuFEej0chISFyu9164IEHVK9ePdntdrlcLhUqVEjTp0/P8Ik/VqtVQUFBioiIkHThWuN0OpnwA9wgbzvxTvrZvn27JKWq+NXFihQpogkTJqhDhw765ZdfzGMvWbJEQ4cO1TvvvKPg4GBz+4uvBYZhKF++fMqXL5+qV69+1e+gXQPXduLECa1bt07ShTZssVjUvHlz3XPPPbLb7XI6nSpevLhWrlyZKUWwgoKCFBYWpsTERDkcDrlcLvI1cINCQkIUFRVlFqo8fvy4WVQyNbz35jabTV9++aWSk5M1YcIEud1uBQcHa/fu3WrXrp3mzp3rU7TSy9tOg4KCZLVa1bZt26t+F+0auDqXy6UdO3bI6XQqODhYbrdbTZo00f333y+bzSaXy6W8efPq888/l6QMLYJls9nMSfiSzHsFcjVwY+gLBwIHfeFA4CJfAwAAAAAAAAAAAAAAAAACDSPNAOA6SpQooZo1a0q6MKluw4YN5uD/1PK+XVuSpk6dqmbNmsntdsvlcslisWjp0qUaN26cuXwthmFIujBg2Fvkw4sBxMC1hYaG6qOPPlKZMmWUlJSkOnXqaMCAAXI4HDIMw5zg4534U7t2bblcLnNC7aJFi9S7d29t2rTJbIs3w+FwmG/ATk5OZsIPcBPKlCmjChUqyGazyWq1auPGjdq8ebMkpbm93n777friiy907733yuPxyDAMJSQkaM6cOfrf//531eN5c7hhGOY2hmGQr4E0ypMnj15//XUVK1ZMSUlJuvvuu9W3b1/Z7XYZhiGHwyG3220WwSpQoICSkpIUHBwsi8WiadOmqWvXrjp9+nS6xBMZGal69erJMAylpKSQr4GbEB0drTp16ki6kA//+ecfffPNN2k6xsXP1+PGjVO7du3M52u73a7Vq1dr4MCBSk5OvurztbfN8nwN3Bi73a5hw4apdu3aSk5OVs2aNTV48GA5HA55PB7Z7XZ5PB6zCFbLli0VGhpqTpz3FsH6+eeflZKSclOxeNs5z9ZA+qAvHAgc9IUDgYt8DQAAAAAAAAAAAAAAAAAINIw2A4BUKFWqlDl4Nz4+XitXrkzzMWw2m/mm7dGjR6tu3brmIOAjR45oxowZOnLkiCRdNjj4Yt5BxlarlUHDQBp5PB4VL15cCxYsUIMGDfTxxx8rNDRUbrfbbFveQf+FChXSjBkzMmzij3ffYcOGqWPHjpKkJ598kgk/wA2KjIxUkSJF5HK5ZBiGdu/erWXLlknSdSfoXEm5cuX03nvvqWrVqmZ73bx5syZNmmRODLpWISzvd1osFtoycAMaNGigsWPH6t5779Xnn3+ukJCQK+brzCiCZbVaNWDAALVq1UoS+Rq4Ud68WbFiRUkX2rEk/f777z6FI1Pj4om63333nZo2bSq32y2Px6OUlBQtXLhQf/75pySer4GM4HK5FBUVpf/9739q3bq1Pv30U4WFhcntdpttyWq1ZkoRLO9147333lOvXr0kkauBm0VfOBAY6AsHAhv5GgAAAAAAAAAAAAAAAAAQSCxGeryyFQAClHdS3p9//qmmTZsqLi7O/Ox///ufHnjggRs+9uLFi9WrVy9t2bLFXNe3b18NHjz4pmIGcG3eyTQJCQmy2+0KCgq64nZut1s2m00HDx5UmzZttGbNGtntdrndbhmGoSZNmujDDz9U5cqVb6i4zsXOnz+vKVOm6LnnnvOJEUDqeNvMjz/+qA4dOigpKcmclD9v3jzVqVPnho6bmJiob7/9VoMHD1ZMTIy5/uOPPzYn1wPIWMeOHVN0dLTsdvsVP/fm671796pu3bo6fPiwQkJClJycLMMw9Pjjj2v06NGKjIy86Vg2bdqkpUuX6pVXXpFEvgZu1L59+1SnTh1zEq0kTZkyRU888USaj+W9BuzcuVNPP/201q5da37WtWtXjRw5Ml1iBnA5l8slu90up9MpwzCu+mztzZfHjh3TSy+9pLlz5yoxMVEWi0WGYah27drq27evHnjggase43q81wLpwvWkffv2Pt8NIHXoCwcCD33hQOAhXwMAAAAAAAAAAAAAAAAAAhGjSQHgGrwD+QsVKqQ777xTkhQaGipJGjp0qDZv3nzDx7777rv1+OOPKyIiQg6HQ5I0adIkrV69+iajBnAt3sk0YWFh15xca7PZ5Ha7VahQIU2fPl21a9eWy+WSzWaTxWLRokWL1Lt3b23atEk3W080PDycCT/ATfC2mfLly6tgwYJyuVwKCgrSuXPnNHbsWB04cOCGjhsaGqrWrVurYcOGkqSQkBBJ0rRp07Rnz570CR7ANeXNm/eqxa+k//J18eLFtXLlShUoUEBJSUkKDg6WxWLRtGnT1LVrV50+ffqmY6lcuTLFr4CbZBiGbrvtNj300EOy2Wxmbn3zzTdv6FnYW/CmePHi6t69uwoUKGA+x48ePVpz585Nv+AB+PDmZ4fDcc1na6vVKo/Ho7x58+rzzz9Xy5YtFRoaak7cX7Nmjd5//339/PPPSklJuaFYvPcDkih+BdwE+sKBwENfOBB4yNcAAAAAAAAAAAAAAAAAgEDEiFIASIUCBQqoe/fukqTExERJ0rp16zRhwgQdPnz4ho4ZERGhZ555RoULF5bT6ZTNZtOxY8e0Y8eOdIsbwM25eOLPjBkz0m3ij3di7pUw4Qe4ceXKldObb74pSUpJSZHL5dL8+fM1e/ZsnTt3Ls3H8xbpePPNN5U7d24lJSVJkv766y9t3749XWMHcOMyqgiWx+O56mfka+DGWCwWhYeHq23btpKkpKQk2e12HT58WMOGDbvh/Gq329WkSRNVrFhRhmEoKChINptNW7dulaSbnqQP4OZkVhGsS78TwI2hLxy4NdEXDmQv5GsAAAAAAAAAAAAAAAAAQCBhVCkAXId3IH+rVq306quvmuvPnTun7777TnPnztXZs2dv6LjFihXThx9+KIfDIY/HI5fLpXHjxikhISHd4gdwc7wTf26//fYbnvhjGIb++ecfffvttz7HBJB+vO2vdevWat++vbn+xIkT+vjjj/X777+n+ZgWi0Uej0dly5bV+++/L7vdLofDIbfbre+++05ut/uaBXIAZJ70KIJlGIY2b96sOXPmSLowEZd8DWSMBg0aaMiQIZIkl8slp9OppUuX6uuvv1ZsbGyaj2cYhvLnz69BgwYpODhYKSkpcrvdmjBhgk6ePCmLxZLepwAgjdKjCJZhGFq/fr1GjhxpFqcFkL7oCwdubfSFA9kD+RoAAAAAAAAAAAAAAAAAEGgogAUA13HxRNn27dvrgQceMNcfO3ZMgwcP1rx588y366bluIZhqGzZsipcuLA5WPno0aNKTk5OvxMAcNMunfhz1113XTbx5/XXX/eZ+HPx/27evFn9+vXTM888o7feess8JoD0483XUVFRat++vapVqybpQluLiYlRjx499Mcff6T5uFbrhUemypUrKywsTE6nU5K0bds2ud1u83MA/ndxEaxVq1apYMGClxXBev75569YBMubr/v06aPWrVvrk08+MY8JIH1575OffvppdejQwVx/+vRpjR8/Xt98842OHj2apmNaLBa53W6VL19etWrVkiTZ7XadPXv2hib9AsgYFxfBGjFixBWLYL333nv6+eefzb4xb8HZi5+te/TooV69eqW5Lw7A9dEXDoC+cCDrI18DAAAAAAAAAAAAAAAAAAINs7UBIA3uuOMOPfHEEypWrJgMw5DNZtPBgwfVp08fLV68WElJSWk6nsViUalSpXT33XdLknm83bt3Z0T4AG7CxRN/pk+fftnEn8WLF6t3797atGmTPB6PLBaLPB6P/v33X7311ltasGCBJGnIkCGaPn26n88GCGzNmzdXmzZtzMn0DodDu3fvVqdOnbRhw4YbOuZdd92le+65R9KFghqxsbE6dOhQeoYNIB1483WxYsW0cuXKy4pgTZ8+/bIiWIZhmPl63rx5kqTXXntNCxcu9NdpAAHNO1E3X758ateune666y5z/fHjxzV8+HD98MMPOn78eJqOa7PZFBkZqerVq0u60LYPHz6s7du3p+8JALgp3iJYt9122xWLYK1du1bvvfeeFi1apKSkJHN7b66eP3++JGn06NGaOnWqn88GCGz0hQO3LvrCgeyDfA0AAAAAAAAAAAAAAAAACAQUwAKAVPK+5bZDhw7q1KmToqKi5PF4ZLfbdeDAAb388suaM2eOzp49m+pjulwuSdJtt91mrnM4HIqIiEjf4AGki+tN/Fm0aJFef/11bdmyRW63W1u3btVbb72luXPnmsdo37692rRp48ezAAKbx+ORJPXp00fPPPOMPB6PPB6PgoKCtGPHDrVt21Zr165N0zG9+Tpnzpzmstvtlt1uT9/gAaSL1BTBeu6553Tu3DlJ0qZNm8x87S3M8+STT6pp06b+PA3gltCkSRN17txZ5cqVk2EYslqtOnr0qIYOHapJkyalqdikN18XKlRI0oUiOyEhIYqMjMyQ2AHcuNQWwVq6dKkSExO1Y8eOKz5bd+rUyY9nAQQ2+sIB0BcOZH3kawAAAAAAAAAAAAAAAABAoKAAFgCkkvcN1pLUr18/de7c2ZywZ7fbtX//fr322muaMWOGjh8/nupjStKpU6ckSW632zwegKzpehN/Fi9erFdffVU//vij+vTpo3nz5pn7PvXUU/r2228l/VekB0D6slqtcrvdkqSRI0eqXbt2Zn71FsF66qmn9Msvvyg5OTnVx5Sk8+fPm+ssFou5HkDWc70iWDNmzNCzzz6r33//Xe+8846Zrw3D0FNPPaVvvvlGEvkayEjeibqdO3fWc889p9tvv10ej0dWq1VHjhzRsGHDNHr0aO3evfuyfa7E+3x9+PBhSZLT6ZRhGAoNDc3AswBwo1JTBOvdd9/VuHHj9Nprr/FsDWQy+sIBSPSFA1kd+RoAAAAAAAAAAAAAAAAAECgsxrVmjgEALuN2u2Wz2SRJ3bp105gxYyT9V3Ajf/78evbZZ/X000+rbNmykmRO3ruYd2KvJDVs2FDLli2T1WpVs2bNNHv2bPM7AGRN3mtBbGys2rRpo9WrV8tut8vtdsswDN12220+EwqeeuopTZ48WZJv+weQMS7O161atdLcuXNls9lktVrldDpVtGhR9e3bVy1atFCBAgUkXTtfu1wu1a1bV3/99ZckqW3btvruu+8y96QApJn3WrBv3z7VrVtXhw4dUkhIiJKTk2UYhgoWLKhDhw6Z25Ovgcx1cTt79913NXLkSB05ckQWi0WGYShXrlxq1qyZXn75ZdWsWTNVx2nRooUWLFggq9Wqe+65R3PnzlXOnDkz5XwApJ23/R4/flw9e/bU3LlzlZiY6HMdiIuLM7cnVwOZi75wABJ94UBWR74GAAAAAAAAAAAAAAAAAGR3jDYFgDTyvvFakkaOHKmXXnpJERERcrvdslqtOnLkiL788kv17t1by5Ytk/Tf23K9b+H1bitJ77//vrmdx+NRtWrVGEAMZAPea8Htt9+uadOm6a677pLL5ZLVapXFYlFcXJzZ9pnwA2Q+m80ml8slSfrpp5/Upk0bud1uud1u2e127d+/X/369dOQIUO0bt06Sf/la2+N4Ivz9dChQ7V27VoZhiGPx6NKlSr54awApJU3XxcrVky//fabChYsqKSkJAUFBclisej48ePka8CPrFar+Zzcr18/9erVS6VLlzZzcVxcnGbOnKnOnTvrp59+8tnX+1x+cb7+4IMPtGDBAkkX2nGtWrUofgVkcd7rwG233abhw4froYceUmhoqDkh/+zZs+RqwI/oCwcg0RcOZHXkawAAAAAAAAAAAAAAAABAdmcxvDPKAABpcvHbdPv3768JEyYoNjbW/Nxischut+vDDz9U48aNVbFixcuO8dlnn2nIkCHmm7Hvu+8+LVy4UCEhIVd88y6ArMflcslutysmJkYtW7bUxo0bZbPZzCI5TPgB/MvbRiXpueee06RJk+R2u2WxWGQYhkJCQlSgQAENGjRILVq0UGRk5GXHGD58uAYPHqyTJ09Kkho2bKhFixbJarWSr4Fswul0yuFwaM+ePbr77rt1/Phx8jWQhVzc7kaPHq2xY8fq77//luRbJOvNN99U/fr11aRJk8uO8cknn+iDDz4wn6/r1q2rn376Sbly5SJfA9mA97796NGj6tixo5YsWSJJ5Gogi6AvHIBEXziQ1ZGvAQAAAAAAAAAAAAAAAADZld3fAQBAduV9m67NZtPAgQOVL18+TZ06VStXrpQkBQcHKykpSb169VLFihV1xx13qF69eipYsKC2bNmif/75R1OmTDEHCleoUEEvvviigoODGUAMZCN2u11Op1MWi0V58+aVxARdICux2+1mvh47dqzy5cun6dOna+fOnZIuTNzbu3evnn76aTVq1EiVK1fW/fffr8jISG3fvl0rV67UxIkTffJ1z549KX4FZDMOh0NOp1OhoaGqUqWKfv31V/I1kIV4i1xZrVZ17dpV+fLl05QpUzRjxgx5PB6FhoYqMTFRQ4cO1dixY1W7dm3VqlVLpUqV0ubNm7Vjxw7NnDnTzMvly5dX9+7dzcKW5Gsg67Pb7XK5XEpKSpJhGHK73ea1gVwN+B994QAk+sKBrI58DQAAAAAAAAAAAAAAAADIriyGYRj+DgIAsrOLB/L/9ttvmjJlikaPHi3pv4HG3gl7F6+7WLly5dS9e3d16NBBOXLkyNwTAHBTDMPQv//+q759+2r+/PmyWCwyDIMJP0AW4534I0nTpk3T999/r59++knShYk/ycnJZvsNDg6WJDmdTjN/S1LZsmXVvXt3derUSREREZl/EgBuGPkayB4uboe7d+/WN998o0GDBpmfez/z5mdvW75YuXLl1K1bN3Xs2JHnayAbIVcD2QN94cCtjXwN3LjMbBvkawAAAAAAAAAAAAAAAABAdkMBLABIBxe/9TYxMVHTp0/XBx98oIMHD+rs2bNyOBxyOp0KDg6WxWJRUlKSObD4rrvuUrdu3dSqVSvlzJnTz2cCIC0Mw9DmzZv11ltvae7cueZ6JvwAqeeviT+7du3SnDlzNGjQICUnJys5OVnBwcFKSUmRw+GQJKWkpJiTf2rVqqUXXnhBjzzyCPkauI6slvvI18CNufg5NzXrM+p7586dq7Fjx2r16tU6ceKE+SwdFBQkm82mxMREc90999yj7t27q0WLFkzQBS7hrzadGuRq4MbFxsYqNDRU0dHRmfad9IUDGcsf7To1yNfAjfvjjz/0zz//6Kmnnsq0/Ee+BgAAAAAAAAAAAAAAAABkJxTAAoAMsnXrVm3ZskVffPGFYmNjtWvXLp/PK1SooLp166p///7KkyePWWwDQPaxceNGvfXWW5o/f765jgk/wM3J7KIaa9as0YoVK/Tdd9/pwIEDio+P99m+SJEiatiwod555x0VKFBAwcHBGRYbEKj8XVhj48aNevvttzVv3jxzHfkaSL1Tp07pzJkzcjgcuv3228027Xa7ZbPZMiWGQ4cOaf/+/frss88UExOj1atX+3xeq1Yt1a5dW++8844iIyNlt9szJS4gO8oKbfpSGzZs0Ntvv82zNZBGv/32mzp37qynnnpKL774oqKjo/12701fOJA+slK7vhR94cCN+f3331W3bl1J0qeffqpnn33WbwWbydcAAAAAAAAAAAAAAAAAgKyKAlgAAo6/JwNc+v1Op1MnTpzQ33//rYSEBNntduXJk0elS5dW/vz5/RYnkJ34u11fSXx8vAYNGqTPPvvMXMeEH+D6Tp8+rfPnz2vx4sWKj4/X+fPnVaRIEeXPn1+NGzc2t8voNnTpdSUlJUWbN2/Wxo0bdfr0adlsNhUvXlxlypRRqVKlMiwOIBBklXZ9JcePH1efPn00YcIEcx35Gri+bdu2ad68efrf//6n3bt36/DhwwoPD9fdd9+tO++8U6+88opy5cqV6W3I5XLJ4/Ho77//VnJysux2u8LCwlSyZEnlzJkz0+IAspus2qYlKSEhQR988IHeffddcx25Gri+33//XQ0aNJDT6VTp0qXVuXNndenSJdOL5dAXDqSfrNKur4S+cODGrFq1Sg0aNJDL5ZIk5c6dW8uWLVPFihUzNQ7yNQAAAAAAAAAAAAAAAAAgq6MAFoCAsGvXLp0/f15Vq1b1dyg+UjPo398TF4CsKqu2ay+3262JEydq1KhR+vvvv/Xkk0/qm2++kcSEH+BqVq1apXfffVc7d+7U3r17L/v80Ucf1SOPPKJWrVopLCws09qS2+2WzWa75jbka+DKsmq79nI6nRo0aJC+/fZb7d+/n3wNXMe5c+c0d+5cvfTSSzpz5oycTqeCgoKUkpIii8UibzdixYoVNXv2bJUsWTLT2lJqcjH5GvCVldu0l2EYWrJkiYYNG6bFixeTq4FUWLlype6//34lJycrODhYycnJKlasmF544QW/FsuhLxy4cVm1XXvRFw6k3aXFr6KiojRo0CB16NBBOXLk8Ftc5GsAAAAAAAAAAAAAAAAAQFZEASwA2d5vv/2mBx98UA8++KD69OmjKlWq+DskADcpu7Rrp9Op8ePH69ChQxo0aJAkJvwAV3Ls2DGNHz9e/fv3l8vlksVikc1mk8fjUXBwsFwul5xOpySpePHieuSRR/TOO+8oR44cfmtTTPIBri07tGtvO05KStKAAQOUkpKiTz75RBL5GriS2NhYffrppxo+fLjcbrfsdrtcLpesVqs8Ho/ZxoOCgswJ+YsWLVKpUqVSVUwSQObKTm3a4/Fo0aJF2rhxo3r37m2uI1cDvgzDUFxcnAoXLqzExEQFBwfL6XTKMAwZhpGliuUASJ3s1K7pCwdS79LiVzly5NBHH32kdu3a+bX4FQAAAAAAAAAAAAAAAAAAWRUFsABka6tWrVLjxo2VnJysHDlyqE2bNurZs6eqVq3q79AA3KDs0q69k40unhjMhB/gcvv27dPQoUM1fvx4ud3uq27nnYgvSVFRUXryySc1dOhQhYeHZ1aoAFIpO7Vrb252uVyy2+0+6wD8Z9++ferfv7++++47s90GBwcrKipK5cuX1/79+5WSkqLY2FhZrVY5HA4lJyeratWqWrZsmSIjI/18BgAulh3b9MUFPcjVwLU1atRIK1euNAvRetu5pCxVLAdA6mX1dk1fOJB6FL8CAAAAAAAAAAAAAAAAACDt7P4OAABu1Nq1a1W/fn253W6FhITo7NmzmjJliiRlyWI5AK4vO7Vr7yQj74QfSUz4AS4RGxurd955R1OmTDEn7uXMmVNPPPGEKleurIiICDmdTo0fP1579+7VsWPHZLFYFB8frzlz5qhChQrq2rUrbQvIQrJbu7ZarTIMwyx+ZRgG1xTgErGxsZcVyilYsKA+/vhjVaxYUZUqVdKxY8e0a9cuDR06VPPmzZPT6VRwcLC2bNmiKVOmqFu3bkyAB7KI7NqmLy7kwbUEuLbChQvL6XRKkmrUqCGXy6X169fLYrFo3759GjVqlCRRBAvIRrJ6u6YvHEgdil8BAAAAAAAAAAAAAAAAAHBjGJkKIFvat2+fevXqJbfbraCgICUnJ8tmsykpKUlTpkzRiBEjtGHDBn+HCSANaNdAYDl//rw++eQTs0hOcHCw6tSpo9WrV2vUqFHq0aOHOnTooC5duuinn37SO++8o0qVKpkT+GJiYjR79mwlJSVJulC0BoB/Zdd2ffGkYCb+A77Onj2rzz77zCyUExISovr162vlypVq27atKlWqJEnKmzev6tSpozlz5uiRRx6Rx+OR0+mU0+nUn3/+KYkJ8EBWQJsGApu3qF3Dhg0lScHBwSpVqpRatWql22+/3bzv9hbLGTdunE6dOiWLxcIzNZBF0a6BwEHxKwAAAAAAAAC43LJly2SxWMx/AwYM8HdIuEEDBgzw+f9y2bJlGfZdF39P/fr1M+x7AAAAAABA1mL3dwAAkFYJCQn6/vvvtWXLFtlsNqWkpMhms5kTBbzFciSpZ8+eqlq1qj/DBZAKtGsg8MyePVsjRoww23HdunU1YcIEFS5cWG63WzabTYZhyDAM5c2bVx06dFBISIgGDhyomJgYSdLixYs1fvx49ezZk6I1QBZAuwYCz9SpUzV8+HB5PB5ZLBbdd999Gjt2rE+79vIujxw5Unv37tU///wjSdq2bZskmZPzAfgPbRoIbN7CdN5idsnJyUpOTlafPn1ks9k0btw4HThwwKdYjiR16dJF0dHRtGsgC6JdA4HhZotfXdyWadcAAAAAAAAAENhOnjypP//8UzExMYqPj1dKSorCw8OVK1cuFS9eXKVKlVLBggX9HSYAAAAAAECmowAWgGzD4/HIarVqz549mjJlik6fPm1+1q5dO+3fv18rV66UYRgUywGyCdo1EJg2bNig5557zpzwU7x4cXPivcfjMSfee9/OI0nh4eFq1aqVfv75Z8XExCgkJERJSUn6+++/JTHxB/A32jUQeH7//Xf16NHDbNfly5fX6NGjL2vXXt4CtdHR0SpXrpxZLCchIUFOp1OS5HA4JNG+AX+gTQO3Bo/Ho/z586t48eLat2+f/vjjD506dUq9evWS2+3WxIkTKZYDZDO0ayB7u7T4VUREhD788MNrFr/ytlvv/16r+JX3dzQAAAAAAAAAgWfSpEnq1KmTuVyvXj0tW7bsho61bNkyNWjQwFwuWrSo9u3bd5MRIr0kJCRo0qRJGjt2rNavX3/d7fPnz69atWqpUaNGat68uUqVKpXxQQIAAAAAAPgZI+UAZAuGYZiDe3v37q3Nmzebn3Xp0kWTJ09Wr169VLt2bXNgsLdYzogRI7Rhwwa/xA3g6mjXQGA6efKkPvroIyUlJUm6MOFn0qRJKlasmNxu91Un6xiGody5c+uNN96Q3W4391+6dKmOHTvGRD7Aj2jXQODZs2ePevbsaU7QjYyM1NSpU1W0aNHrTq612WwqXbq0pAtF7xo1aiSHw2EWyvGuly5cBwBkPNo0cOuwWq0qWLCgKleuLMMwdOTIEW3evFnh4eHq3bu3nn32WRUpUsQsoOEtljNu3DidOnXKLLbh5fF4rvjfADIP7RrIvlatWqVGjRrJ5XLJbrcrLCxMo0ePVtu2ba9a/Mrtdpv316dPn9bKlSv14YcfqlOnTnriiSfUs2dPvffee1q9erXOnz9P8SsAAAAAAAAAt5T69eubLw4IlPGFK1asUOXKldWjR49UFb+SpCNHjmjOnDl6+eWXVbp0aZ+XjAMAAAAAAAQqu78DAIDU8HZeDxw4UAsXLpTdbpfL5VKNGjXUvn17SVLr1q3l8Xg0bNgwrVmzRoZhmMVyJKlnz56qWrWq384BgC/aNRBYvJPwdu/erVWrVkm6MJm+U6dOuuOOO8zlq7FYLHK73SpdurSqV6+utWvXyuFwKCkpySyaAyBz0a6BwJSUlKTvvvtOO3fulCSFhobqww8/VKVKla5bKMd7D3/27Flzon2ZMmV09OhRzZs3T7GxsfJ4PIqOjtaDDz6oAgUKKCwsTNJ/1xQA6Ys2DdxaPB6PLBaLChcubK7btGmTGjVqpNDQUL3++uuSpAkTJujAgQM+xXKkC0Xno6OjZRiG3G637Ha7nE6nHA6HrFar3G73Ne/xAaQ/2jWQPR05ckRNmzZVSkqKgoODlZKSohw5cqhIkSKKiooyC9Ndes/sbY8jR47UokWLNGfOnCsWmh0xYoRKlCihzz77TBUrVlR4eHjGnxQAAAAAAAAAIF3NmzdPjzzyiJxO52Wf5cyZU0WKFFF4eLjOnTun48eP69ixY1c8Di8sAwAAAAAAtwJeFwkg29i/f79+++03c9nhcKh58+aqW7euue6RRx7Ra6+9ptq1a5sDir3FckaMGKENGzZketwAro52DQQOb/scNGiQ9u/fL+nC2+wbNWqkiIiIVB3DZrMpR44cql69urn/iRMntGnTpowJGsA10a6BwGSxWBQfH69z585Jkho0aKB69epJ0jUL5Xj33b17t6ZPny7DMJQrVy7t379ftWrV0nPPPacBAwZo0KBBeuWVV1SrVi29/PLLWrZsmbkvg7GA9EebBm4tVqtVFotFzZo1U0hIiCTp119/lXShiI63WM6zzz6rIkWKmMXqvMVyxo0bp1OnTslischut+v8+fO677771KlTJ0kX7t9p20Dmol0D2VP+/Pk1YMAARUREKDk5WRaLRUePHlXnzp21YcOGq94vnzp1Sp07d1aPHj3M4lehoaGyWCxyOBzmdeDUqVNavXq1WrdurTFjxujAgQOZfYoAAAAAAAAAcNPq168vwzDMfwMGDPB3SJlm9+7datOmjU/xq/DwcPXt21dbtmzR6dOntWnTJq1evVr//vuvjh49qsOHD2v27Nl69tlnFR0d7cfoAQAAAAAAMh8FsABkG0WLFlW7du2UN29euVwu1a5dW3379pXdbjc7xCWK5QDZCe0aCCxHjhwxi+RI0lNPPaWHHnoo1ft723zhwoUl/Tdh//z58+kYJYC0oF0DgSc4OFhdunTR448/Lkl67LHHVKZMmVTte/bsWc2cOVOnT5+W3W5XXFycPv/8c8XExMhms8nhcMhmsyk4OFhxcXGaPHmyOnfurNmzZ0uiYA6QEWjTwK0pV65c5kDp2NhYOZ1OWa1Wud3u6xbLGT16tHmc++67T2vWrNGUKVPUrVs3Sf8VwgWQuWjXQPbh8XgkSa+++qqGDBmi4OBgeTwe2Ww27dixQ48//rg2bNggq9VqbitJW7duVZcuXTRx4kSf4yUlJckwDDmdTiUlJZnf4XA4dOTIEQ0ePFhffvml9u7dm3knCQAAAAAAAAC4Kb179zb7fCWpePHi2rBhg9577z2VL1/+ivvkz59frVq10vjx43XkyBF9++23qlGjRmaFDAAAAAAA4FcUwAKQLXgn03Xu3FkDBw5UjRo1NG7cOAUHB8vtdstisfhMuqNYDpD10a6BwJM/f36NHj3anHDv/dH14kk+1+Jt29WqVZMkBQUF+ezP5Hog89GugcBUvnx5DRw4UGPGjFHHjh0lXb89Op1OLV++XBMmTNDZs2flcrkkSQkJCYqOjlZQUJCio6PldruVnJws6UJb37t3r1566SUtXLhQEpPvgYxAmwZuPTVr1tQdd9whi8Wiv//+W3/99ZckyWazyePxXLNYzvjx4zV48GBVq1ZN//zzj6QL14SwsDCdPn3an6cF3NJo10D2cXFhqx49emjYsGHmb1s2m007d+70KYIlXShs17t3b7OYrCSVLFlSTZs21ffff6+ffvpJS5Ys0aBBg9SgQQN5PB45nU5ZLBbFxcVp7NixmjZtmuLi4vxxygAAAAAAAACANIiLi9OcOXN81k2ZMkUlS5ZM9TEcDoeefPJJ/fXXX4qKikrnCAEAAAAAALIeu78DAIDUsFgs8ng8slqt6tq1qxo3bqyiRYvKMAzZbDaf7byD/h955BFJ0rBhw7RmzRoZhmEWy5Gknj17qmrVqn45HwC0ayBQ1alTR+PGjdObb76pxo0bS5I5ySe1vAVyUlJSJEknT56UxOR6wF9o10BgKlu2rIoUKWIuX6s9Op1OrVy5Um+99ZZ27Nhhrm/cuLFq1aqlp59+WhaLRSEhIZo+fbp+/fVXLViwQG63W3a7XbGxsRo6dKgKFSqkSpUqZeh5Abcq2jRwa7Hb7brttttkGIbsdrsOHTok6ULxO29RDm+xHEmaMGGCDhw4IIvFoj179ui9994zi9tJ0osvvqhXXnlFkZGRfjkfALRrILvxtkur1aoePXpIkl577TUlJyf7FMGaPXu2ypcvr9dff13z5883f/PyvvSlatWqCg0NNY/bsGFDvf3223r33Xc1efJk7d69W5IUHx+vTz/9VHfccYeaNGliFtsCAAAAAAAAAGQ9y5YtM19EJklVqlTRXXfd5ceIAAAAAAAAsj4KYOH/27vvKDvK+n/g77slPZCQGEILCSS0BARDr6EqIL2IjaLwE1BUmqiUEIoCIkVFkK4goDQRVI4iUoTQEek9+VJCCRCSkLLl3t8fOXtlU2DTdpPJ63WOx31mnpn53Jh3znX2mc/AYqOmpqbaBOeT3nygWQ4sPuQaimnzzTfPtddem/79+8/1sZVKJV27dq02yUuSqVOnLugSgbkk11BMH3/Idk5aGuUcddRRefLJJ6vbjz322HznO9/JSiut1Gr+0UcfnZ133jlrrrlmfv7zn1cXcz322GP597//nWHDhlUfEgYWLJmGJUNLw4sRI0bk9ttvT1NTU26++ebstdde1ftnMzfLaW5uztVXX51XX301pVKp2pg2SQ455JCMHDkyffr06cBPBUs2uYbFU1uaYO255575whe+kOuuuy7JjPtkBx10UC655JLqd+iPf59uampKXV1dTjzxxPTv3z/nnntunnvuudTV1eWdd97JUUcdlfvuu09zOwAAAABgofrwww9zzz335KWXXsrUqVPTp0+fDB48OJtvvnk6d+7c0eW12VtvvZXHHnssY8aMycSJE1Mul9OtW7f069cvq6yySoYNG5YePXos8Ou+/vrrrcZrrLHGAr/Gp2loaMjo0aPz6quv5p133kltbW369euXIUOGZMMNN+yQdR6PPPJInn766YwbNy51dXVZeeWVs+mmm2aFFVZo91oAAACARY8GWMBipVQqtXnex5vllEqlnH322XnggQdaNcupVCo54ogjsu666y7cwoE5kmsophVXXLHN+f64UqmUfv36pWfPnpk2bVoaGhrS3NycJG1+sN4D+LBwyDUsmZ599tkcfPDBefXVV6vbfvrTn+a4446rjlu+p7dkdY011sh3v/vdfPTRR7noootSKpUyefLk/OIXv8jXv/71dO/evSM+ChCZhiKora1Nkqy33nqpVCpJZizcTtLqO/PHm+WMGjUqzc3NOfvss9PY2FjNec+ePdOnT5/q93zfu6FjyDUsvmZuglUqlXL00UdXm2A9//zzGTNmTPV3XPvvv38uu+yyJGnV4K5FXV1d9XyHHHJIJk6cmGOPPTblcjmdOnXKiy++mD//+c/5+te/Xj0eAAAAAGBujRgxInfffXd13PL7iXHjxuX444/P73//+1Yv32jRvXv3fP/738+PfvSjNq0VuOuuu7L11ltXxyNHjszJJ5/cas7JJ5+cUaNGzfb4T7oHutVWW+Wuu+6a7b7rr78+5557bkaPHv2J9dXW1madddbJ7rvvnu985ztZZpllPnF+W02aNKnVuGW9ZHt49dVXc9JJJ+WWW26ZpY4Wffv2zZe//OWcdNJJ6du370Kv6Yorrsjpp5+el19+eZZ9pVIp22+/fX72s59lnXXWWei1AAAAAIsuq12BwmpZSJwke+yxR4455phsvPHG1Zvg06ZNy7XXXptf/vKX+c9//jPH81QqlTz33HO5//77M23atPYoHZgDuYbFx/w8eNPywE/LL3zn9AvYj6tUKhkzZkwmT56cmpqadv1lMSwp5BqWTEOHDs1KK61UHZ911lnVRjkt381b/n34+EO7K620Uvbcc8+stNJKKZVK6dy5c95888288sor7Vg9MDOZhmIol8tZZZVV0rt379TU1OTxxx/PU089Ndt5Lf7yl7+koaGhVbOMiRMn5rrrrstll12W8ePHa5IDHUiuYfHV0gQrSQ4//PD8/Oc/T+fOndPc3JyamppqTr/whS/k3HPPTTLjHtmc7rV9/HxHH310dtttt5TL5TQ2NqaxsTH3339/kvm7VwcAAAAAMLN77703w4YNyxVXXDHb5ldJ8tFHH+X000/P1ltvnffff7+dK/x006dPz5577pl99933U5tfJTPu1T7++OMZOXJkHnvssQVWR69evVqNH3rooVa/41lYzjvvvKyxxhq5+uqrP3GN5vjx4/PLX/4yq666am666aaFVs+0adOyyy675Bvf+MZsm18lM9aq/P3vf88GG2yQa6+9dqHVAgAAACz6rHgFOlzLw3Vzu68t5rVZTsvN5Uqlkqeffjrf/va384UvfCG33XabZjnQBnINxbMwc/1x5XK5+mBQS26nTp2aJHN8YK8l14cffni22267vP/++6mtrV2gdUERyTUUz4LOdXNzc2pra3PHHXdk0003zSmnnJJjjjkmyYxsf9rDttttt1023HDDlMvlNDQ0ZOLEiRkzZsxc1wFLKpmG4llQua6pqckqq6ySddZZJ+VyORMnTsw777zTak5TU1Pq6uoyZcqUDB8+PE888UR1X8+ePasNc8aMGZNf//rXufzyy/Pee+/N/YeCJZxcQ/HMS67n1ASrXC6nUqlk0KBBOeyww9K7d+8kSW1t7SfWUFNTk6ampiTJV77yldTX16dTp05JkscffzxTpkxpl4elAAAAAIAlw6OPPpodd9yx2tSqpqYmq666ajbccMMMGTJklvUEDz/8cA488MAOqPSTHXzwwbn55ptn2d6vX7+st9562XjjjTN06NB85jOfWah1DB06tNX4tddey69+9auFes0TTzwxRx555CzNy3r16pXPfvazGTZsWHr06NFq38SJE7PvvvvmiiuuWOD1NDU1Za+99sptt902y74VV1wx66+/flZdddXqGtKGhobsv//+ueuuuxZ4LQAAAMDioa6jCwAolUopl8sZP3589UG8fv36VfctiPO3LPrfY489kiRnn312HnjggVQqlWqznCQ54ogjsu6666ampibNzc155plncsIJJ+Rf//pXkuTLX/5y7r///mywwQbzXRcUmVxD8SzsXLeoqalJjx490rVr10ycODGVSiWNjY1JUs39x7U0yTn++ONz++23J0m23Xbb/Pvf/0737t0XWF1QRHINxbOgc11bW1t9yP7ee++tnqNcLs+xgV2LljlrrLFGkqS+vj4NDQ2f+pAv8D8yDcWzoHLd0kxjxRVXTDKjwd19992XbbbZJuVyOeVyudokZ4sttsjjjz9ePfawww5L165dc+ONN2bs2LEplUoZO3ZsLrrooiQzFoUvs8wys/2uDsxKrqF45jXXLU2wampqcvjhhydJfvCDH2TKlCkZNmxYttxyy7mqo65uxnKe4cOHp1OnTtWG8h988EH1egAAAAAAC8K+++6bjz76KMsss0xOOOGE7L///unTp091/5tvvpnjjz8+V155ZXXbrbfemr/97W/Zcccd5+va+++/fzbffPMkydFHH53//ve/1X3/+Mc/5nhcywsHWjz88MO5+uqrq+O6uroce+yx+da3vpWVV155luPffvvt3Hvvvbn11ltz/fXXz9dnmNkmm2yS3r17V+/nJsn3v//9PP300znuuOOyyiqrLNDr3XrrrTnttNNabRs2bFjOPvvsbLfddtW1HQ0NDbnlllty9NFH57XXXksy43dShx56aIYPH5511llngdV09tln569//Wurbfvtt19GjhxZXXuSJG+99VZ++ctf5qyzzkpTU1MOOuigBVYDAAAAsHjRAAvoUA8//HB++9vf5oEHHsjbb7+djz76KJ07d86IESMyZMiQfPOb30zv3r2z1FJLzdfC/LY2y6lUKvn+97+fddZZJ88991yOP/743HbbbdXjd911V01y4FPINRRPe+W6RX19ffVhoSSZPHlykhm/ZG156CeZ0STnqaeeygknnJBbb721mus11lhDkxz4FHINxbOwcl1XV9dqfqVSadNDtpVKJUnStWvXJDMezO3cuXP1gX7gk8k0FM+CzHVLbnfeeedcc801qVQqefjhh5PMyOucmuR85zvfycknn5xu3bpl6aWXzuWXX15tljNmzJhcfPHFSZKDDjpoob/1GIpArqF45jfXMzfBamxszOmnn56TTjopSy+99FzfZ2tubm7VuDZJevXqlW7dui24Dw0AAAAALPFeeeWVDBw4MHfccUdWXXXVWfYvv/zyueKKK1JfX59LLrmkuv3iiy+e7wZYq6yySrUh1MxNrbbbbrs2n2fmJlYXX3zxJzZTWnbZZbP33ntn7733zjnnnFO9B7sgdOrUKUcffXROOOGE6rZKpZKLL744F198cYYPH56tt946G2+8cTbYYIMMGDBgnq81ZcqUHHLIIa22bb/99rn11lvTuXPnWeraZ599st1222WrrbbKk08+mWRGY6wDDjig1e+g5sfYsWMzatSoVttOO+20HH/88bPM7d+/f04//fRsvvnm2W233TJmzJgFUgMAAACw+NEAC+gQ48aNy2WXXZaRI0dWH6Dr1KlTGhoakiR//OMfU6lUcs0112SjjTbKkUcemfXXX796/Lw8hN+WZjnXXXddkmTHHXfMNddck9tuu616va997Wv53e9+lyTVhcvA/8g1FE9H5DpJmpqaqm8bSlK93se3zdwkp2Xbx3O9IJr2QNHINRRPe+T64/vbmsHa2tpMnTq1+ibGadOmZemll07Pnj3n6vPBkkamoXgWZq779OlTPefYsWMzfvz49O3bNx999FG23HLLVguUjzjiiBx77LHp1atXampqcvTRR6dSqeSKK67I2LFjU1tbm1deeSUnn3xyhg4dmp133nlh/ZHAYk+uoXgWZK4/3gTre9/7XoYPH56VV155nu5r1dbWVo9rqWf55ZdPY2Njamtr/V4LAAAAAFggamtrc/3118+2+dXHnXnmmbnqqqsybdq0JMnf//73RWYN/gsvvFD9uUePHtl///3bfGyfPn0WeD3HHXdc7rzzztx5552z7Hv00Ufz6KOPVsf9+vXL5ptvnhEjRmTXXXfNyiuv3ObrXH311Xn77ber4+WXXz433HDDLM2vPq53797585//nLXWWitTp05NkvznP//JP//5z2y77bZtvvacXHTRRdW/I0nyxS9+cbbNrz5uxx13zMiRI1s1DQMAAACWLB1/hwlY4rz66qv54Q9/mFGjRlUXECf/ewg+Serq6lJTU5NXXnkl1157bbbYYouce+65eemll5LMeDhvXt6w0NIsJ0n22GOPHHPMMdl4442ri42nTZuWa665Jsccc0xuueWW6nGa5MAnk2sono7MdadOndKlS5dqjpuamlrtn12TnGTWXGuSA63JNRRPR+b6kzQ3NydJnnrqqbz++uvV79oHHHBABg0atECvBUUi01A8CzvX66+/ftZaa60kyZNPPpkPPvgg06dPn2OTnBVXXDE1NTVpbm5Ot27dcuyxx+aggw7KoEGDqlnfddddNcmBTyDXUDwLI9ctTbCSZPPNN0/fvn3n+r5WpVJJpVLJjTfemMmTJ1fvp33xi19MfX2932sBAAAAAAvMXnvt1arp/5z07t07O+ywQ3U8ZcqUPPfccwuztDZraeSUzLhH29H3UOvq6nLbbbflG9/4xqfOfeedd3LTTTflu9/9bgYNGpTtttsu99xzT5uuc+mll7Yajxo1KksttdSnHjdw4MB873vfa7Xt4osvbtM1P0mlUsmVV17ZatuZZ57ZpmOPOeaY9O/ff75rAAAAABZPVsQB7eqtt97KKaeckt///vfVhfdLLbVUttpqqxx44IHZeeeds8Yaa6Surq66KLhLly6ZPn16jj322IwcOTK33XZbktYLh+fGzM1yjj766FbNchoaGvLmm29Wx5rkwCeTayiejs51fX19klRzPWnSpOq4rU1y5Bpak2sono7O9ZyUy+XU1tYmmbEo6uWXX06lUkl9fX023njjBXINKCKZhuJpj1z37Nmzuni5S5cuufvuu7PpppvOsUlOi9ra2pTL5XTt2jXHHntsDjzwwHTu3Dlf/vKXc9111yXJAm+mB0Ug11A8CzPX83Mvq6URfKlUyr333ptkxn20QYMG5XOf+9w8nxcAAAAAYHa+9KUvtXnuuuuu22r82muvLeBq5s3yyy9f/XnixImt1iJ2lK5du+ayyy7Lgw8+mN122626jvKTVCqV/POf/8xWW22V/fffv1Vjr5lNnjw5jz32WHXcrVu37Lfffm2ub+bmXC33o+fHc889l7feeqs6Hj58ePXlL5+mc+fOc1U/AAAAUCx1HV0AsGT53e9+l9///vcpl8upr6/P8OHDc8kll2SVVVZJ165dk8x488Itt9ySO+64I5dffnmmTZtWfWvuddddl6eeeirjxo3LIYccUl1IPLcLiFua5ZRKpey5555JklNPPTX//e9/U1NTU30Q30P38OnkGopnUch1Xd3//q/K9OnTkyTNzc15/vnnNcmBeSDXUDyLQq5n9vHjzzrrrFx22WVJZizM2nfffS1Qgk8g01A8CzvX5XI5dXV12XzzzfPggw9m2rRpOeKII6rftZPZN8lp0XK+rl275uijj87aa6+d3XffvXpu38FhVnINxbOofw8fNWpUtcFWpVLJjjvumPXWW2/+PzgAAAAAwMesv/76bZ7br1+/VuMPP/xwQZczT7bffvtceeWV1fFXv/rVnHzyyfnmN7+ZXr16dVhdSbLhhhvmT3/6U8aPH5+//OUvufvuu3PfffflxRdfrL5UdHauuuqqvPzyy7nzzjvTuXPnWfY/8sgj1Zc7JMkGG2yQHj16tLmuIUOGZKWVVqo2MRs3blzGjh2blVdeeS4+XWsPPfRQq/GIESPm6vgRI0bkvPPOm+frAwAAAIsvq1yBdvPII4/khBNOSFNTU5JknXXWyXXXXZehQ4emU6dOSZKmpqZ07do1++23Xy699NJcfPHFWXfddatvOqhUKnnqqacyatSonHvuuUlmLOj/+E3btiqVStWf11577dTX11cb5JTLZQ/dQxvINRRPR+e6Uqmkrq4uPXr0qGa65brPPfdcjj/+eE1yYC7JNRRPR+d6dpqbm6t5/fWvf52f/exn1cxvvvnmOfPMM5PMyDXQmkxD8bRHrlsyut5661UXRX/8u/MnNclp0dKko1u3bprkwKeQayieRf17+AUXXJCf//zn1X1bb711zj777Op1AQAAAAAWlJmbWn2S7t27txpPnTp1QZczT/bZZ5+stdZa1fHkyZNzzDHHZNlll80OO+yQM844I//+978zbdq0Dquxb9++OeCAA3L55Zfn+eefz4QJE/Kvf/0ro0aNysYbbzzbY+6///4cc8wxs903duzYVuN11llnrmv67Gc/22r8f//3f3N9jo979dVXW42HDRs2V8evvfba83V9AAAAYPFlpSuw0LUswP3Tn/6UpqamlEqldOvWLZdddlkGDBiQcrmc2traJEldXV2rYw4++OCcf/75+fKXv5xu3bolmbFoeNy4cTnppJNy2mmnJUlqa2vn6YG7SqWSJ554Iscee2weeeSR6tt6PXQPn0yuoXgWlVyXSqXU1tZWm9clyQcffJCnnnoqxx13nCY5MBfkGopnUcn17LRc95xzzslpp52W999/P5VKJeuss06OPPLILLvsstVrAjPINBRPR+R6xIgROfTQQ5P8b3F5W5rktJg5x3INrck1FM/i8D38vPPOy09+8pN89NFHSZJ11103Rx99dLp06ZJKpdLqhTAAAAAAAPOrS5cu83zsotKwv76+PrfeemtWX331VtsbGhryj3/8Iz/60Y+yxRZbpFevXtl6661z3nnn5e233+6gamdYaqmlMmLEiJx00kkZPXp0nnnmmey6666zzLvooosyZsyYWbZ/8MEHrcZ9+/ad6xpmPmbmc86tCRMmtBr36dNnro6f2/kAAABAcdR1dAFA8ZVKpVQqldx3331JZtzgXnvttTN48OA0NjZW35A7u2NKpVK22GKL9O/fP4MHD85ZZ52VSZMmpa6uLh999FFOP/30dOnSJcccc0z1rdZtXcjf8kbek046qfrQfaVS8dA9tIFcQ/EsSrme+QGe119/PT/4wQ9y++23V7fJNXw6uYbiWZRynbTOakNDQ0466aT87Gc/q9a2+uqr59vf/nY+//nPVx/iBf5HpqF4OiLXyy23XI466qg0NzfnkksuyWGHHdbmJjnAp5NrKJ5F+Xt4c3NzTjjhhJx99tkpl8utvodvvfXW1VoAAAAAgMVfSwP+FtOnT5/nc02bNq3VeHb3OZcEq6yySh577LGcd955+fWvf5033nhjljnTp0/PXXfdlbvuuivHHXdcvvWtb+X0009Pz549O6Di1tZcc83ccsst+eEPf5gzzzyzur2pqSl/+MMfctxxx7WaP3ny5Fbj7t27z/U1Zz5m0qRJc32OT6qp5WUS81oPAAAAsOTwNCnQLt5///2MGzeuuiC3b9++6dat2yfeWP/44t0hQ4bkkEMOyamnnpqllloqTU1Nqa+vz/Tp0/Ozn/0sF154YZIZb9htyxskKpVK/vvf/7ZqkpN46B7mhlxD8Swque7UqVOWXnrpJDPeeP/GG2/k9ttvr15LrqHt5BqKZ1HJdcuciRMn5rrrrsuXvvSlnHXWWalUKqlUKhk6dGiOOOKIfOlLX5rrhUywJJFpKJ72zHVzc3OSZPDgwTnmmGPyhz/8IT/84Q81yYEFTK6heBa17+GTJk3KH//4x+yzzz4588wz09zcnEqlkrXWWivf/va3s88++6Rr164L4JMDAAAAAIuKXr16tRrP3DhobszctGjmcy9JunXrlh//+Mf5v//7v9xzzz05+eSTM2LEiNneY21oaMgvf/nLbLDBBnnnnXc6oNrZO/3007Paaqu12nbvvffOMq9Hjx6txh999NFcX2vmY+a3EdjMDaymTJkyX/UAAAAAS466T58CMP/K5XIaGxurC3wbGxuTpPqm3Lbo169fDjjggPTo0SNHHXVUJk6cmNra2owfPz7nnXde+vbtm3322adN55swYUJ+8pOf5JZbbkldXV2ampo8dA9zSa6heBaVXJdKpXTq1Kl67dra2lQqlZTLZbmGuSTXUDyLSq6feuqp/POf/8y1116bV199Ne+++2513yabbJIjjzwyX/jCF2ZZaAW0JtNQPO2Z69ra2up36CFDhmSVVVZJbW3tQvtssKSSayieReV7+LPPPps77rgj1113XV5++eVWD1htuOGG+d73vpcvfvGL8/3AEQAAAACw6Jm5SdXbb789z+eauXnTktwAq0VNTU222GKLbLHFFhk5cmQaGxvzyCOP5Pbbb88111yTl156qTr3+eefz4EHHpi//vWvHVjx/9TW1mbPPffMGWecUd32xhtvzDKvd+/ercbvvffeXF9r/Pjxn3jOuTXz372Zz/9p5uUzAAAAAMXgqVKgXSy99NKtboQ++OCDefrpp9u8gPjj59lnn31y+umnp2fPntU3Yb/00ku5+uqr89///rdN5+natWu22mqr9OjRI01NTdl///09dA9zSa6heBaVXDc1NaWhoSFJUldXp0kOzAe5huJZFHJdqVQyffr0XHrppXnooYfy/vvvV6+/xx575LLLLstuu+2mUQ60gUxD8bR3rj/+HVqTHFg45BqKZ1H4Hp4k9fX1ufzyyzN69Oh88MEH1evvvPPOueCCC7LXXntpfgUAAAAABTVo0KBW43fffXeumwW1ePrpp1uNBw4cOK9lFVZ9fX022WSTjBo1Ki+88EIuuOCCVr+T+dvf/pZnn322Aytsbeb/DadMmTLLnJVXXrnV+Iknnpjr68x8zMznnFurrLJKq/FTTz01V8e39dkRAAAAoHg8WQosdOVyOUkyZMiQJDNuHDc2NubFF19MkupC4Lbq2bNnvvSlL+X4449P9+7dU6lUUqlU8pe//CU33XRTyuVy9W29c9KlS5cccMABOe200/LNb34zV155ZbVWD93Dp5NrKJ5FKdd1dXU54IADsuKKK6ahoUGTHJhHcg3Fs6jkulQqZfjw4bnwwguz4oorprm5OcOHD88pp5ySG2+8MWussUbq6+vn89NC8ck0FM+ikmtgwZFrKJ5FKdeDBw/O7373u6yyyippbGzMSiutlO9///u59dZbM3z48HTq1Gk+PikAAAAAsChbYYUVsuKKK7badt99983TuWY+bpNNNpnnujrSzGsIF9bvTEqlUg4//PB85StfabX93//+90K53rz46KOPWo379u07y5z111+/1ctUHn744UyePLnN13jppZfy2muvVcfLLbdcBgwYMA/V/s8GG2zQanz33XfP1fFzOx8AAAAoDk+XAgtdTU1NOnXqlN122y1J0tjYmClTpmTkyJGZMGFCamtr5/rGdN++fbPvvvvm61//ejp37pxkxmLlU089NXfddVeb3s7bvXv3fOtb38oll1xSPd5D99A2cg3Fs6jlervttssPfvCDlEql7LXXXprkwDyQayieRS3Xm2++ea6++ur84he/yIUXXpgTTjihejzw6WQaimdRyzUw/+QaimdRy/Xaa6+dm266KT/84Q9z/vnn55xzzkmy8B7sAgAAAAAWHVtttVWr8XXXXTfX53jmmWfy3//+t9W2Lbfccr7q6ijdu3dvNZ4yZcpCvd5mm23Wajx+/PiFer258fDDD7caz64xVY8ePTJ8+PDqeMqUKfnjH//Y5mtcfvnlrcYz/32cF2uuuWaWXXbZ6vjRRx/NM88806Zjp0+fnmuvvXa+awAAAAAWT54wBdrNsGHDsvrqq1cXFT///PP5xS9+kenTp8/TYv6BAwfmgAMOyEYbbZRSqZQuXbqkUqlk1KhRGTduXJvO0bIAuVKpeOge5oFcQ/EsKrnu169f9t1339x+++25/vrrk2iSA/NKrqF4FpVcJzMWzH3nO9+pLqbyPRzmnkxD8SxKuQYWDLmG4lmUcr3OOuvklFNOqTblqlQqmuEBAAAAwBLgkEMOaTW+/vrr8/jjj8/VOX74wx+2Gm+99dYZPHjwfNfWEZZZZplW41dffXWhXm/mhle9e/deIOd98MEHM3r06Hk+/uWXX84tt9zSatvnP//52c49+OCDW41POumkTJ48+VOvMXbs2Jx//vmtts3893FelEqlHHjgga22HXfccW069uyzz87bb7893zUAAAAAiydPrgDtZtiwYdluu+1SLpfT2NiYhoaG3HrrrXnggQfm+ZwbbbRRDj300FQqlUybNi01NTV58cUX8+KLLyaZ8UB9W1hADPNGrqF4FqVc9+vXL9tvv311jgfvYd7INRTPopTrmfkeDnNPpqF4FuVcA/NGrqF4FrVc19XVVX/2PRwAAAAAlgxbbbVVNthgg+q4ubk5e++9d1555ZU2HX/iiSfm1ltvbbXtmGOOWaA1tqehQ4e2Gt9www1tPvarX/1q7r777jbP/+CDD3LppZe22tbysrD59eyzz2bTTTfNjjvumDvvvDOVSqXNx7722mvZddddM3Xq1Oq2Xr16Zdddd53t/K9+9atZdtllq+M33ngj++67bxoaGuZ4jQkTJmS33XbLlClTqtvWW2+9bLPNNm2u85Mceuih1ZeaJ8ltt92Wn/zkJ594zO23355Ro0YtkOsDAAAAiydPmgLtomUx76hRo7L++utXb+A++uijOe+886pd+ufmxm7L3P322y9HH310ddtbb72V3/zmN0nigXpYiOQaimdRzrXsw7yRayieRTnXwNyTaSgeuYbikWsoHrkGAAAAABYVV155Zbp161Ydv/LKK1lvvfVyyimn5OWXX55l/tSpU3P77bdnq622ymmnndZq34EHHpiddtppode8sLS8XLPFqaeemoMOOihXXXVVbr/99txxxx3V/zz66KOt5v7lL3/JiBEjstZaa2XkyJEZPXp0qwZPLaZOnZrrr78+G220UcaOHVvd/tnPfrZVM7IF4fbbb8+2226bQYMG5cc//nH+/ve/Z+LEibPMq1QqeeaZZ3LCCSdkrbXWyjPPPNNq/ymnnJJllllmttfo1q1bLrnkklbb/va3v2XDDTfMP/7xj1YvZmhoaMiNN96YddddN0888UR1e6dOnXLllVfOxydtbeDAgTnxxBNbbTv++OPzla98Jc8991yr7W+//XZOOOGE7LLLLmlsbMzAgQMXWB0AAADA4sXqOqBdtCzm7dGjR770pS+lX79+1X233HJL9eZmqVRq8xutPz53r732ysCBA1NbW5u6urq8+OKLmTx58gL+FMDHyTUUj1xD8cg1FI9cQ7HINBSPXEPxyDUUj1wDAAAAAIuKtdZaK7/97W/TuXPn6raJEydm5MiRGTx4cJZddtmss8462WijjTJkyJD07t07O+64Y+65555W59lyyy1zwQUXtHf5C9R6662XbbbZpjoul8u58sors//++2fHHXfM9ttvX/1Py4sIZvbss8/mlFNOyaabbpqllloqAwcOzOc+97lsvPHGWWONNbL00ktn3333zYsvvlg9plu3brn88ssX2ucaO3ZsfvrTn+bzn/98evfuneWWWy5rr712NtlkkwwbNixLL710hg4dmtNPP32We8mHH354vvOd73zi+XfZZZeccMIJrbY98cQT2WGHHdK3b9+st956WWedddK3b9/svfferRp/1dTU5KKLLso666yz4D5wkh/84Af5/Oc/32rbtddemzXXXDMDBgzIhhtumCFDhmSFFVbI6aefnqamptTV1eWKK65YoHUAAAAAiw8NsIB21alTp3zta1/L5ptvniTVm/SXXnppvvvd7yaZcQO1ubm5TedrWZw8fPjwrLrqqmlqakpTU1MeeeSRWd56ACwccg3FI9dQPHINxSPXUCwyDcUj11A8cg3FI9cAAAAAwKJg7733zl133ZUBAwbMsu+dd97Jk08+mYceeigvvfRSpk+f3mp/TU1NDj/88Nxxxx3p1q1be5W80Fx11VX53Oc+t0DO1dzcnLFjx+bxxx/Pgw8+mOeffz6NjY2t5qywwgq54447Ftg1k2TgwIFZccUVZ7uvXC7nrbfeylNPPZUHHnggTz/9dCZNmjTLvJ49e+a8887Lr371q5RKpU+95qmnnppzzz03nTp1arX9gw8+yH/+8588+eSTs1xnqaWWyvXXX5+DDjpoLj5d29TX1+fmm2/OjjvuOMu+1157LQ8//HBeeuml6v33Tp065aqrrsqIESMWeC0AAADA4kEDLKBdVSqVLLvssjnjjDMyYMCATJ8+PV27dk2S/OpXv8oxxxyTJKmtrU2lUmnTOcvlcurr67P99tsn+d/C5ClTpiyETwDMTK6heOQaikeuoXjkGopFpqF45BqKR66heOQaAAAAAFhUbLzxxnnxxRdzySWXZPjw4dWG+3PSp0+fHHjggXnqqadywQUXpL6+vp0qXbiWX375PPDAA7n++uvzla98JUOHDk2vXr1SV1f3icc99NBDOeuss7Ltttume/fun3qdwYMH59RTT83zzz+fTTbZZEGVnyQZMWJE/u///i8PPPBATjjhhGyxxRbVe8WfZujQofnJT36SF154Id/73vfa1Pyqxfe///08++yz+drXvpYePXrMcV6fPn1yxBFH5KWXXsqee+7Z5vPPra5du+avf/1rLr300qyyyipznLf99tvn4Ycfzn777bfQagEAAAAWfZ989wdgASuVSimXyxk8eHBuu+22bL755pk4cWK6du2aqVOn5pxzzklTU1POO++8Nt+obbmx379//+o1gPYj11A8cg3FI9dQPHINxSLTUDxyDcUj11A8cg0AAAAALEo6deqUgw8+OAcffHA+/PDDPPjgg3nzzTfz3nvvZfr06enVq1f69OmTtdZaK8OGDZvn+4933XXXPNd44IEH5sADD2zT3BEjRrT55QIfV19fn7333jt77713m49ZbbXVcuyxx+bYY49Nc3Nznn322bz44ot54403MmnSpCRJz549s8IKK2TdddfNoEGD5rquuVEqlbLRRhtlo402SpI0NjbmpZdeygsvvJBx48Zl4sSJaWxsTI8ePbL00ktn4MCBWXfdddOrV6/5uu4qq6ySq666Kg0NDbn//vvz6quv5t13301NTU369euX1VZbLRtuuOGnNlib2cknn5yTTz55nmr65je/mW9+85t5+OGH89RTT+Wtt95KXV1dBgwYkM033zwrrLBCq/nz8ncGAAAAWPxpgAW0u5qamjQ3N2fYsGH529/+li984QuZNGlSdSHxL37xi0yfPj1nnXVWevbsmWTGDcw53Zxvbm5ObW1tnn/++STJtGnTkiRLLbVU+3wgQK6hgOQaikeuoXjkGopFpqF45BqKR66heOQaAAAAAFgULb300tlhhx06uozFUm1tbYYNG5Zhw4Z1dClV9fX1WXPNNbPmmmu2y/U6deqUESNGZMSIEe1yvbbYYIMNssEGG3R0GQAAAMAiau7adQMsILW1talUKtlkk01y/fXXp2fPnpk6dWq6du2aJPnNb35T7fDf2NhYffvuzMrlcmpra5Okuoi4trY2G2ywQQYPHtx+HwiQaygguYbikWsoHrmGYpFpKB65huKRaygeuQYAAAAAAAAAAICOowEW0GFa3oq7ww475C9/+UuWXnrpTJ06NV26dEmS3HDDDTnqqKNy0UUX5cMPP0xNTU0qlUqSGW/ObW5uTk3NjH/GzjnnnNx0003VfRtvvLG36EIHkGsoHrmG4pFrKB65hmKRaSgeuYbikWsoHrkGAAAAAAAAAACAjlGqtKzIA+gglUolpVIpTz75ZD7/+c/nrbfeSk1NTfWtucsss0yGDRuWs88+OyussEKWW265VsefeeaZOffcc/Puu++mUqlk0003zS233JI+ffpUzw20L7mG4pFrKB65huKRaygWmYbikWsoHrmG4pFrAAAAAAAAAAAAaF8aYAGLhObm5tTW1uaFF17IEUcckYcffjgTJkxIqVRKbW1tmpqa0rt37wwYMCDbbLNNevfunfHjx+eFF17I7bffnlKplEqlkjXWWCMnnHBC9t1339TV1XX0x4IlmlxD8cg1FI9cQ/HINRSLTEPxyDUUj1xD8cg1AAAAAAAAAAAAtB8NsIBFRstC4nHjxuXCCy/MzTffnKeffjo1NTUplUppbm7+xOPXXHPNHHrooTnwwAPTs2fPdqoa+CRyDcUj11A8cg3FI9dQLDINxSPXUDxyDcUj1wAAAAAAAAAAANA+NMACOkRzc3Oeeuqp9O3bNyussEJ1e7lcTk1NTSZPnpwxY8bkzDPPzK233pqJEycmSUqlUurq6lKpVNLU1JTa2to0Nzdn8803z7e//e3stNNOFhBDB5FrKB65huKRaygeuYZikWkoHrmG4pFrKB65BgAAAAAAAAAAgI6jARbQZi1vuV0Q53nooYdy0EEHJUluu+22DB48eI7z//KXv+TJJ5/MlVdemQ8++CDjx49PfX19yuVyNttss6y//vo58cQT06NHj9TU1Mx3fbAkkWsoHrmG4pFrKB65hmKRaSgeuYbikWsoHrkGAAAAAAAAAACAYtAAC2hl8uTJ+eijj3Lvvfemubk5dXV1GTBgQDbYYIMFcv7m5uY8+OCDOfbYYzN69OgkycCBA/PII49kmWWWmWXuxxctjx8/Ph999FFefPHFdO/ePd27d8+qq66a7t27L5DaoKjkGopHrqF45BqKR66hWGQaikeuoXjkGopHrgEAAAAAAAAAAKD46jq6AGDRMXr06Jx77rl5/PHH8/LLL1e3L7300ll33XUzcuTIfO5zn8tSSy01T+dvWUB8zDHH5IEHHqhu33XXXWdZQJxkljf29unTJ3379s3KK688y9xKpZJSqTRPdUGRyTUUj1xD8cg1FI9cQ7HINBSPXEPxyDUUj1wDAAAAAAAAAADAkqFUqVQqHV0E0LHefffdXHnllTnuuOOq2+rqZvTHa3mTbmNjY4YMGZJDDz00X/3qV9OvX7+5usacFhAff/zxOfXUU5Mk5XI5NTU1C+ATAXINxSPXUDxyDcUj11AsMg3FI9dQPHINxSPXAAAAAAAAAAAAsGTRAAuWcGPHjs3pp5+eK664Is3NzbOdU19fn3K5nObm5qy44oo59thjc8ghh6RLly5tusacFhD/+Mc/zmmnnVadM/Nbc4F5I9dQPHINxSPXUDxyDcUi01A8cg3FI9dQPHINAAAAAAAAAAAASx4NsGAJ9tprr+VHP/pRrrvuupTL5STJUkstlU022SSrr756Jk2alEceeSRPPvlkkqRUKqVSqWSNNdbIn//85wwePDiVSiWlUmmO17CAGNqXXEPxyDUUj1xD8cg1FItMQ/HINRSPXEPxyDUAAAAAAAAAAAAsmTTAgiXUhx9+mJNOOikXXHBByuVyOnXqlKFDh+bKK6/MkCFDqm/IbWxszIknnpg//vGPGTNmTGpra9Pc3JyDDjool1122Sdeo1KpZPTo0RYQQzuRaygeuYbikWsoHrmGYpFpKB65huKRaygeuQYAAAAAAAAAAIAlV01HFwB0jJtuuim//vWvUy6XU1NTk2233TY333xz1l577dTX1ydJGhoaUl9fn9NOOy3f+MY30q1bt5RKpdTW1ubVV1+tvnl3TkqlUkaPHm0BMbQTuYbikWsoHrmG4pFrKBaZhuKRaygeuYbikWsAAAAAAAAAAABYcpUqlUqlo4sA2tfTTz+dzTbbLBMnTkySrLbaavn73/+eAQMGVBcVt/j4eIcddsgdd9yRJFlppZXyn//8J7179/7U633729/OhRdeaAExLERyDcUj11A8cg3FI9dQLDINxSPXUDxyDcUj1wAAAAAAAAAAALBkq/n0KUBRtPS7u/nmmzNp0qTU1tamS5cu+fWvfz3bBcRJUlNTk6ampiTJt771rXTq1Km6/ePnnJ3m5uYkyQUXXJBbbrnFAmJYCOQaikeuoXjkGopHrqFYZBqKR66heOQaikeuAQAAAAAAAAAAgEQDLFiilEqlJMk///nPVCqVNDc3Z4UVVsjgwYOTZJYFxC3q6uqq/93Q0JDa2tpsvfXW6d27d/WcM6tUKqmtra0uQN5ll12SWEAMC5pcQ/HINRSPXEPxyDUUi0xD8cg1FI9cQ/HINQAAAAAAAAAAAJAkdR1dANC+JkyYkFdeeSX19fVpbGzMiiuumAEDBqRSqXziguBSqZQpU6YkmbEQeOWVV87LL7+c6667Lq+//np10fAuu+yS1VdfPYMGDUryvwXILSwghgVPrqF45BqKR66heOQaikWmoXjkGopHrqF45BoAAAAAAAAAAADQAAuWMJMmTcq4ceOqb7cdO3Zs3nvvvfTp02eOx5RKpbzzzju58sorkyQ9e/bM2LFjs9VWW+XNN99sNfeaa65J7969c+6552a33XZbaJ8D+B+5huKRaygeuYbikWsoFpmG4pFrKB65huKRawAAAAAAAAAAAKCmowsA2tdSSy2VlVZaKbW1tamvr897772XW265pbqoeHamT5+eO+64I0899VSSGQuRr7vuurz55pvVt+LW19dX37Q7ZsyY7LHHHjn//PPz0UcftcvngiWZXEPxyDUUj1xD8cg1FItMQ/HINRSPXEPxyDUAAAAAAAAAAACgARYsYZZeeumst956aW5uTlNTU3VB8NNPP51yuZwkaW5uTqVSSZJMmTIld999d376059m3Lhx1fN06tQpQ4cOzUYbbZTPfe5z6dOnTyqVShobG9O1a9ckyVFHHZXf//73SVI9H7DgyTUUj1xD8cg1FI9cQ7HINBSPXEPxyDUUj1wDAAAAAAAAAAAApYqVfbDEKJfLqampyR/+8Id8//vfz9tvv13dt+OOO+a73/1uttpqq3Tp0iVJMmbMmPz1r3/NBRdckGeffbY69+CDD87uu++enXbaqbrt8ccfzw033JCf/vSnSZLOnTtn+vTpSZK///3v2W677drjI8ISR66heOQaikeuoXjkGopFpqF45BqKR66heOQaAAAAAAAAAAAASDTAgiXSu+++m0MPPTQ333xz6urq0tTUlCQZNGhQVlxxxWywwQZpamrKrbfemgkTJuSDDz6oHnvqqafm+OOPr46nT5+ezp07V8cXXXRRjjjiiDQ3N6dr166ZOnVq1llnndxyyy1ZeeWV2+9DwhJGrqF45BqKR66heOQaikWmoXjkGopHrqF45BoAAAAAAAAAAACWbBpgwRKmUqmkVCplzJgx+dKXvpSHH344pVIpSVJbW5umpqbU1NSkUqmkUqmktrY2zc3NSZKRI0dm5MiRsz1vyxt6k+SXv/xlvve97yVJampq0qtXr1x55ZX54he/2GoesGDINRSPXEPxyDUUj1xDscg0FI9cQ/HINRSPXAMAAAAAAAAAAABW8sESplQqpVwuZ+DAgfnDH/6QvffeOyuuuGIqlUp1sXC5XE6lUslKK62U2traJMmee+6Zo48+urp/ZjU1NdXtRxxxRL72ta9V973//vu5+uqrq9cHFiy5huKRaygeuYbikWsoFpmG4pFrKB65huKRawAAAAAAAAAAAKCuowsA5l/Lm3HnNJ5Zy4LfgQMH5qKLLsoTTzyRP/zhD3n11Vfz2muvZeONN86GG26Yz3zmMznooIPS0NCQTTbZJD169KgeP6fztlx7+PDhufrqq1NTU5NSqZQPP/wwiUXE0FZyDcUj11A8cg3FI9dQLDINxSPXUDxyDcUj1wAAAAAAAAAAAMDc0AALCqBlYW65XK6+Cbe+vr66f3aLilsW/C6zzDLZeuuts/XWWydJGhoa0qlTp1Qqley4446ZPHly+vbtm913332uatl0003TvXv3TJkyJZVKJe+8807K5fIcFyADrck1FI9cQ/HINRSPXEOxyDQUj1xD8cg1FI9cAwAAAAAAAAAAAHNDAyxYzD355JO5/fbbc+edd+bDDz/MlClT0r179+y2225ZddVVs9dee1UXEc+8iPfji49bttfW1iZJJk2alJdffjnJjIXF5XJ5ruoql8spl8splUqpVCrp16/fbGsAZiXXUDxyDcUj11A8cg3FItNQPHINxSPXUDxyDQAAAAAAAAAAAMwtDbBgMfXOO+/k97//fX784x+noaEhlUoldXV1aWpqSpI88MADqVQq2W677bLTTjvlq1/9aj7zmc/M9lwfX9Tbsoj45Zdfzssvv5y6urrU19dn4sSJSZLm5ubqnNlp2f/QQw9l2rRp1YXKO+20U0ql0ixv8wX+R66heOQaikeuoXjkGopFpqF45BqKR66heOQaAAAAAAAAAAAAmFdeZQmLoTFjxuRHP/pRfvCDH2T69OnVRb2VSqU6p76+PqVSKXfccUdOPPHEjBgxIvfdd1+mTZtWnfPx+TNr2VepVPLee+/lpptuSjJjkfGcjiuXy9Va7rvvvuq8vn37Zu21156PTwzFJ9dQPHINxSPXUDxyDcUi01A8cg3FI9dQPHINAAAAAAAAAAAAzA8NsGAx8+abb+akk07Kb3/72zQ3NydJOnXqlEGDBmXzzTfPkCFD0qNHj+qbdUulUhobG/Pss89m9913z69+9as8//zzSZJSqTTHBcEDBgzIcsstl7q6uiTJH/7wh/z1r3+d43Hlcrn6Nt4zzjgjf/zjH6vbd9lll4wYMWKB/1lAUcg1FI9cQ/HINRSPXEOxyDQUj1xD8cg1FI9cAwAAAAAAAAAAAPOrrqMLAObOxRdfnGuvvTblcjl1dXUZOnRofvOb32SllVbKcsstlw8++CBvvfVWLrvssowePTqjR49OY2Nj6uvr895772XUqFF5/PHHc/jhh2ezzTarLggulUqtrtO5c+f06dMn48aNS01NTcaMGZOLL744PXr0yJZbbplSqZRyuZwkqampqS4gvvDCC3PeeedVz7PZZpvljDPOSJLZXgeQaygiuYbikWsoHrmGYpFpKB65huKRaygeuQYAAAAAAAAAAADmWwVYbNxzzz2V2traSqlUqpRKpcpmm21WGTt2bKVSqVSam5srlUql0tTUVKlUKpXp06dX3nnnncphhx1W6dKlS/WYUqlU6dy5c2X77bev/OMf/6ieu1wuz/LzddddV+natWv1uNra2soXvvCFytVXX92qrqampkpjY2PlpJNOqvTq1atSU1NTKZVKlbXXXrty4403VhobGxfqnwsszuQaikeuoXjkGopHrqFYZBqKR66heOQaikeuAQAAAAAAAAAAgAWhVKlUKh3dhAv4ZJVKJQ0NDfnGN76Ra6+9Nkmy9NJL58EHH8xqq62WcrlcfYvt7Fx00UW57LLL8uijj1a31dXVZd11181JJ52UL37xi9XrfPwtt2PGjMmJJ56YP/7xj2lsbEyS6v599tknQ4YMyeqrr5677rorL7/8cu6+++7qsauvvnq+973v5etf/3q6d+++4P4woCDkGopHrqF45BqKR66hWGQaikeuoXjkGopHrgEAAAAAAAAAAIAFqa6jCwA+XalUSrlcztNPP13dttNOO2W11VZLY2Nj6uvrZ3tcc3Nzamtrc+ihh2bAgAG54oorcuONNyZJmpqa8thjj+XEE09MfX19Pv/5z6dUKrVaSDxw4MD8v//3//Lee+/lzjvvTENDQ+rq6tLY2Jg//vGPc6x33XXXzbe//e3ss88+FhDDHMg1FI9cQ/HINRSPXEOxyDQUj1xD8cg1FI9cAwAAAAAAAAAAAAuSBliwmHjxxRfz8ssvp6amJuVyOZ/5zGeSZI4LiJOktra2+obdnXbaKX369EmPHj3y29/+NsmMt+Y+/fTTOeOMM9K1a9dsueWW1QXELYuJt9hii9TW1ma55ZbLddddl6lTp6Zz585pbGxMbW1t6uvrM2XKlGpd22+/fY488shsueWW6dat28L/g4HFmFxD8cg1FI9cQ/HINRSLTEPxyDUUj1xD8cg1AAAAAAAAAAAAsKBogAWLkXK5XF3k27J4uOVNuXNSU1NTXRC80UYbpWvXrunWrVsuvPDCVCqVNDU1ZfTo0Tn//PPTq1evrLPOOknS6o26m266aZZbbrlsu+22+dGPfpT33nsv06dPT7lcTmNjY5Jk+PDh2XLLLfPTn/40dXX+aYG2kmsoHrmG4pFrKB65hmKRaSgeuYbikWsoHrkGAAAAAAAAAAAAFgQr/WAxscwyy6RHjx559913kyT33HNPJk6cmJ49e37qsR9fELzOOuvksMMOy7Rp03LFFVckSRoaGnL77bdn6NChGTBgQHr16lU9rsWgQYMyaNCgbLPNNnnmmWfyyCOPZOrUqenVq1dWW221rLvuulluueWS/O8NvMAnk2soHrmG4pFrKB65hmKRaSgeuYbikWsoHrkGAAAAAAAAAAAAFpRSpVKpdHQRwCerVCp5++23s8022+S5555LTU1Nlltuudxzzz0ZNGhQyuVyampq5uqcDz/8cM4555z84Q9/qG7r3bt3fve732XnnXee7Tnbch0LiKFt5BqKR66heOQaikeuoVhkGopHrqF45BqKR64BAAAAAAAAAACABWnuVh0CHaJUKqV///7Zddddq+M33ngjp5xySpLM1QLilp53G2ywQQ4++OBsttlmSZLa2tp88MEH+da3vpU33nhjtuec3baZe+hZQAxtI9dQPHINxSPXUDxyDcUi01A8cg3FI9dQPHINAAAAAAAAAAAALEgaYMFioGWh7uc+97l06tQpNTU1qampyT333JM///nPc3WuUqlUPd+2226bb3zjG+nTp0/K5XK6dOmSN998M+eff36mT5/e5vMBc0+uoXjkGopHrqF45BqKRaaheOQaikeuoXjkGgAAAAAAAAAAAFiQNMCCxUDLQt19990366+/fhobG1OpVPLqq6/m9ZYFVgAAGwdJREFU+uuvz7vvvptk1jfaftL5WuYedNBBOeigg1KpVKoLh+++++5MmjRprs4JzB25huKRaygeuYbikWsoFpmG4pFrKB65huKRawAAAAAAAAAAAGBB0gALFhPNzc1JkpEjR6Z///7Vxb2///3vc8EFFySZsTi4XC636Xwfn/uTn/wkO+ywQ/WcDz/8cK688srqPGDhkGsoHrmG4pFrKB65hmKRaSgeuYbikWsoHrkGAAAAAAAAAAAAFhQNsGAxUVtbmyQZNmxYtt5669TX16e+vj5Jcsopp+Tiiy9OktTU1LT5zbctc2tqarLbbrulc+fO6dy5c0qlUp5++ukk3qILC5NcQ/HINRSPXEPxyDUUi0xD8cg1FI9cQ/HINQAAAAAAAAAAALCglCpWCMJi55FHHsnee++d//u//0u3bt0yZcqUJMkVV1yRAw44IMmMxb9z8wbccePGZaONNsrrr7+eJOnZs2eef/759O/ff8F/AGAWcg3FI9dQPHINxSPXUCwyDcUj11A8cg3FI9cAAAAAAAAAAADA/Kjp6AKAubf++uvnggsuSJJMmTIlXbp0SZIceuihufbaa5MkpVIp5XK5Tecrl8tZbrnlsuWWWyZJOnfunCRpbm5e0KUDcyDXUDxyDcUj11A8cg3FItNQPHINxSPXUDxyDQAAAAAAAAAAAMwPDbBgMbXzzjvnkksuSZJMmzYtnTt3zvTp03PIIYfkqquuSpLU1NSkUql86rlqamb8U7DCCiskmfEG3sbGxjQ2Ni6k6oHZkWsoHrmG4pFrKB65hmKRaSgeuYbikWsoHrkGAAAAAAAAAAAA5pUGWLAY++Y3v5mf//znSZLp06enU6dOmTJlSg444IBcdtllSWa8TffTlMvllMvljB07NknS0NCQpqam6uJioP3INRSPXEPxyDUUj1xDscg0FI9cQ/HINRSPXAMAAAAAAAAAAADzwgpBWMwdcsghGTVqVJIZi3+7dOlS3f7Tn/40kydPrs4tl8uzHF8ul1NTU5Oampq8++67KZVKqampyU477ZQBAwa0z4cAWpFrKB65huKRaygeuYZikWkoHrmG4pFrKB65BgAAAAAAAAAAAOaWBliwmOvRo0e++93v5qyzzkqSTJs2Ld26dUuSHH/88Tn66KNzzz33JElqamrS3NycJKlUKq3elHvGGWfkX//6VyqVSsrlctZdd932/zBAErmGIpJrKB65huKRaygWmYbikWsoHrmG4pFrAAAAAAAAAAAAYG6VKpVKpaOLAOZfc3NzLr300hx22GFJks6dO2f69OlJkvXWWy/bbLNNRo4cmS5duqSurq7VsT//+c9z5plnZvz48UmSrbfeOrfffnvq6+tTqVRSKpXa98MASeQaikiuoXjkGopHrqFYZBqKR66heOQaikeuAQAAAAAAAAAAgLbSAAsK5qabbsohhxySCRMmZOZ4Dx06NOuvv3623nrr9OzZM2+++Wbuv//+XHvttSmVSqlUKllrrbVyyimnZI899kgSC4hhESDXUDxyDcUj11A8cg3FItNQPHINxSPXUDxyDQAAAAAAAAAAAHwaDbCggEaPHp3TTjstDz74YN5///3q23Cbmpo+8bg11lgjhx9+eA488MD06NGjnaoF2kKuoXjkGopHrqF45BqKRaaheOQaikeuoXjkGgAAAAAAAAAAAPgkGmBBQb3yyiu55557cv755+eJJ56obm9ZUFwqldLY2Jja2to0Nzdn4403zmGHHZbdd989PXv27MDKgTmRaygeuYbikWsoHrmGYpFpKB65huKRaygeuQYAAAAAAAAAAADmRAMsKLiGhoaceeaZeeaZZ3LjjTdWFw+3WG211TJixIiccMIJWXbZZVNfX9+B1QJtIddQPHINxSPXUDxyDcUi01A8cg3FI9dQPHINAAAAAAAAAAAAzEwDLCiw5ubm1NbWVsePPvpoJkyYkKeffjpLLbVUBgwYkFVWWSUDBw7suCKBuSLXUDxyDcUj11A8cg3FItNQPHINxSPXUDxyDQAAAAAAAAAAAMyOBliwBKhUKimVSvM9B1h0yDUUj1xD8cg1FI9cQ7HINBSPXEPxyDUUj1wDAAAAAAAAAAAAH6cBFiyBLBiG4pFrKB65huKRaygeuYZikWkoHrmG4pFrKB65BgAAAAAAAAAAgCWbBlgAAAAAAAAAAAAAAAAAAAAAAAC0q5qOLgAAAAAAAAAAAAAAAAAAAAAAAIAliwZYAAAAAAAAAAAAAAAAAAAAAAAAtCsNsAAAAAAAAAAAAAAAAAAAAAAAAGhXGmABAAAAAAAAAAAAAAAAAAAAAADQrjTAAgAAAAAAAAAAAAAAAAAAAAAAoF1pgAUAAAAAAAAAAAAAAAAAAAAAAEC70gALAAAAAAAAAAAAAAAAAAAAAACAdqUBFgAAAAAAAAAAAAAAAAAAAAAAAO1KAywAAAAAAAAAAAAAAAAAAAAAAADalQZYAAAAAAAAAAAAAAAAAAAAAAAAtCsNsAAAAAAAAAAAAAAAAAAAAAAAAGhXGmABAAAAAAAAAAAAAAAAAAAAAADQrjTAAgAAAAAAAAAAAAAAAAAAAAAAoF1pgAUAAAAAAAAAAAAAAAAAAAAAAEC70gALAAAAAAAAAAAAAAAAAAAAAACAdqUBFgAAAAAAAAAAAAAAAAAAAAAAAO1KAywAAAAAAAAAAAAAAAAAAAAAAADalQZYAAAAAAAAAAAAAAAAAAAAAAAAtCsNsAAAAAAAAAAAAAAAAAAAAAAAAGhXGmABAAAAAAAAAAAAAAAAAAAAAADQrjTAAgAAAAAAAAAAAAAAAAAAAAAAoF1pgAUAAAAAAAAAAAAAAAAAAAAAAEC70gALAAAAAAAAAAAAAAAAAAAAAACAdqUBFgAAAAAAAAAAAAAAAAAAAAAAAO1KAywAAAAAAAAAAAAAAAAAAAAAAADalQZYAAAAAAAAAAAAAAAAAAAAAAAAtCsNsAAAAAAAAAAAAAAAAAAAAAAAAGhXGmABAAAAAAAAAAAAAAAAAAAAAADQruo6ugAAAAAAKLKBAwdm7Nixnzinc+fO6dy5c/r06ZP+/ftnyJAhGTp0aDbbbLNsuOGGqa+vb6dqAQAAAAAAAAAAAAAAAKB9lCqVSqWjiwAAAACAompLA6xP0qtXr+y555454ogjsu666y64whaQk08+OaNGjaqO//Wvf2XEiBEdVxAAAAAAAAAAAAAAAAAAi4Waji4AAAAAAJizCRMm5PLLL896662XffbZJ2+88UZHlwQAAAAAAAAAAAAAAAAA862uowsAAAAAgCXJ2Wefnc9+9rOttjU2NuaDDz7IhAkTMnbs2IwePTqPPPJIpk6d2mreDTfckLvuuivXX399RowY0Y5VAwAAAAAAAAAAAAAAAMCCpQEWAAAAALSj4cOHt6l51dSpU3PVVVflvPPOy7PPPlvdPn78+Oy0007529/+lq222mohVgoAAAAAAAAAAAAAAAAAC09NRxcAAAAAAMyqa9eu+X//7//lv//9b4488shW+6ZOnZp99tkn48aN66DqAAAAAAAAAAAAAAAAAGD+aIAFAAAAAIuwurq6nHPOOTnnnHNabX/33Xdz7LHHdlBVAAAAAAAAAAAAAAAAADB/6jq6AAAAAADg0x155JG59957c/PNN1e3XXPNNTnxxBOz+uqrt+kcr7/+ep5++um8+uqr+fDDD5MkyyyzTFZYYYVssskm6d2790KpfV49//zzeeKJJ/Luu+/mww8/zDLLLJPll18+m2++eZZZZpmOLg8AAAAAAAAAAAAAAACA+aABFgAAAAAsJs4+++zccsstKZfLSZJKpZLf/OY3Oeecc2Y7v6mpKXfccUduuOGG3HHHHRk7duwcz10qlbLxxhvnBz/4QXbbbbeUSqU5zr3rrruy9dZbz3bfnLa3qFQqn7h/8uTJ+fnPf57f/va3efXVV2c7p7a2NltssUVOOeWUbLHFFp94PgAAAAAAAAAAAAAAAAAWTTUdXQAAAAAA0DarrLJKdtlll1bb/vSnP81x/n777Zcdd9wxl1122Sc2v0pmNKYaPXp09thjj+y999756KOPFkTJc+W2227LqquumpNPPnmOza+SpLm5OXfddVe23HLLfOtb30pTU1M7VgkAAAAAAAAAAAAAAADAgqABFgAAAAAsRvbcc89W41dffXWOza2mTZs2y7bPfOYzWWuttbLRRhvls5/9bPr27TvLnJtuuim77bZbyuXygim6DS6++OLsvvvueeedd1pt79atW9Zcc81suOGGGTx4cGpqamY5bu+9906lUmm3WgEAAAAAAAAAAAAAAACYf3UdXQAAAAAA0HYbbbTRLNsef/zxrLzyyrOd37dv3+y7777Zeeeds+GGG8624dVLL72Uyy+/POeee261adY///nPnH/++TnyyCNnmf/Zz342//jHP5Ikv/vd73LVVVdV95199tn57Gc/O1ef6Z///GcOO+ywVg23dtlllxx99NHZbLPNUlf3v9uY77//fi699NKcdtppmTRpUpLklltuyVlnnZXjjjturq4LAAAAAAAAAAAAAAAAQMcpVSqVSkcXAQAAAABFNXDgwIwdO7Y6/te//pURI0bM8/kqlUqWWmqpTJ48ubrt5z//eY466qhZ5o4ePTrrrbdeunTp0qZz/+c//8m2226b999/P0mywgorZMyYMa0aUM3s5JNPzqhRo6rjuf18EyZMyJprrpm33norSVJTU5NLLrkk3/jGNz7xuGeeeSYjRozIu+++myTp1KlTxo4dm/79+7f52gAAAAAAAAAAAAAAAAB0nJqOLgAAAAAAaLtSqZQ+ffq02jZu3LjZzt1kk03a3PwqSdZdd92cddZZ1fEbb7yRv//97/NWaBtddNFF1eZXSXL66ad/avOrJFlrrbVy5ZVXVscNDQ351a9+tTBKBAAAAAAAAAAAAAAAAGAh0AALAAAAABYzvXr1ajWePHnyAjv3fvvtl9ra2ur4/vvvX2Dnnllzc3N++ctfVscDBgzI0Ucf3ebjd9ppp6y33nrV8Y033rhA6wMAAAAAAAAAAAAAAABg4dEACwAAAAAWMz169Gg1bmhoWGDn7t69e/r161cdP/744wvs3DN74okn8uabb1bH++23X+rr6+fqHDvssEP15+eeey7jx49fYPUBAAAAAAAAAAAAAAAAsPDUdXQBAAAAAMDcmTRpUqtx586dP/WYp59+OjfccEMee+yxPPPMM/nggw8yceLENDY2fuJxC7Oh1L333ttqvP7668/1OQYMGNBq/Oyzz2aLLbaYr7oAAAAAAAAAAAAAAAAAWPg0wAIAAACAxcyHH37YatyjR485zn3yySfzne98J/fcc888XWvChAnzdFxbPPvss63G++6773yf8/3335/vcwAAAAAAAAAAAAAAAACw8GmABQAAAACLkUqlkvHjx7fatvzyy8927m233Za99torDQ0N83y96dOnz/Oxn+a9995b4OecuTkYAAAAAAAAAAAAAAAAAIsmDbAAAAAAYDHy3HPP5aOPPmq1bdVVV51l3gsvvJC99967VfOrUqmUDTfcMJtuumlWWWWV9O/fP126dEmXLl1aHfu1r30tb7/99sL5AB8zYcKEBX7Ocrm8wM8JAAAAAAAAAAAAAAAAwIKnARYAAAAALEYeeuihWbatt956s2z74Q9/mOnTp1fHG264YX77299mjTXW+NRrlEql+Suyjbp169ZqfMYZZ2T48OHzdc6hQ4fO1/EAAAAAAAAAAAAAAAAAtA8NsAAAAABgMXLDDTe0Gg8ePDgrrrhiq22TJ0/OX/7yl+p42WWXze23357evXu36RoffPDB/BfaBn379m01HjRoULbbbrt2uTYAAAAAAAAAAAAAAAAAHaumowsAAAAAANrmlVdeyV//+tdW2/bYY49Z5j322GNpaGiojr/85S+3ufnVSy+9lOnTp89foW00aNCgWa4NAAAAAAAAAAAAAAAAwJJBAywAAAAAWEwcc8wxKZfL1XFNTU3+3//7f7PMe/vtt1uNV1999TZf484775yrmmpqWt9irFQqbT526623nq9rAwAAAAAAAAAAAAAAALD40gALAAAAABYD5557bm6++eZW2/bff/8MHjx4lrkzN6FqaGho0zUqlUouvPDCuaqre/furcZTpkxp87EbbrhhevfuXR3feeedeeaZZ+bq+gAAAAAAAAAAAAAAAAAsnjTAAgAAAIBFWFNTU44++ugcddRRrbb3798/Z5555myP6d+/f6vxv//97zZd68ILL8x//vOfuapvmWWWaTV+9dVX23xsfX19vv/971fHlUol3/rWt9LY2DhXNQAAAAAAAAAAAAAAAACw+NEACwAAAAAWQdOmTcsll1ySddZZJ+ecc06rfd26dcsNN9yQfv36zfbY4cOHp1OnTtXxTTfdlPvvv/8Tr3fbbbfN0mSrLYYOHdpqfOONN87V8d/73vey7LLLVsf//ve/s/fee+fDDz9s8zk++uij/OIXv8hll102V9cGAAAAAAAAAAAAAAAAoOPUdXQBAAAAALAkefTRR9PU1NRqW2NjYyZMmJAJEyZkzJgxeeCBB/LII49kypQpsxy/7LLL5oYbbshmm202x2t07949e+21V6699tokSXNzc3bcccf87Gc/y/77758uXbpU57744os599xz85vf/Cblcjn9+vVLc3Nz3nvvvTZ9nvXWWy99+/bN+PHjkyR33XVXttlmm+y7774ZMGBAq0ZcSbLddtu1Gi+99NK5/vrrs+2226axsTFJ8uc//zlDhw7NkUcemX322ScDBgyY5bqvvfZaHnzwwfzpT3/KrbfemokTJ2bkyJFtqhkAAAAAAAAAAAAAAACAjleqVCqVji4CAAAAAIpq4MCBGTt27AI513777Zdzzz03/fv3/9S5L7/8cj73uc9l4sSJrbZ36dIlq622Wjp37pxx48bl9ddfr+6rra3NrbfemsMOO6xa88orr5wxY8Z84rVOPfXUnHTSSW36DHO6HXndddfloIMOyrRp02bZt9xyy6Vfv37p3LlzPvzww7zzzjv54IMPZpk3cuTInHzyyW2qAwAAAAAAAAAAAAAAAICOVdfRBQAAAAAAc7bMMstkr732yne/+90MGzaszcetuuqquf7667PXXntl8uTJ1e3Tpk3Lf//731nmd+nSJVdeeWV23HHHua7xxz/+cV544YVcffXVc31si/322y9DhgzJV77ylbzwwgut9o0bNy7jxo37xONra2uz/PLLz/P1AQAAAAAAAAAAAAAAAGhfpUqlUunoIgAAAACgqAYOHJixY8d+4pxOnTqlS5cu6dOnT/r3758hQ4Zk2LBh2WyzzbLBBhukvr5+nq//3HPP5Qc/+EFuvfXW2e6vq6vL7rvvntNPPz2rrbbaLDWvvPLKGTNmTJuudd999+Xaa6/Nww8/nFdeeSWTJk3K9OnTW835tNuRzc3Nueaaa/LrX/86Dz/8cJqbm+c4t3Pnztlss82y00475Stf+UqWW265NtUJAAAAAAAAAAAAAAAAQMfTAAsAAAAAlgDjxo3Lvffem9dffz1TpkzJUkstlcGDB2fTTTdNr169Orq82frwww/zwAMP5M0338z48ePT2NiYnj17pl+/flljjTWy+uqrp0uXLh1dJgAAAAAAAAAAAAAAAADzQAMsAAAAAAAAAAAAAAAAAAAAAAAA2lVNRxcAAAAAAAAAAAAAAAAAAAAAAADAkkUDLAAAAAAAAAAAAAAAAAAAAAAAANqVBlgAAAAAAAAAAAAAAAAAAAAAAAC0Kw2wAAAAAAAAAAAAAAAAAAAAAAAAaFcaYAEAAAAAAAAAAAAAAAAAAAAAANCuNMACAAAAAAAAAAAAAAAAAAAAAACgXWmABQAAAAAAAAAAAAAAAAAAAAAAQLvSAAsAAAAAAAAAAAAAAAAAAAAAAIB2pQEWAAAAAAAAAAAAAAAAAAAAAAAA7UoDLAAAAAAAAAAAAAAAAAAAAAAAANqVBlgAAAAAAAAAAAAAAAAAAAAAAAC0Kw2wAAAAAAAAAAAAAAAAAAAAAAAAaFcaYAEAAAAAAAAAAAAAAAAAAAAAANCuNMACAAAAAAAAAAAAAAAAAAAAAACgXWmABQAAAAAAAAAAAAAAAAAAAAAAQLvSAAsAAAAAAAAAAAAAAAAAAAAAAIB2pQEWAAAAAAAAAAAAAAAAAAAAAAAA7UoDLAAAAAAAAAAAAAAAAAAAAAAAANqVBlgAAAAAAAAAAAAAAAAAAAAAAAC0Kw2wAAAAAAAAAAAAAAAAAAAAAAAAaFcaYAEAAAAAAAAAAAAAAAAAAAAAANCuNMACAAAAAAAAAAAAAAAAAAAAAACgXWmABQAAAAAAAAAAAAAAAAAAAAAAQLvSAAsAAAAAAAAAAAAAAAAAAAAAAIB2pQEWAAAAAAAAAAAAAAAAAAAAAAAA7UoDLAAAAAAAAAAAAAAAAAAAAAAAANqVBlgAAAAAAAAAAAAAAAAAAAAAAAC0Kw2wAAAAAAAAAAAAAAAAAAAAAAAAaFcaYAEAAAAAAAAAAAAAAAAAAAAAANCuNMACAAAAAAAAAAAAAAAAAAAAAACgXWmABQAAAAAAAAAAAAAAAAAAAAAAQLvSAAsAAAAAAAAAAAAAAAAAAAAAAIB2pQEWAAAAAAAAAAAAAAAAAAAAAAAA7UoDLAAAAAAAAAAAAAAAAAAAAAAAANqVBlgAAAAAAAAAAAAAAAAAAAAAAAC0Kw2wAAAAAAAAAAAAAAAAAAAAAAAAaFcaYAEAAAAAAAAAAAAAAAAAAAAAANCuNMACAAAAAAAAAAAAAAAAAAAAAACgXWmABQAAAAAAAAAAAAAAAAAAAAAAQLvSAAsAAAAAAAAAAAAAAAAAAAAAAIB2pQEWAAAAAAAAAAAAAAAAAAAAAAAA7UoDLAAAAAAAAAAAAAAAAAAAAAAAANqVBlgAAAAAAAAAAAAAAAAAAAAAAAC0Kw2wAAAAAAAAAAAAAAAAAAAAAAAAaFcaYAEAAAAAAAAAAAAAAAAAAAAAANCuNMACAAAAAAAAAAAAAAAAAAAAAACgXWmABQAAAAAAAAAAAAAAAAAAAAAAQLvSAAsAAAAAAAAAAAAAAAAAAAAAAIB2pQEWAAAAAAAAAAAAAAAAAAAAAAAA7UoDLAAAAAAAAAAAAAAAAAAAAAAAANqVBlgAAAAAAAAAAAAAAAAAAAAAAAC0q/8PgeA73qGzvaMAAAAASUVORK5CYII=", + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Image(f)" + ] + }, + { + "cell_type": "markdown", + "id": "3b60d930-e74e-41ae-9cf5-8d3386dda63c", + "metadata": {}, + "source": [ + "\n", + "\n", + "The sandboxed environment allows for arbitrary code execution. To ensure safety:\n", + "\n", + "* **Never place secrets (e.g., API keys, credentials) or sensitive files inside the sandbox**.\n", + " The agent operates on untrusted input, and **prompt injection attacks can exfiltrate anything inside the sandbox**.\n", + "\n", + "* The sandbox **does protect your local/production machine** from harmful code (e.g., file deletion, network access), as code execution is fully isolated.\n", + "" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/src/langchain_v1/extraction.md b/src/langchain_v1/extraction.md new file mode 100644 index 00000000..50768761 --- /dev/null +++ b/src/langchain_v1/extraction.md @@ -0,0 +1,170 @@ +# Document extraction + +This guide shows you how to extract information from documents using LangChain's **prebuilt** extraction functionality. The extraction chain can produce either text summaries or structured data from one or more documents. + +## Prerequisites + +Before you start this tutorial, ensure you have the following: + +- An [Anthropic](https://console.anthropic.com/settings/keys) API key + +## 1. Install dependencies + +If you haven't already, install LangGraph and LangChain: + +```bash +pip install -U langgraph "langchain[anthropic]" +``` + + + LangChain is installed so the extractor can call the [model](https://python.langchain.com/docs/integrations/chat/). + + +## 2. Set up documents + +First, create some documents to extract information from: + +```python +from langchain_core.documents import Document + +documents = [ + Document( + id="1", + page_content="""Bobby Luka was 10 years old. +Synthetic fuels—produced from captured carbon and green hydrogen—are gaining traction in aviation. The EU's "ReFuelEU" mandate requires increasing blends of sustainable aviation fuel (SAF) starting in 2025. Airbus and Rolls-Royce have completed long-haul test flights powered entirely by synthetic kerosene.""", + metadata={"source": "synthetic_fuel_aviation"}, + ), + Document( + id="2", + page_content=""" +AI is accelerating early-stage drug discovery, especially in target identification and molecule generation. Platforms like BenevolentAI and Insilico Medicine have generated preclinical candidates using generative models trained on biological and chemical data.""", + metadata={"source": "ai_drug_discovery"}, + ), + Document( + id="3", + page_content="""Jack Johnson was 23 years old and blonde. +Bobby Luka's hair is brown.""", + metadata={"source": "people_info"}, + ), +] +``` + +## 3. Configure a model + +Configure an LLM for extraction using [init_chat_model](https://python.langchain.com/api_reference/langchain/chat_models/langchain.chat_models.base.init_chat_model.html): + +```python +from langchain.chat_models import init_chat_model + +model = init_chat_model( + "anthropic:claude-3-5-sonnet-latest", + temperature=0 +) +``` + +## 4. Extract a basic summary + +Create an extractor to produce text summaries from documents: + +```python +from langchain.chains.summarization import create_summarizer + +# Create a basic summarizer +summarizer = create_summarizer( + model, + initial_prompt="Produce a concise summary of the following document in 2-3 sentences." +).compile(name="TextSummarizer") + +# Extract summary +result = summarizer.invoke({"documents": documents}) +print(result["result"]) +``` + +## 5. Extract structured summaries + +To produce structured responses with a specific format, use the `response_format` parameter with a Pydantic model: + +```python +from pydantic import BaseModel +from langchain.chains.summarization import create_summarizer + +class Summary(BaseModel): + """Structured summary with title and key points.""" + + title: str + key_points: list[str] + +# Create structured summarizer +structured_summarizer = create_summarizer( + model, + initial_prompt="Extract the main topics and create a structured summary with a title and up to 3 key points.", + response_format=Summary +).compile(name="StructuredSummarizer") + +# Extract structured summary +result = structured_summarizer.invoke({"documents": documents}) + +# Access structured fields +print(f"Title: {result['result'].title}") +print("Key points:") +for point in result['result'].key_points: + print(f" • {point}") +``` + +## 6. Extract entities with source tracking + +Extract specific entities while tracking which documents they came from: + +```python +from typing import Optional +from pydantic import BaseModel, Field + +class Person(BaseModel): + """Person entity with source tracking.""" + + name: str + age: Optional[str] = None + hair_color: Optional[str] = None + source_doc_ids: list[str] = Field( + default=[], + description="The IDs of the documents where the information was found.", + ) + +class PeopleExtraction(BaseModel): + """Collection of extracted people.""" + + people: list[Person] + +# Create entity extractor +entity_extractor = create_summarizer( + model, + initial_prompt="Extract information about people mentioned in the documents. Include the document IDs where each piece of information was found.", + response_format=PeopleExtraction +).compile(name="EntityExtractor") + +# Extract entities +result = entity_extractor.invoke({"documents": documents}) + +# Display extracted people with sources +for person in result['result'].people: + print(f"Name: {person.name}") + if person.age: + print(f" Age: {person.age}") + if person.hair_color: + print(f" Hair: {person.hair_color}") + print(f" Sources: {', '.join(person.source_doc_ids)}") + print() +``` + +## Custom prompts + +Customize extraction behavior with specific prompts: + +```python +custom_extractor = create_summarizer( + model, + initial_prompt="Focus on extracting technical information and key innovations mentioned in the documents." +).compile() +``` + +For more advanced extraction patterns and customization, see the [extraction how-to guides](../how-tos/extraction/). \ No newline at end of file diff --git a/src/langchain_v1/map_reduce.ipynb b/src/langchain_v1/map_reduce.ipynb new file mode 100644 index 00000000..65cf5dbc --- /dev/null +++ b/src/langchain_v1/map_reduce.ipynb @@ -0,0 +1,192 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "4b43aef4-1930-47d6-a112-73a2cfbae0a1", + "metadata": {}, + "source": [ + "---\n", + "title: \"Map reduce\"\n", + "icon: \"rhombus\"\n", + "---\n", + "\n", + "**Map Reduce** chains enable efficient parallel processing of multiple documents by dividing the task into two stages:\n", + "\n", + "1. **Map:** Each document is processed independently and concurrently—similar to having multiple readers analyze different books at the same time.\n", + "2. **Reduce (optional):** The individual outputs are then aggregated into a single, cohesive result.\n", + "\n", + "This method is particularly valuable in two scenarios:\n", + "\n", + "* When processing **many large documents** that, together, would exceed the context window of a language model.\n", + "* When documents are **independent** and can be processed in parallel to improve efficiency.\n", + "\n", + "By splitting the workload, Map Reduce helps scale processing while maintaining performance and coherence.\n", + "\n", + "```mermaid\n", + "graph TD\n", + " A[Input: Individual Documents] --> B1[Map: Process Doc 1]\n", + " A --> B2[Map: Process Doc 2]\n", + " A --> B3[Map: Process Doc 3]\n", + " A --> Bn[Map: Process Doc N]\n", + "\n", + " B1 --> C[Intermediate Results]\n", + " B2 --> C\n", + " B3 --> C\n", + " Bn --> C\n", + "\n", + " C -- Optional --> D[Reduce: Aggregate Results]\n", + " D --> E[Final Output]\n", + "```\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "ea9f2d4b-5d65-4227-95ef-095c16fcbaf5", + "metadata": {}, + "outputs": [], + "source": [ + "from langchain.documents import Document\n", + "\n", + "documents = [\n", + " Document(\n", + " page_content=(\n", + " \"Richard Feynman was born on May 11, 1918, in Queens, New York. He showed an early \"\n", + " \"interest in science, especially radios and engineering. As a teenager, he repaired \"\n", + " \"radios as a hobby and even earned some money doing it.\\n\\n\"\n", + " \"He attended the Massachusetts Institute of Technology (MIT) for his undergraduate \"\n", + " \"studies and later earned his PhD in physics from Princeton University in 1942. At \"\n", + " \"Princeton, he impressed many with his quick mind and problem-solving skills.\\n\\n\"\n", + " \"After completing his PhD, he joined the Los Alamos Laboratory as part of the Manhattan Project.\"\n", + " ),\n", + " metadata={\"source\": \"early_life\"},\n", + " id=\"1\"\n", + " ),\n", + " Document(\n", + " page_content=(\n", + " \"During World War II, Feynman worked on the Manhattan Project, the top-secret effort \"\n", + " \"to build the first atomic bomb. He was based at Los Alamos Laboratory in New Mexico.\\n\\n\"\n", + " \"There, he worked under physicist Hans Bethe and was known for his creativity and sense \"\n", + " \"of humor. One of his habits was picking locks and cracking safes—not to steal secrets, \"\n", + " \"but to prove how insecure they were.\\n\\n\"\n", + " \"Feynman’s contributions helped the U.S. develop nuclear weapons, which were used in \"\n", + " \"1945 to end the war.\"\n", + " ),\n", + " metadata={\"source\": \"manhattan_project\"},\n", + " id=\"2\"\n", + " ),\n", + " Document(\n", + " page_content=(\n", + " \"After the war, Feynman became a professor at Cornell University and later at the \"\n", + " \"California Institute of Technology (Caltech). In 1965, he won the Nobel Prize in \"\n", + " \"Physics for his work on quantum electrodynamics, shared with Julian Schwinger and \"\n", + " \"Sin-Itiro Tomonaga.\\n\\n\"\n", + " \"He became famous for his lectures, especially the Feynman Lectures on Physics, which \"\n", + " \"are still used today. In 1986, he served on the Rogers Commission that investigated \"\n", + " \"the Space Shuttle Challenger disaster.\\n\\n\"\n", + " \"Feynman died on February 15, 1988, in Los Angeles, California, after a long battle \"\n", + " \"with cancer.\"\n", + " ),\n", + " metadata={\"source\": \"later_career\"},\n", + " id=\"3\"\n", + " ),\n", + "]" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "3785b5fb-e29b-4f95-97c0-3c3a76aad09b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'indexes': [0], 'result': \"Based on the document, the following locations are mentioned:\\n\\n1. **Queens, New York** - Richard Feynman's birthplace\\n2. **Massachusetts Institute of Technology (MIT)** - Where he attended undergraduate studies\\n3. **Princeton University** - Where he earned his PhD in physics in 1942\\n4. **Los Alamos Laboratory** - Where he worked after completing his PhD as part of the Manhattan Project\\n\\nThese locations trace Feynman's early life journey from his birth in New York through his education in Massachusetts and New Jersey, to his work on the Manhattan Project in New Mexico.\"}\n", + "--\n", + "{'indexes': [1], 'result': \"Based on the document, the following locations are mentioned:\\n\\n1. **Los Alamos Laboratory** - Where Feynman was based during his work on the Manhattan Project\\n2. **New Mexico** - The state where Los Alamos Laboratory is located\\n3. **U.S. (United States)** - The country that developed the nuclear weapons\\n\\nThese are the only specific locations mentioned in this document about Feynman's work during World War II on the Manhattan Project.\"}\n", + "--\n", + "{'indexes': [2], 'result': 'Based on the document, the following locations are mentioned:\\n\\n1. **Cornell University** - Where Feynman became a professor after the war\\n2. **California Institute of Technology (Caltech)** - Where he later became a professor\\n3. **Los Angeles, California** - Where Feynman died on February 15, 1988\\n\\nThese are the only specific locations explicitly mentioned in this document.'}\n", + "--\n", + "Based on the documents, here are the locations associated with Richard Feynman's life and career:\n", + "\n", + "**Early Life and Education:**\n", + "- **Queens, New York** - Birthplace\n", + "- **Massachusetts Institute of Technology (MIT)** - Undergraduate studies\n", + "- **Princeton University** - PhD in physics (1942)\n", + "\n", + "**Manhattan Project:**\n", + "- **Los Alamos Laboratory, New Mexico** - Worked on nuclear weapons development during World War II\n", + "\n", + "**Academic Career:**\n", + "- **Cornell University** - Professor position after the war\n", + "- **California Institute of Technology (Caltech)** - Later professor position\n", + "\n", + "**Death:**\n", + "- **Los Angeles, California** - Died February 15, 1988\n", + "\n", + "These locations trace Feynman's journey from his New York origins through his education in the Northeast, his wartime service in New Mexico, his post-war academic positions at prestigious universities, and his final years in California.\n" + ] + } + ], + "source": [ + "from langchain.chains import create_map_reduce_chain\n", + "from langchain.chat_models import init_chat_model\n", + "\n", + "model = init_chat_model(\"claude-opus-4-20250514\", max_tokens=32_000)\n", + "\n", + "chain = (\n", + " create_map_reduce_chain(\n", + " model, \n", + " map_prompt=\"Which locations are mentioned in the document?\",\n", + " )\n", + " .compile(name='location-extractor')\n", + ")\n", + "\n", + "\n", + "response = chain.invoke({\"documents\": documents})\n", + "for mapped_result in response['map_results']:\n", + " print(mapped_result)\n", + " print('--')\n", + "\n", + "\n", + "# And examine the default reduce result\n", + "print(response['result'])" + ] + }, + { + "cell_type": "markdown", + "id": "064470e6-f6a3-4ea4-a979-800dc079ef10", + "metadata": {}, + "source": [ + "# Rate Limiting\n", + "\n", + "You may need to rate limit the requests to the LLM when issuing requests in parallel.\n", + "\n", + "Please see the documentation in **CHAT MODELS** for information on how to add a rate limiter." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/src/langchain_v1/rag_agent.md b/src/langchain_v1/rag_agent.md new file mode 100644 index 00000000..a609e420 --- /dev/null +++ b/src/langchain_v1/rag_agent.md @@ -0,0 +1,325 @@ +--- +title: RAG +--- + +**Retrieval-Augmented Generation (RAG)** is a method for enhancing the responses of language models by injecting external knowledge at generation time. Instead of relying solely on what the model "knows" (from training), RAG enables the model to query external sources—like search engines, databases, APIs, or custom document stores—to access the most relevant and up-to-date information. + +RAG can be implemented in multiple ways, depending on your system's needs: + +| Architecture | Description | Control | Flexibility | Latency | Example Use Case | +|-------------------------|----------------------------------------------------------------------------|-----------|-------------|----------------|----------------------------------------------------| +| **Agentic RAG** | An LLM-powered agent decides *when* and *how* to retrieve during reasoning | ❌ Low | ✅ High | ⏳ Variable | Research assistants with access to multiple tools | +| **Bounded Agentic RAG** | Agentic RAG with a fixed number of reasoning/retrieval loops | ✅ Medium | ✅ Medium | ⏱️ Predictable | Smart assistants with predictable runtime/behavior | +| **2-Step RAG** | Retrieval always happens before generation. Simple and predictable | ✅ High | ❌ Low | ⚡ Fast | FAQs, documentation bots | +| **Hybrid** | Combines characteristics of both approaches with validation steps | ⚖️ Medium | ⚖️ Medium | ⏳ Variable | Domain-specific Q&A with quality validation | + + +**Latency**: Latency is generally more **predictable** in both **Bounded Agentic RAG** and **2-Step RAG**, as the maximum number of LLM calls is known and capped. This predictability assumes that LLM inference time is the dominant factor. However, real-world latency may also be affected by the performance of retrieval steps—such as API response times, network delays, or database queries—which can vary based on the tools and infrastructure in use. + + +## Agentic RAG + +**Agentic Retrieval-Augmented Generation (RAG)** combines the strengths of Retrieval-Augmented Generation with agent-based reasoning. Instead of retrieving documents before answering, an agent (powered by an LLM) reasons step-by-step and decides **when** and **how** to retrieve information during the interaction. + + + +The only thing an agent needs to enable RAG behavior is access to one or more **tools** that can fetch external knowledge — such as documentation loaders, web APIs, or database queries. This tool-based architecture makes Agentic RAG modular, flexible, and ideal for evolving knowledge environments. + + + +```mermaid +graph LR + A[User Input / Question] --> B["Agent (LLM)"] + B --> C{Need external info?} + C -- Yes --> D["Search using tool(s)"] + D --> H{Enough to answer?} + H -- No --> B + H -- Yes --> I[Generate final answer] + C -- No --> I + I --> J[Return to user] + + %% Dark-mode friendly styling + classDef startend fill:#2e7d32,stroke:#1b5e20,stroke-width:2px,color:#fff + classDef decision fill:#f9a825,stroke:#f57f17,stroke-width:2px,color:#000 + classDef process fill:#1976d2,stroke:#0d47a1,stroke-width:1.5px,color:#fff + + class A,J startend + class B,D,I process + class C,H decision +``` + +```python +from langchain.chat_models import init_chat_model +from langgraph.prebuilt import create_react_agent + +model = init_chat_model('claude-sonnet-4-0', max_tokens=32_000) + +agent = create_react_agent( + model=model, + # Include tools that include retrieval tools + tools=tools, # [!code highlight] + # Customize the prompt with instructions on how to retrieve + # the data. + prompt=system_prompt, +) +``` + +### Bounded Agentic RAG + +Agentic RAG systems can be configured with a limit on how many reasoning/retrieval loops the agent may perform. This provides a useful balance between **flexibility** and **predictability**. + +A common pattern is **1-loop Agentic RAG**: + +* The agent decides whether to retrieve. +* If it does retrieve, it may rewrite the query. +* After at most one retrieval step, it generates the final answer. + +This setup enables paraphrasing and tool use without allowing open-ended loops. If the LLM supports it, tool calls may run in parallel. + +```python +agent = create_react_agent( + model=model, + tools=tools, + prompt=system_prompt, + max_iterations=1, # Limits agent to one loop +) +``` + + + +This example implements an **Agentic RAG system** to assist users in querying LangGraph documentation. The agent begins by loading [llms.txt](https://llmstxt.org/), which lists available documentation URLs, and can then dynamically use a `fetch_documentation` tool to retrieve and process the relevant content based on the user’s question. + +```python +import requests +from langchain.chat_models import init_chat_model +from langchain_core.tools import tool +from langgraph.prebuilt import create_react_agent +from markdownify import markdownify + +ALLOWED_DOMAINS = ["https://langchain-ai.github.io/"] +LLMS_TXT = 'https://langchain-ai.github.io/langgraph/llms.txt' + + +@tool +def fetch_documentation(url: str) -> str: # [!code highlight] + """Fetch and convert documentation from a URL""" + if not any(url.startswith(domain) for domain in ALLOWED_DOMAINS): + return ( + "Error: URL not allowed. " + f"Must start with one of: {', '.join(ALLOWED_DOMAINS)}" + ) + response = requests.get(url, timeout=10.0) + response.raise_for_status() + return markdownify(response.text) + + +# We will fetch the content of llms.txt, so this can +# be done ahead of time without requiring an LLM request. +llms_txt_content = requests.get(LLMS_TXT).text + +# System prompt for the agent +system_prompt = f""" +You are an expert Python developer and technical assistant. +Your primary role is to help users with questions about LangGraph and related tools. + +Instructions: + +1. If a user asks a question you're unsure about — or one that likely involves API usage, + behavior, or configuration — you MUST use the `fetch_documentation` tool to consult the relevant docs. +2. When citing documentation, summarize clearly and include relevant context from the content. +3. Do not use any URLs outside of the allowed domain. +4. If a documentation fetch fails, tell the user and proceed with your best expert understanding. + +You can access official documentation from the following approved sources: + +{llms_txt_content} + +You MUST consult the documentation to get up to date documentation +before answering a user's question about LangGraph. + +Your answers should be clear, concise, and technically accurate. +""" + +tools = [fetch_documentation] + +model = init_chat_model('claude-sonnet-4-0', max_tokens=32_000) + +agent = create_react_agent( + model=model, + tools=tools, # [!code highlight] + prompt=system_prompt, # [!code highlight] + name="Agentic RAG", +) + +response = agent.invoke({ + 'messages': [{ + 'role': 'user', + 'content': ( + "Write a short example of a langgraph agent using the " + "prebuilt create react agent. the agent should be able " + "to loook up stock pricing information." + ) + }] +}) + +print(response['messages'][-1].content) +``` + + +## 2-step workflow + +In **2-Step RAG**, the retrieval step is always executed before the generation step. This architecture is straightforward and predictable, making it suitable for many applications where the retrieval of relevant documents is a clear prerequisite for generating an answer. + +```mermaid +graph LR + A[User Question] --> B["Retrieve Relevant Documents"] + B --> C["Generate Answer"] + C --> D[Return Answer to User] + + %% Styling + classDef startend fill:#2e7d32,stroke:#1b5e20,stroke-width:2px,color:#fff + classDef process fill:#1976d2,stroke:#0d47a1,stroke-width:1.5px,color:#fff + + class A,D startend + class B,C process +``` + + + +This example demonstrates a simple 2-step RAG system that retrieves open GitHub issues from the LangGraph repository and generates an answer based on the retrieved content. + +```python +from typing import TypedDict, NotRequired + +import requests +from langchain.chat_models import init_chat_model +from langgraph.graph import StateGraph, END + + +class GraphState(TypedDict): + question: str + retrieved_content: NotRequired[str] + answer: NotRequired[str] + + +llm = init_chat_model('claude-sonnet-4-0', max_tokens=32000) + + +def retrieval_step(state: GraphState): # [!code highlight] + """Retrieve open issues from the LangGraph GitHub repository.""" + headers = { + "Accept": "application/vnd.github+json", + "User-Agent": "langgraph-rag-example", + } + + url = "https://api.github.com/repos/langchain-ai/langgraph/issues" + params = { + "state": "open", + "per_page": 50, + } + response = requests.get(url, headers=headers, params=params) + response.raise_for_status() + + items = response.json() + base_url = "https://github.com/langchain-ai/langgraph/issues/" + # Filter out PRs (issues with "pull_request" key are actually PRs) + issues = [f"- {issue['title']} {base_url}{issue['number']}" for issue in items if + "pull_request" not in issue] + retrieved = "\n".join(issues) if issues else "No issues found." + + return { + "retrieved_content": retrieved + } + + +def generate_response(state: GraphState): # [!code highlight] + """Generate an answer based on the retrieved content and the user's question.""" + prompt = [ + { + "role": "system", + "content": ( + "You are a helpful assistant. Use the following GitHub issue data to answer the user's question. " + "When relevant also include urls to the issues in the response.\n\n---\n\n" + f"Retrieved GitHub Issues:\n{state['retrieved_content']}" + ) + }, + { + "role": "user", + "content": state["question"] + } + ] + response = llm.invoke(prompt) + return { + "question": state["question"], + "retrieved_content": state["retrieved_content"], + "answer": response.content + } + + +builder = StateGraph(GraphState) +builder.add_node("retrieval", retrieval_step) # [!code highlight] +builder.add_node("generation", generate_response) # [!code highlight] +builder.set_entry_point("retrieval") +builder.add_edge("retrieval", "generation") +builder.add_edge("generation", END) + +graph = builder.compile(name="2-step rag") + +response = graph.invoke({ + "question": "What are the themes in the recent issues?", +}) + +print(response['answer']) +``` + + + +## Hybrid RAG + +Hybrid RAG combines characteristics of both 2-Step and Agentic RAG. It introduces intermediate steps such as query preprocessing, retrieval validation, and post-generation checks. These systems offer more flexibility than fixed pipelines while maintaining some control over execution. + +Typical components include: + +* **Query enhancement**: Modify the input question to improve retrieval quality. This can involve rewriting unclear queries, generating multiple variations, or expanding queries with additional context. +* **Retrieval validation**: Evaluate whether retrieved documents are relevant and sufficient. If not, the system may refine the query and retrieve again. +* **Answer validation**: Check the generated answer for accuracy, completeness, and alignment with source content. If needed, the system can regenerate or revise the answer. + +The architecture often supports multiple iterations between these steps: + +```mermaid +graph LR + A[User Question] --> B[Query Enhancement] + B --> C[Retrieve Documents] + C --> D{Sufficient Info?} + D -- No --> E[Refine Query] + E --> C + D -- Yes --> F[Generate Answer] + F --> G{Answer Quality OK?} + G -- No --> H{Try Different Approach?} + H -- Yes --> E + H -- No --> I[Return Best Answer] + G -- Yes --> I + I --> J[Return to User] + + classDef startend fill:#2e7d32,stroke:#1b5e20,stroke-width:2px,color:#fff + classDef decision fill:#f9a825,stroke:#f57f17,stroke-width:2px,color:#000 + classDef process fill:#1976d2,stroke:#0d47a1,stroke-width:1.5px,color:#fff + + class A,J startend + class B,C,E,F,I process + class D,G,H decision +``` + +This architecture is suitable for: + +* Applications with ambiguous or underspecified queries +* Systems that require validation or quality control steps +* Workflows involving multiple sources or iterative refinement + +**Example** [Agentic RAG with Self-Correction](https://langchain-ai.github.io/langgraph/tutorials/rag/langgraph_agentic_rag) + +## Building a knowledge base + +A key component of RAG systems is a **knowledge base**—a repository of documents or data that the retrieval step can query. + +If you want to build a custom knowledge base, you can use LangChain's document loaders and vector stores to create one from your own data. \ No newline at end of file diff --git a/src/langchain_v1/rag_systems.png b/src/langchain_v1/rag_systems.png new file mode 100644 index 00000000..2111bdab Binary files /dev/null and b/src/langchain_v1/rag_systems.png differ diff --git a/src/langchain_v1/recursive.ipynb b/src/langchain_v1/recursive.ipynb new file mode 100644 index 00000000..d48f7a19 --- /dev/null +++ b/src/langchain_v1/recursive.ipynb @@ -0,0 +1,321 @@ +{ + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "id": "57ad9ff9-68b6-47ef-842e-4254177b8028", + "metadata": {}, + "source": [ + "---\n", + "title: \"Recursive\"\n", + "icon: \"arrows-spin\"\n", + "---\n", + "\n", + "\n", + "\n", + "This chain will not be released! \n", + " \n", + "It seems pretty unimportant these days and replceable with a simple map reduce given that context windows are so large.\n", + "\n", + "Likely it'll appear for some speciality use cases and in these cases users will probably can optimize the graph on their own.\n", + "\n", + "\n", + "\n", + "\n", + "```mermaid\n", + "graph TD\n", + " %% Level 0 - Original Docs\n", + " A1[Doc1] --> B1[Sum1]\n", + " A2[Doc2] --> B2[Sum2]\n", + " A3[Doc3] --> B3[Sum3]\n", + " A4[Doc4] --> B4[Sum4]\n", + " A5[Doc5] --> B5[Sum5]\n", + " A6[Doc6] --> B6[Sum6]\n", + " A7[Doc7] --> B7[Sum7]\n", + " A8[Doc8] --> B8[Sum8]\n", + "\n", + " %% Level 1 - First Combines\n", + " B1 --> C1[CombSum1]\n", + " B2 --> C1\n", + " B3 --> C2[CombSum2]\n", + " B4 --> C2\n", + " B5 --> C3[CombSum3]\n", + " B6 --> C3\n", + " B7 --> C4[CombSum4]\n", + " B8 --> C4\n", + "\n", + " %% Level 2 - Mega Combines\n", + " C1 --> D1[MegaSum1]\n", + " C2 --> D1\n", + " C3 --> D2[MegaSum2]\n", + " C4 --> D2\n", + "\n", + " %% Level 3 - Final Summary\n", + " D1 --> E[FINAL_SUMMARY]\n", + " D2 --> E\n", + "```\n", + "\n", + "\n", + "## Example dataset\n", + "\n", + "\n", + "This text is sourced from [Project Gutenberg](https://www.gutenberg.org/ebooks/2600) and is in the public domain. Redistribution is permitted, but the following attribution must be preserved:\n", + "\n", + "> This eBook is for the use of anyone anywhere at no cost and with\n", + "> almost no restrictions whatsoever. You may copy it, give it away or\n", + "> re-use it under the terms of the Project Gutenberg License included\n", + "> with this eBook or online at [www.gutenberg.org](https://www.gutenberg.org).\n", + ">\n", + "> Public domain text provided by Project Gutenberg:\n", + "> [https://www.gutenberg.org/ebooks/2600](https://www.gutenberg.org/ebooks/2600)\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "ad27b7f1-a866-4785-8ffe-593dc8ea20c0", + "metadata": {}, + "source": [ + "## 🛠️ Step 1: Download the Text" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "b7b505b7-0118-43a6-8c56-0c3a81636533", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "File 'war_and_peace_gutenberg.txt' already exists. Skipping download.\n" + ] + } + ], + "source": [ + "from pathlib import Path\n", + "import requests\n", + "\n", + "# URL of the plain text file from Project Gutenberg\n", + "url = \"https://www.gutenberg.org/cache/epub/1184/pg1184.txt\"\n", + "output_path = Path(\"war_and_peace_gutenberg.txt\")\n", + "\n", + "# Check if file already exists\n", + "if output_path.exists():\n", + " print(f\"File '{output_path}' already exists. Skipping download.\")\n", + "else:\n", + " response = requests.get(url)\n", + " if response.status_code == 200:\n", + " output_path.write_text(response.text + attribution, encoding=\"utf-8\")\n", + " print(f\"Downloaded and saved to '{output_path}' with attribution.\")\n", + " else:\n", + " print(f\"Failed to download. Status code: {response.status_code}\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "84220f8a-b877-4785-a01a-35ffcbf62f0d", + "metadata": {}, + "source": [ + "## 🧱 Step 2: Split Text into Chunks" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "b41fb753-2184-4dd4-930f-60f997cc2535", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Chunks created: 27\n" + ] + } + ], + "source": [ + "from langchain_text_splitters import RecursiveCharacterTextSplitter\n", + "\n", + "text = output_path.read_text()\n", + "\n", + "splitter = RecursiveCharacterTextSplitter(\n", + " chunk_size=100_000,\n", + " chunk_overlap=500,\n", + ")\n", + "\n", + "texts = splitter.split_text(text)\n", + "print(f\"Chunks created: {len(texts)}\")" + ] + }, + { + "cell_type": "markdown", + "id": "8aaaacc2-bc99-4ce6-83a3-e71f393a5a0e", + "metadata": {}, + "source": [ + "## 🧾 Step 3: Convert to Document Format" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "c9e60652-9f13-45aa-bc33-1a75c200aed5", + "metadata": {}, + "outputs": [], + "source": [ + "from langchain_core.documents import Document\n", + "\n", + "documents = [Document(page_content=chunk) for chunk in texts]" + ] + }, + { + "cell_type": "markdown", + "id": "a395680c-9fd6-4245-bd63-3fd56a0e5c3d", + "metadata": {}, + "source": [ + "## 🔄 Step 4: Define Output Schema (Optional)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "e5185b45-df3c-4426-beae-001281a07932", + "metadata": {}, + "outputs": [], + "source": [ + "from pydantic import BaseModel, Field\n", + "\n", + "class Person(BaseModel):\n", + " name: str\n", + " age: str | None = None\n", + " hair_color: str | None = None\n", + " source_doc_ids: list[str] = Field(\n", + " default=[],\n", + " description=\"The IDs of the documents where the information was found.\"\n", + " )\n", + "\n", + "class PeopleRoot(BaseModel):\n", + " people: list[Person]\n" + ] + }, + { + "cell_type": "markdown", + "id": "1fe4b01b-c514-46a5-b860-2766afaf5316", + "metadata": {}, + "source": [ + "## 🤖 Step 5: Build Recursive Summarizer" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "aae93f68-f7de-49c0-a9ce-f884b29ff7cc", + "metadata": {}, + "outputs": [], + "source": [ + "from langchain.chains import create_recursive_document_chain\n", + "from langchain.chat_models import init_chat_model\n", + "\n", + "# Choose model ID (adjust to what your setup supports)\n", + "model = init_chat_model(\"claude-opus-4-20250514\")\n", + "\n", + "summarizer = create_recursive_document_chain(\n", + " model,\n", + " map_prompt=\"Produce a summary in bullet points with up to 3 bullets.\",\n", + ").compile(name=\"RecursiveSummarizer\")" + ] + }, + { + "cell_type": "markdown", + "id": "d523c7a8-3e49-48d5-9b5b-7b154bca323f", + "metadata": {}, + "source": [ + "## 🚀 Step 6: Run Summarization" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "ffaa45f3-4531-48c2-b229-fc51bdee328c", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Output parser received a `max_tokens` stop reason. The output is likely incomplete—please increase `max_tokens` or shorten your prompt.\n", + "Traceback (most recent call last):\n", + " File \"/home/eugene/.cache/uv/archive-v0/H7PJAEZVghiAsX_gNYVSD/lib/python3.12/site-packages/langchain_core/output_parsers/openai_tools.py\", line 336, in parse_result\n", + " pydantic_objects.append(name_dict[res[\"type\"]](**res[\"args\"]))\n", + " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", + " File \"/home/eugene/.cache/uv/archive-v0/H7PJAEZVghiAsX_gNYVSD/lib/python3.12/site-packages/pydantic/main.py\", line 253, in __init__\n", + " validated_self = self.__pydantic_validator__.validate_python(data, self_instance=self)\n", + " ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n", + "pydantic_core._pydantic_core.ValidationError: 1 validation error for PeopleRoot\n", + "people\n", + " Field required [type=missing, input_value={}, input_type=dict]\n", + " For further information visit https://errors.pydantic.dev/2.11/v/missing\n" + ] + }, + { + "ename": "ValidationError", + "evalue": "1 validation error for PeopleRoot\npeople\n Field required [type=missing, input_value={}, input_type=dict]\n For further information visit https://errors.pydantic.dev/2.11/v/missing", + "output_type": "error", + "traceback": [ + "\u001b[31m---------------------------------------------------------------------------\u001b[39m", + "\u001b[31mValidationError\u001b[39m Traceback (most recent call last)", + "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[6]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m output = \u001b[43msummarizer\u001b[49m\u001b[43m.\u001b[49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\u001b[43m{\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mdocuments\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mdocuments\u001b[49m\u001b[43m[\u001b[49m\u001b[43m:\u001b[49m\u001b[32;43m8\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m}\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 2\u001b[39m \u001b[38;5;28mprint\u001b[39m(output)\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/src/docs/.venv/lib/python3.12/site-packages/langgraph/pregel/main.py:3015\u001b[39m, in \u001b[36mPregel.invoke\u001b[39m\u001b[34m(self, input, config, context, stream_mode, print_mode, output_keys, interrupt_before, interrupt_after, durability, **kwargs)\u001b[39m\n\u001b[32m 3012\u001b[39m chunks: \u001b[38;5;28mlist\u001b[39m[\u001b[38;5;28mdict\u001b[39m[\u001b[38;5;28mstr\u001b[39m, Any] | Any] = []\n\u001b[32m 3013\u001b[39m interrupts: \u001b[38;5;28mlist\u001b[39m[Interrupt] = []\n\u001b[32m-> \u001b[39m\u001b[32m3015\u001b[39m \u001b[43m\u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mchunk\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mstream\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 3016\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 3017\u001b[39m \u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 3018\u001b[39m \u001b[43m \u001b[49m\u001b[43mcontext\u001b[49m\u001b[43m=\u001b[49m\u001b[43mcontext\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 3019\u001b[39m \u001b[43m \u001b[49m\u001b[43mstream_mode\u001b[49m\u001b[43m=\u001b[49m\u001b[43m[\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mupdates\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mvalues\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\n\u001b[32m 3020\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mstream_mode\u001b[49m\u001b[43m \u001b[49m\u001b[43m==\u001b[49m\u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mvalues\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\n\u001b[32m 3021\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mstream_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 3022\u001b[39m \u001b[43m \u001b[49m\u001b[43mprint_mode\u001b[49m\u001b[43m=\u001b[49m\u001b[43mprint_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 3023\u001b[39m \u001b[43m \u001b[49m\u001b[43moutput_keys\u001b[49m\u001b[43m=\u001b[49m\u001b[43moutput_keys\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 3024\u001b[39m \u001b[43m \u001b[49m\u001b[43minterrupt_before\u001b[49m\u001b[43m=\u001b[49m\u001b[43minterrupt_before\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 3025\u001b[39m \u001b[43m \u001b[49m\u001b[43minterrupt_after\u001b[49m\u001b[43m=\u001b[49m\u001b[43minterrupt_after\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 3026\u001b[39m \u001b[43m \u001b[49m\u001b[43mdurability\u001b[49m\u001b[43m=\u001b[49m\u001b[43mdurability\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 3027\u001b[39m \u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 3028\u001b[39m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\u001b[43m:\u001b[49m\n\u001b[32m 3029\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mstream_mode\u001b[49m\u001b[43m \u001b[49m\u001b[43m==\u001b[49m\u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mvalues\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\n\u001b[32m 3030\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mlen\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mchunk\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[43m==\u001b[49m\u001b[43m \u001b[49m\u001b[32;43m2\u001b[39;49m\u001b[43m:\u001b[49m\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/src/docs/.venv/lib/python3.12/site-packages/langgraph/pregel/main.py:2642\u001b[39m, in \u001b[36mPregel.stream\u001b[39m\u001b[34m(self, input, config, context, stream_mode, print_mode, output_keys, interrupt_before, interrupt_after, durability, subgraphs, debug, **kwargs)\u001b[39m\n\u001b[32m 2640\u001b[39m \u001b[38;5;28;01mfor\u001b[39;00m task \u001b[38;5;129;01min\u001b[39;00m loop.match_cached_writes():\n\u001b[32m 2641\u001b[39m loop.output_writes(task.id, task.writes, cached=\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[32m-> \u001b[39m\u001b[32m2642\u001b[39m \u001b[43m\u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43m_\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mrunner\u001b[49m\u001b[43m.\u001b[49m\u001b[43mtick\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 2643\u001b[39m \u001b[43m \u001b[49m\u001b[43m[\u001b[49m\u001b[43mt\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mt\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mloop\u001b[49m\u001b[43m.\u001b[49m\u001b[43mtasks\u001b[49m\u001b[43m.\u001b[49m\u001b[43mvalues\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mt\u001b[49m\u001b[43m.\u001b[49m\u001b[43mwrites\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 2644\u001b[39m \u001b[43m \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mstep_timeout\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 2645\u001b[39m \u001b[43m \u001b[49m\u001b[43mget_waiter\u001b[49m\u001b[43m=\u001b[49m\u001b[43mget_waiter\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 2646\u001b[39m \u001b[43m \u001b[49m\u001b[43mschedule_task\u001b[49m\u001b[43m=\u001b[49m\u001b[43mloop\u001b[49m\u001b[43m.\u001b[49m\u001b[43maccept_push\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 2647\u001b[39m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\u001b[43m:\u001b[49m\n\u001b[32m 2648\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;66;43;03m# emit output\u001b[39;49;00m\n\u001b[32m 2649\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;28;43;01myield from\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43m_output\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 2650\u001b[39m \u001b[43m \u001b[49m\u001b[43mstream_mode\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mprint_mode\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msubgraphs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[43m.\u001b[49m\u001b[43mget\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mqueue\u001b[49m\u001b[43m.\u001b[49m\u001b[43mEmpty\u001b[49m\n\u001b[32m 2651\u001b[39m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 2652\u001b[39m loop.after_tick()\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/src/docs/.venv/lib/python3.12/site-packages/langgraph/pregel/_runner.py:253\u001b[39m, in \u001b[36mPregelRunner.tick\u001b[39m\u001b[34m(self, tasks, reraise, timeout, retry_policy, get_waiter, schedule_task)\u001b[39m\n\u001b[32m 251\u001b[39m \u001b[38;5;66;03m# panic on failure or timeout\u001b[39;00m\n\u001b[32m 252\u001b[39m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[32m--> \u001b[39m\u001b[32m253\u001b[39m \u001b[43m_panic_or_proceed\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 254\u001b[39m \u001b[43m \u001b[49m\u001b[43mfutures\u001b[49m\u001b[43m.\u001b[49m\u001b[43mdone\u001b[49m\u001b[43m.\u001b[49m\u001b[43munion\u001b[49m\u001b[43m(\u001b[49m\u001b[43mf\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mt\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mfutures\u001b[49m\u001b[43m.\u001b[49m\u001b[43mitems\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mt\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 255\u001b[39m \u001b[43m \u001b[49m\u001b[43mpanic\u001b[49m\u001b[43m=\u001b[49m\u001b[43mreraise\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 256\u001b[39m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 257\u001b[39m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m exc:\n\u001b[32m 258\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m tb := exc.__traceback__:\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/src/docs/.venv/lib/python3.12/site-packages/langgraph/pregel/_runner.py:511\u001b[39m, in \u001b[36m_panic_or_proceed\u001b[39m\u001b[34m(futs, timeout_exc_cls, panic)\u001b[39m\n\u001b[32m 509\u001b[39m interrupts.append(exc)\n\u001b[32m 510\u001b[39m \u001b[38;5;28;01melif\u001b[39;00m fut \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m SKIP_RERAISE_SET:\n\u001b[32m--> \u001b[39m\u001b[32m511\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m exc\n\u001b[32m 512\u001b[39m \u001b[38;5;66;03m# raise combined interrupts\u001b[39;00m\n\u001b[32m 513\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m interrupts:\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/src/docs/.venv/lib/python3.12/site-packages/langgraph/pregel/_executor.py:81\u001b[39m, in \u001b[36mBackgroundExecutor.done\u001b[39m\u001b[34m(self, task)\u001b[39m\n\u001b[32m 79\u001b[39m \u001b[38;5;250m\u001b[39m\u001b[33;03m\"\"\"Remove the task from the tasks dict when it's done.\"\"\"\u001b[39;00m\n\u001b[32m 80\u001b[39m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[32m---> \u001b[39m\u001b[32m81\u001b[39m \u001b[43mtask\u001b[49m\u001b[43m.\u001b[49m\u001b[43mresult\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 82\u001b[39m \u001b[38;5;28;01mexcept\u001b[39;00m GraphBubbleUp:\n\u001b[32m 83\u001b[39m \u001b[38;5;66;03m# This exception is an interruption signal, not an error\u001b[39;00m\n\u001b[32m 84\u001b[39m \u001b[38;5;66;03m# so we don't want to re-raise it on exit\u001b[39;00m\n\u001b[32m 85\u001b[39m \u001b[38;5;28mself\u001b[39m.tasks.pop(task)\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/.local/share/uv/python/cpython-3.12.8-linux-x86_64-gnu/lib/python3.12/concurrent/futures/_base.py:449\u001b[39m, in \u001b[36mFuture.result\u001b[39m\u001b[34m(self, timeout)\u001b[39m\n\u001b[32m 447\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m CancelledError()\n\u001b[32m 448\u001b[39m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mself\u001b[39m._state == FINISHED:\n\u001b[32m--> \u001b[39m\u001b[32m449\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m__get_result\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 451\u001b[39m \u001b[38;5;28mself\u001b[39m._condition.wait(timeout)\n\u001b[32m 453\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m._state \u001b[38;5;129;01min\u001b[39;00m [CANCELLED, CANCELLED_AND_NOTIFIED]:\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/.local/share/uv/python/cpython-3.12.8-linux-x86_64-gnu/lib/python3.12/concurrent/futures/_base.py:401\u001b[39m, in \u001b[36mFuture.__get_result\u001b[39m\u001b[34m(self)\u001b[39m\n\u001b[32m 399\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m._exception:\n\u001b[32m 400\u001b[39m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[32m--> \u001b[39m\u001b[32m401\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28mself\u001b[39m._exception\n\u001b[32m 402\u001b[39m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[32m 403\u001b[39m \u001b[38;5;66;03m# Break a reference cycle with the exception in self._exception\u001b[39;00m\n\u001b[32m 404\u001b[39m \u001b[38;5;28mself\u001b[39m = \u001b[38;5;28;01mNone\u001b[39;00m\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/.local/share/uv/python/cpython-3.12.8-linux-x86_64-gnu/lib/python3.12/concurrent/futures/thread.py:59\u001b[39m, in \u001b[36m_WorkItem.run\u001b[39m\u001b[34m(self)\u001b[39m\n\u001b[32m 56\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m\n\u001b[32m 58\u001b[39m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[32m---> \u001b[39m\u001b[32m59\u001b[39m result = \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[43m*\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 60\u001b[39m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m exc:\n\u001b[32m 61\u001b[39m \u001b[38;5;28mself\u001b[39m.future.set_exception(exc)\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/src/docs/.venv/lib/python3.12/site-packages/langgraph/pregel/_retry.py:42\u001b[39m, in \u001b[36mrun_with_retry\u001b[39m\u001b[34m(task, retry_policy, configurable)\u001b[39m\n\u001b[32m 40\u001b[39m task.writes.clear()\n\u001b[32m 41\u001b[39m \u001b[38;5;66;03m# run the task\u001b[39;00m\n\u001b[32m---> \u001b[39m\u001b[32m42\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mtask\u001b[49m\u001b[43m.\u001b[49m\u001b[43mproc\u001b[49m\u001b[43m.\u001b[49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtask\u001b[49m\u001b[43m.\u001b[49m\u001b[43minput\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 43\u001b[39m \u001b[38;5;28;01mexcept\u001b[39;00m ParentCommand \u001b[38;5;28;01mas\u001b[39;00m exc:\n\u001b[32m 44\u001b[39m ns: \u001b[38;5;28mstr\u001b[39m = config[CONF][CONFIG_KEY_CHECKPOINT_NS]\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/src/docs/.venv/lib/python3.12/site-packages/langgraph/_internal/_runnable.py:657\u001b[39m, in \u001b[36mRunnableSeq.invoke\u001b[39m\u001b[34m(self, input, config, **kwargs)\u001b[39m\n\u001b[32m 655\u001b[39m \u001b[38;5;66;03m# run in context\u001b[39;00m\n\u001b[32m 656\u001b[39m \u001b[38;5;28;01mwith\u001b[39;00m set_config_context(config, run) \u001b[38;5;28;01mas\u001b[39;00m context:\n\u001b[32m--> \u001b[39m\u001b[32m657\u001b[39m \u001b[38;5;28minput\u001b[39m = \u001b[43mcontext\u001b[49m\u001b[43m.\u001b[49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\u001b[43mstep\u001b[49m\u001b[43m.\u001b[49m\u001b[43minvoke\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 658\u001b[39m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[32m 659\u001b[39m \u001b[38;5;28minput\u001b[39m = step.invoke(\u001b[38;5;28minput\u001b[39m, config)\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/src/docs/.venv/lib/python3.12/site-packages/langgraph/_internal/_runnable.py:401\u001b[39m, in \u001b[36mRunnableCallable.invoke\u001b[39m\u001b[34m(self, input, config, **kwargs)\u001b[39m\n\u001b[32m 399\u001b[39m run_manager.on_chain_end(ret)\n\u001b[32m 400\u001b[39m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[32m--> \u001b[39m\u001b[32m401\u001b[39m ret = \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[43m*\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 402\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m.recurse \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(ret, Runnable):\n\u001b[32m 403\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m ret.invoke(\u001b[38;5;28minput\u001b[39m, config)\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/src/langchain/libs/langchain_v1/langchain/chains/documents/recursive.py:329\u001b[39m, in \u001b[36m_RecursiveSummarizer.create_map_node.._map_node\u001b[39m\u001b[34m(state, runtime, config)\u001b[39m\n\u001b[32m 325\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34m_map_node\u001b[39m(\n\u001b[32m 326\u001b[39m state: MapState, runtime: Runtime, config: RunnableConfig\n\u001b[32m 327\u001b[39m ) -> \u001b[38;5;28mdict\u001b[39m[\u001b[38;5;28mstr\u001b[39m, \u001b[38;5;28mlist\u001b[39m[\u001b[38;5;28mstr\u001b[39m]]:\n\u001b[32m 328\u001b[39m prompt = \u001b[38;5;28mself\u001b[39m._get_map_prompt(state, runtime)\n\u001b[32m--> \u001b[39m\u001b[32m329\u001b[39m response = cast(\u001b[33m\"\u001b[39m\u001b[33mAIMessage\u001b[39m\u001b[33m\"\u001b[39m, \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m.\u001b[49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\u001b[43mprompt\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m=\u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[32m 330\u001b[39m result = response \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m.response_format \u001b[38;5;28;01melse\u001b[39;00m response.text()\n\u001b[32m 331\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m {\u001b[33m\"\u001b[39m\u001b[33msummaries\u001b[39m\u001b[33m\"\u001b[39m: [\u001b[38;5;28mstr\u001b[39m(result)]}\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/.cache/uv/archive-v0/H7PJAEZVghiAsX_gNYVSD/lib/python3.12/site-packages/langchain_core/runnables/base.py:3046\u001b[39m, in \u001b[36mRunnableSequence.invoke\u001b[39m\u001b[34m(self, input, config, **kwargs)\u001b[39m\n\u001b[32m 3044\u001b[39m input_ = context.run(step.invoke, input_, config, **kwargs)\n\u001b[32m 3045\u001b[39m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[32m-> \u001b[39m\u001b[32m3046\u001b[39m input_ = \u001b[43mcontext\u001b[49m\u001b[43m.\u001b[49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\u001b[43mstep\u001b[49m\u001b[43m.\u001b[49m\u001b[43minvoke\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minput_\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 3047\u001b[39m \u001b[38;5;66;03m# finish the root run\u001b[39;00m\n\u001b[32m 3048\u001b[39m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/.cache/uv/archive-v0/H7PJAEZVghiAsX_gNYVSD/lib/python3.12/site-packages/langchain_core/output_parsers/base.py:196\u001b[39m, in \u001b[36mBaseOutputParser.invoke\u001b[39m\u001b[34m(self, input, config, **kwargs)\u001b[39m\n\u001b[32m 188\u001b[39m \u001b[38;5;129m@override\u001b[39m\n\u001b[32m 189\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34minvoke\u001b[39m(\n\u001b[32m 190\u001b[39m \u001b[38;5;28mself\u001b[39m,\n\u001b[32m (...)\u001b[39m\u001b[32m 193\u001b[39m **kwargs: Any,\n\u001b[32m 194\u001b[39m ) -> T:\n\u001b[32m 195\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28minput\u001b[39m, BaseMessage):\n\u001b[32m--> \u001b[39m\u001b[32m196\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_call_with_config\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 197\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mlambda\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43minner_input\u001b[49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mparse_result\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 198\u001b[39m \u001b[43m \u001b[49m\u001b[43m[\u001b[49m\u001b[43mChatGeneration\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmessage\u001b[49m\u001b[43m=\u001b[49m\u001b[43minner_input\u001b[49m\u001b[43m)\u001b[49m\u001b[43m]\u001b[49m\n\u001b[32m 199\u001b[39m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 200\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 201\u001b[39m \u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 202\u001b[39m \u001b[43m \u001b[49m\u001b[43mrun_type\u001b[49m\u001b[43m=\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mparser\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 203\u001b[39m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 204\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m._call_with_config(\n\u001b[32m 205\u001b[39m \u001b[38;5;28;01mlambda\u001b[39;00m inner_input: \u001b[38;5;28mself\u001b[39m.parse_result([Generation(text=inner_input)]),\n\u001b[32m 206\u001b[39m \u001b[38;5;28minput\u001b[39m,\n\u001b[32m 207\u001b[39m config,\n\u001b[32m 208\u001b[39m run_type=\u001b[33m\"\u001b[39m\u001b[33mparser\u001b[39m\u001b[33m\"\u001b[39m,\n\u001b[32m 209\u001b[39m )\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/.cache/uv/archive-v0/H7PJAEZVghiAsX_gNYVSD/lib/python3.12/site-packages/langchain_core/runnables/base.py:1939\u001b[39m, in \u001b[36mRunnable._call_with_config\u001b[39m\u001b[34m(self, func, input_, config, run_type, serialized, **kwargs)\u001b[39m\n\u001b[32m 1935\u001b[39m child_config = patch_config(config, callbacks=run_manager.get_child())\n\u001b[32m 1936\u001b[39m \u001b[38;5;28;01mwith\u001b[39;00m set_config_context(child_config) \u001b[38;5;28;01mas\u001b[39;00m context:\n\u001b[32m 1937\u001b[39m output = cast(\n\u001b[32m 1938\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mOutput\u001b[39m\u001b[33m\"\u001b[39m,\n\u001b[32m-> \u001b[39m\u001b[32m1939\u001b[39m \u001b[43mcontext\u001b[49m\u001b[43m.\u001b[49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 1940\u001b[39m \u001b[43m \u001b[49m\u001b[43mcall_func_with_variable_args\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# type: ignore[arg-type]\u001b[39;49;00m\n\u001b[32m 1941\u001b[39m \u001b[43m \u001b[49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1942\u001b[39m \u001b[43m \u001b[49m\u001b[43minput_\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1943\u001b[39m \u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1944\u001b[39m \u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1945\u001b[39m \u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1946\u001b[39m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m,\n\u001b[32m 1947\u001b[39m )\n\u001b[32m 1948\u001b[39m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[32m 1949\u001b[39m run_manager.on_chain_error(e)\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/.cache/uv/archive-v0/H7PJAEZVghiAsX_gNYVSD/lib/python3.12/site-packages/langchain_core/runnables/config.py:429\u001b[39m, in \u001b[36mcall_func_with_variable_args\u001b[39m\u001b[34m(func, input, config, run_manager, **kwargs)\u001b[39m\n\u001b[32m 427\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m run_manager \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m accepts_run_manager(func):\n\u001b[32m 428\u001b[39m kwargs[\u001b[33m\"\u001b[39m\u001b[33mrun_manager\u001b[39m\u001b[33m\"\u001b[39m] = run_manager\n\u001b[32m--> \u001b[39m\u001b[32m429\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/.cache/uv/archive-v0/H7PJAEZVghiAsX_gNYVSD/lib/python3.12/site-packages/langchain_core/output_parsers/base.py:197\u001b[39m, in \u001b[36mBaseOutputParser.invoke..\u001b[39m\u001b[34m(inner_input)\u001b[39m\n\u001b[32m 188\u001b[39m \u001b[38;5;129m@override\u001b[39m\n\u001b[32m 189\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34minvoke\u001b[39m(\n\u001b[32m 190\u001b[39m \u001b[38;5;28mself\u001b[39m,\n\u001b[32m (...)\u001b[39m\u001b[32m 193\u001b[39m **kwargs: Any,\n\u001b[32m 194\u001b[39m ) -> T:\n\u001b[32m 195\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28minput\u001b[39m, BaseMessage):\n\u001b[32m 196\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m._call_with_config(\n\u001b[32m--> \u001b[39m\u001b[32m197\u001b[39m \u001b[38;5;28;01mlambda\u001b[39;00m inner_input: \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mparse_result\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 198\u001b[39m \u001b[43m \u001b[49m\u001b[43m[\u001b[49m\u001b[43mChatGeneration\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmessage\u001b[49m\u001b[43m=\u001b[49m\u001b[43minner_input\u001b[49m\u001b[43m)\u001b[49m\u001b[43m]\u001b[49m\n\u001b[32m 199\u001b[39m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m,\n\u001b[32m 200\u001b[39m \u001b[38;5;28minput\u001b[39m,\n\u001b[32m 201\u001b[39m config,\n\u001b[32m 202\u001b[39m run_type=\u001b[33m\"\u001b[39m\u001b[33mparser\u001b[39m\u001b[33m\"\u001b[39m,\n\u001b[32m 203\u001b[39m )\n\u001b[32m 204\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m._call_with_config(\n\u001b[32m 205\u001b[39m \u001b[38;5;28;01mlambda\u001b[39;00m inner_input: \u001b[38;5;28mself\u001b[39m.parse_result([Generation(text=inner_input)]),\n\u001b[32m 206\u001b[39m \u001b[38;5;28minput\u001b[39m,\n\u001b[32m 207\u001b[39m config,\n\u001b[32m 208\u001b[39m run_type=\u001b[33m\"\u001b[39m\u001b[33mparser\u001b[39m\u001b[33m\"\u001b[39m,\n\u001b[32m 209\u001b[39m )\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/.cache/uv/archive-v0/H7PJAEZVghiAsX_gNYVSD/lib/python3.12/site-packages/langchain_core/output_parsers/openai_tools.py:336\u001b[39m, in \u001b[36mPydanticToolsParser.parse_result\u001b[39m\u001b[34m(self, result, partial)\u001b[39m\n\u001b[32m 334\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(msg)\n\u001b[32m 335\u001b[39m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[32m--> \u001b[39m\u001b[32m336\u001b[39m pydantic_objects.append(\u001b[43mname_dict\u001b[49m\u001b[43m[\u001b[49m\u001b[43mres\u001b[49m\u001b[43m[\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mtype\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m]\u001b[49m\u001b[43m(\u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mres\u001b[49m\u001b[43m[\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43margs\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[32m 337\u001b[39m \u001b[38;5;28;01mexcept\u001b[39;00m (ValidationError, \u001b[38;5;167;01mValueError\u001b[39;00m):\n\u001b[32m 338\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m partial:\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/.cache/uv/archive-v0/H7PJAEZVghiAsX_gNYVSD/lib/python3.12/site-packages/pydantic/main.py:253\u001b[39m, in \u001b[36mBaseModel.__init__\u001b[39m\u001b[34m(self, **data)\u001b[39m\n\u001b[32m 251\u001b[39m \u001b[38;5;66;03m# `__tracebackhide__` tells pytest and some other tools to omit this function from tracebacks\u001b[39;00m\n\u001b[32m 252\u001b[39m __tracebackhide__ = \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m253\u001b[39m validated_self = \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m__pydantic_validator__\u001b[49m\u001b[43m.\u001b[49m\u001b[43mvalidate_python\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mself_instance\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[32m 254\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m validated_self:\n\u001b[32m 255\u001b[39m warnings.warn(\n\u001b[32m 256\u001b[39m \u001b[33m'\u001b[39m\u001b[33mA custom validator is returning a value other than `self`.\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[33m'\u001b[39m\n\u001b[32m 257\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mReturning anything other than `self` from a top level model validator isn\u001b[39m\u001b[33m'\u001b[39m\u001b[33mt supported when validating via `__init__`.\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[33m\"\u001b[39m\n\u001b[32m 258\u001b[39m \u001b[33m'\u001b[39m\u001b[33mSee the `model_validator` docs (https://docs.pydantic.dev/latest/concepts/validators/#model-validators) for more details.\u001b[39m\u001b[33m'\u001b[39m,\n\u001b[32m 259\u001b[39m stacklevel=\u001b[32m2\u001b[39m,\n\u001b[32m 260\u001b[39m )\n", + "\u001b[31mValidationError\u001b[39m: 1 validation error for PeopleRoot\npeople\n Field required [type=missing, input_value={}, input_type=dict]\n For further information visit https://errors.pydantic.dev/2.11/v/missing", + "During task with name 'map_summarize' and id '8137de8e-dab2-7a83-871c-1b1c8975ef4d'" + ] + } + ], + "source": [ + "output = summarizer.invoke({\"documents\": documents[:8]})\n", + "print(output)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/src/langchain_v1/stuff.ipynb b/src/langchain_v1/stuff.ipynb new file mode 100644 index 00000000..134c875f --- /dev/null +++ b/src/langchain_v1/stuff.ipynb @@ -0,0 +1,452 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "32610a5b-23ea-4880-8013-001b114b555a", + "metadata": {}, + "source": [ + "---\n", + "title: \"Stuff chain\"\n", + "icon: \"book\"\n", + "---\n", + "\n", + "The **Stuff Documents** chain processes all documents in a **single pass** by **concatenating their content** and inserting it into the **context window** of the language model (LLM). This approach is ideal when:\n", + "\n", + "- The combined size of all documents **fits within the model’s context window**.\n", + "- You want **joint analysis**, such as summarizing or reasoning across the entire content.\n", + "- You may optionally apply **refinement**, where previous outputs are reprocessed along with new documents.\n", + "\n", + "```mermaid\n", + "graph TD\n", + " A[Documents] --> B[Concatenate all]\n", + " C[Optional question] --> E[Prompt construction: all stuffed in context window]\n", + " D[Optional response format] --> E\n", + " B --> E\n", + " E --> F[LLM Processes input]\n", + " F --> H[\"Extraction / Summary / Answer\"]\n", + "````" + ] + }, + { + "cell_type": "markdown", + "id": "ed5cf593-14c8-4073-adaa-c708daf25ab7", + "metadata": {}, + "source": [ + "# 1. Set up data" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "425ca669-9caa-4bea-a1e7-fab8e95210d8", + "metadata": {}, + "outputs": [], + "source": [ + "from langchain.chains import create_stuff_documents_chain\n", + "from langchain.chat_models import init_chat_model\n", + "from langchain.documents import Document" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "3488cf7a-1e7b-4d0a-83bc-307f10ce0344", + "metadata": {}, + "outputs": [], + "source": [ + "documents = [\n", + " Document(\n", + " page_content=(\n", + " \"Richard Feynman was born on May 11, 1918, in Queens, New York. He showed an early \"\n", + " \"interest in science, especially radios and engineering. As a teenager, he repaired \"\n", + " \"radios as a hobby and even earned some money doing it.\\n\\n\"\n", + " \"He attended the Massachusetts Institute of Technology (MIT) for his undergraduate \"\n", + " \"studies and later earned his PhD in physics from Princeton University in 1942. At \"\n", + " \"Princeton, he impressed many with his quick mind and problem-solving skills.\\n\\n\"\n", + " \"After completing his PhD, he joined the Los Alamos Laboratory as part of the Manhattan Project.\"\n", + " ),\n", + " metadata={\"source\": \"early_life\"},\n", + " id=\"1\"\n", + " ),\n", + " Document(\n", + " page_content=(\n", + " \"During World War II, Feynman worked on the Manhattan Project, the top-secret effort \"\n", + " \"to build the first atomic bomb. He was based at Los Alamos Laboratory in New Mexico.\\n\\n\"\n", + " \"There, he worked under physicist Hans Bethe and was known for his creativity and sense \"\n", + " \"of humor. One of his habits was picking locks and cracking safes—not to steal secrets, \"\n", + " \"but to prove how insecure they were.\\n\\n\"\n", + " \"Feynman’s contributions helped the U.S. develop nuclear weapons, which were used in \"\n", + " \"1945 to end the war.\"\n", + " ),\n", + " metadata={\"source\": \"manhattan_project\"},\n", + " id=\"2\"\n", + " ),\n", + " Document(\n", + " page_content=(\n", + " \"After the war, Feynman became a professor at Cornell University and later at the \"\n", + " \"California Institute of Technology (Caltech). In 1965, he won the Nobel Prize in \"\n", + " \"Physics for his work on quantum electrodynamics, shared with Julian Schwinger and \"\n", + " \"Sin-Itiro Tomonaga.\\n\\n\"\n", + " \"He became famous for his lectures, especially the Feynman Lectures on Physics, which \"\n", + " \"are still used today. In 1986, he served on the Rogers Commission that investigated \"\n", + " \"the Space Shuttle Challenger disaster.\\n\\n\"\n", + " \"Feynman died on February 15, 1988, in Los Angeles, California, after a long battle \"\n", + " \"with cancer.\"\n", + " ),\n", + " metadata={\"source\": \"later_career\"},\n", + " id=\"3\"\n", + " ),\n", + "]\n" + ] + }, + { + "cell_type": "markdown", + "id": "e1a42b30-c290-419a-a0d7-60a1517eb0d0", + "metadata": {}, + "source": [ + "## Configure for summarization" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "a0581ab0-634a-447e-b8cb-bfe1ef1dde67", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here are 3 key sentences summarizing Richard Feynman's life:\n", + "\n", + "1. Richard Feynman was a brilliant physicist born in 1918 in Queens, New York, who showed early aptitude for science and engineering, eventually earning his PhD from Princeton University in 1942.\n", + "\n", + "2. During World War II, he worked on the Manhattan Project at Los Alamos Laboratory, contributing to the development of the atomic bomb while becoming known for his creativity, humor, and habit of picking locks to expose security flaws.\n", + "\n", + "3. After the war, he became a renowned professor at Cornell and Caltech, won the 1965 Nobel Prize in Physics for his work on quantum electrodynamics, created the famous Feynman Lectures on Physics, and served on the commission investigating the Challenger disaster before his death in 1988.\n" + ] + } + ], + "source": [ + "model = init_chat_model(\"claude-opus-4-20250514\", max_tokens=32_000)\n", + "\n", + "summarizer = (\n", + " create_stuff_documents_chain(\n", + " model, \n", + " prompt=\"Summarize the contents into 3 key sentences.\"\n", + " )\n", + " .compile(name='summarize')\n", + ")\n", + "\n", + "print(summarizer.invoke({\"documents\": documents})['result'])" + ] + }, + { + "cell_type": "markdown", + "id": "aab1b929-ddb9-4ceb-a74c-1b2bb830ef31", + "metadata": {}, + "source": [ + "### Structured summarization" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "9c96df90-0a3e-43cc-8606-a394b1cb6381", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Title: Richard Feynman: The Life and Legacy of a Nobel Prize-Winning Physicist\n", + " * Born May 11, 1918 in Queens, New York, showing early interest in science and engineering, repairing radios as a teenager (1)\n", + " * Educated at MIT for undergraduate studies and earned PhD in physics from Princeton University in 1942 (1)\n", + " * Worked on the Manhattan Project at Los Alamos Laboratory during WWII under Hans Bethe, contributing to the development of the atomic bomb (1, 2)\n", + " * Known for his creativity, humor, and unconventional habits like picking locks and cracking safes at Los Alamos (2)\n", + " * Became professor at Cornell University and later at Caltech after the war (3)\n", + " * Won the 1965 Nobel Prize in Physics for quantum electrodynamics work, shared with Julian Schwinger and Sin-Itiro Tomonaga (3)\n", + " * Created the famous Feynman Lectures on Physics, which remain widely used educational resources (3)\n", + " * Served on the Rogers Commission investigating the Space Shuttle Challenger disaster in 1986 (3)\n", + " * Died February 15, 1988 in Los Angeles, California after battling cancer (3)\n" + ] + } + ], + "source": [ + "from pydantic import BaseModel, Field\n", + "from typing import Optional, List\n", + "\n", + "class BulletPoint(BaseModel):\n", + " \"\"\"Represents a single key idea with supporting document references.\"\"\"\n", + " content: str = Field(description=\"A concise bullet point summarizing a key idea.\")\n", + " source_doc_ids: List[str] = Field(default_factory=list, description=\"Document IDs supporting this bullet point.\")\n", + "\n", + "class StructuredSummary(BaseModel):\n", + " \"\"\"Structured summary including a title and supporting bullet points.\"\"\"\n", + " title: str = Field(description=\"A concise title summarizing the main theme.\")\n", + " bullet_points: List[BulletPoint] = Field(description=\"List of bullet points with supporting document references.\")\n", + "\n", + "model = init_chat_model(\"claude-opus-4-20250514\", max_tokens=32_000)\n", + "\n", + "chain = (\n", + " create_stuff_documents_chain(\n", + " model,\n", + " response_format=StructuredSummary,\n", + " )\n", + " .compile(name='structured_summary_extractor')\n", + ")\n", + "\n", + "structured_summary = chain.invoke({\"documents\": documents})['result']\n", + "\n", + "print(f\"Title: {structured_summary.title}\")\n", + "\n", + "for bullet_point in structured_summary.bullet_points:\n", + " if not bullet_point.source_doc_ids:\n", + " continue\n", + " sources = ', '.join(bullet_point.source_doc_ids)\n", + " print(f\" * {bullet_point.content} ({sources})\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "781bb94a-d043-4d47-a02b-619e7826fd93", + "metadata": {}, + "source": [ + "## Configure for extraction" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "273f6c13-04d6-4ddb-b339-044a36e90129", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Extracted facts that have dates:\n", + " * on 1918-05-11: Born in Queens, New York (sources: 1)\n", + " * on 1942: PhD from Princeton University (sources: 1)\n", + " * on 1965: Won Nobel Prize in Physics (sources: 3)\n", + " * on 1986: Served on Rogers Commission (sources: 3)\n", + " * on 1988-02-15: Died in Los Angeles, California (sources: 3)\n" + ] + } + ], + "source": [ + "from pydantic import BaseModel, Field\n", + "from typing import Optional, List\n", + "\n", + "class Fact(BaseModel):\n", + " \"\"\"Fact about Richard Feynman.\"\"\"\n", + " content: str = Field(description=\"The content of the fact. No more than a few words.\")\n", + " iso_8601_date: Optional[str] = Field(default=None, description=\"The date associated with the fact if available. Formatted as YYYY-MM-DD.\")\n", + " source_doc_ids: List[str] = Field(default_factory=list, description=\"The document or documents in which the fact appeared.\")\n", + "\n", + "class Data(BaseModel):\n", + " \"\"\"Facts to extract\"\"\"\n", + " facts: List[Fact]\n", + "\n", + "model = init_chat_model(\"claude-opus-4-20250514\", max_tokens=32_000)\n", + "\n", + "chain = (\n", + " create_stuff_documents_chain(\n", + " model,\n", + " response_format=Data,\n", + " )\n", + " .compile(name='fact_extractor')\n", + ")\n", + "\n", + "fact_data = chain.invoke({\"documents\": documents})['result']\n", + "\n", + "print(\"Extracted facts that have dates:\")\n", + "for fact in fact_data.facts:\n", + " if not fact.source_doc_ids:\n", + " continue\n", + " if not fact.iso_8601_date:\n", + " continue\n", + " date_str = f\" on {fact.iso_8601_date}\" if fact.iso_8601_date else \"\"\n", + " sources = ', '.join(fact.source_doc_ids)\n", + " print(f\" * {date_str}: {fact.content} (sources: {sources})\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "73aa5880-6851-42e0-96ca-e9d6db994c9e", + "metadata": {}, + "source": [ + "## Use for Q&A" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "dc9f950d-20bc-495e-b312-961f5a4e9b48", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Based on the documents, here are the key locations where Richard Feynman spent significant time:\n", + "\n", + "1. Queens, New York - His birthplace\n", + "2. Massachusetts Institute of Technology (MIT) - Undergraduate studies\n", + "3. Princeton University - PhD studies\n", + "4. Los Alamos Laboratory, New Mexico - Worked on the Manhattan Project during World War II\n", + "5. Cornell University - Professor\n", + "6. California Institute of Technology (Caltech) - Professor\n", + "7. Los Angeles, California - Where he died in 1988\n" + ] + } + ], + "source": [ + "from pydantic import BaseModel, Field\n", + "from typing import Optional, List\n", + "\n", + "model = init_chat_model(\"claude-3-5-haiku-latest\", max_tokens=5_000)\n", + "\n", + "chain = (\n", + " create_stuff_documents_chain(model)\n", + " .compile(name='Q&A')\n", + ")\n", + "\n", + "response = chain.invoke({\n", + " \"documents\": documents,\n", + " # A question can be provided during run time. \n", + " \"question\": \"Identify locations where Richard Feynman spent significant time\"\n", + "})\n", + "print(response['result'])" + ] + }, + { + "cell_type": "markdown", + "id": "0efd196d-1503-46e0-b331-6515ac743b26", + "metadata": {}, + "source": [ + "## Refinment\n", + "\n", + "Refinment can be achieved using LangGraph's persistence layer." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "11fb5dda-7bf9-429f-a068-c02964373d32", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " * Became professor at Caltech (sources: 3)\n", + " * Gave famous Feynman Lectures on Physics (sources: 3)\n", + " * Served on Rogers Commission investigating Challenger disaster (sources: 3)\n" + ] + } + ], + "source": [ + "from langgraph.checkpoint.memory import InMemorySaver\n", + "import uuid\n", + "\n", + "model = init_chat_model(\"claude-3-5-haiku-latest\", max_tokens=5_000)\n", + "\n", + "checkpointer = InMemorySaver()\n", + "\n", + "class Fact(BaseModel):\n", + " \"\"\"Fact.\"\"\"\n", + " content: str = Field(description=\"The content of the fact. No more than a few words.\")\n", + " source_doc_ids: List[str] = Field(default_factory=list, description=\"The document or documents in which the fact appeared.\")\n", + "\n", + "class Data(BaseModel):\n", + " \"\"\"Facts to extract\"\"\"\n", + " facts: List[Fact]\n", + "\n", + "chain = (\n", + " create_stuff_documents_chain(\n", + " model, \n", + " prompt=\"Extract any facts about Richard Feynman's time at Caltech.\",\n", + " response_format=Data\n", + " )\n", + " .compile(name='Q&A', checkpointer=checkpointer)\n", + ")\n", + "\n", + "thread_id = uuid.uuid4()\n", + "\n", + "response = chain.invoke(\n", + " {\n", + " \"documents\": documents,\n", + " },\n", + " {\n", + " 'configurable': {\n", + " 'thread_id': thread_id,\n", + " }\n", + " }\n", + ")\n", + "\n", + "for fact in response['result'].facts:\n", + " sources = ', '.join(fact.source_doc_ids)\n", + " print(f\" * {fact.content} (sources: {sources})\")" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "48e395bd-8ed6-4fdd-ba4a-52cfaf52ad52", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " * Became professor at Caltech (sources: 3)\n", + " * Gave famous Feynman Lectures on Physics (sources: 3)\n", + " * Served on Rogers Commission investigating Challenger disaster (sources: 3)\n", + " * Loved eating ice cream at Caltech (sources: 4)\n" + ] + } + ], + "source": [ + "response = chain.invoke(\n", + " {\n", + " \"documents\": [\n", + " Document(id=4, page_content=\"Richard Feynman used to eat a ton of icecream while at Caltech\")\n", + " ],\n", + " },\n", + " {\n", + " 'configurable': {\n", + " 'thread_id': thread_id,\n", + " }\n", + " }\n", + ")\n", + "\n", + "\n", + "for fact in response['result'].facts:\n", + " sources = ', '.join(fact.source_doc_ids)\n", + " print(f\" * {fact.content} (sources: {sources})\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}