@@ -237,8 +237,9 @@ def add_documents(self, documents: list[Document], **kwargs: Any) -> list[str]:
237237 Args:
238238 documents: Documents to add to the `VectorStore`.
239239 **kwargs: Additional keyword arguments.
240- if kwargs contains IDs and documents contain ids,
241- the IDs in the kwargs will receive precedence.
240+
241+ If kwargs contains IDs and documents contain ids, the IDs in the kwargs
242+ will receive precedence.
242243
243244 Returns:
244245 List of IDs of the added texts.
@@ -421,7 +422,7 @@ def similarity_search_with_score(
421422 **kwargs: Arguments to pass to the search method.
422423
423424 Returns:
424- List of Tuples of `(doc, similarity_score)`.
425+ List of tuples of `(doc, similarity_score)`.
425426 """
426427 raise NotImplementedError
427428
@@ -435,7 +436,7 @@ async def asimilarity_search_with_score(
435436 **kwargs: Arguments to pass to the search method.
436437
437438 Returns:
438- List of Tuples of `(doc, similarity_score)`.
439+ List of tuples of `(doc, similarity_score)`.
439440 """
440441 # This is a temporary workaround to make the similarity search
441442 # asynchronous. The proper solution is to make the similarity search
@@ -465,7 +466,7 @@ def _similarity_search_with_relevance_scores(
465466 to filter the resulting set of retrieved docs
466467
467468 Returns:
468- List of Tuples of `(doc, similarity_score)`
469+ List of tuples of `(doc, similarity_score)`
469470 """
470471 relevance_score_fn = self ._select_relevance_score_fn ()
471472 docs_and_scores = self .similarity_search_with_score (query , k , ** kwargs )
@@ -492,7 +493,7 @@ async def _asimilarity_search_with_relevance_scores(
492493 to filter the resulting set of retrieved docs
493494
494495 Returns:
495- List of Tuples of `(doc, similarity_score)`
496+ List of tuples of `(doc, similarity_score)`
496497 """
497498 relevance_score_fn = self ._select_relevance_score_fn ()
498499 docs_and_scores = await self .asimilarity_search_with_score (query , k , ** kwargs )
@@ -516,7 +517,7 @@ def similarity_search_with_relevance_scores(
516517 to filter the resulting set of retrieved docs
517518
518519 Returns:
519- List of Tuples of `(doc, similarity_score)`.
520+ List of tuples of `(doc, similarity_score)`.
520521 """
521522 score_threshold = kwargs .pop ("score_threshold" , None )
522523
@@ -565,7 +566,7 @@ async def asimilarity_search_with_relevance_scores(
565566 to filter the resulting set of retrieved docs
566567
567568 Returns:
568- List of Tuples of `(doc, similarity_score)`
569+ List of tuples of `(doc, similarity_score)`
569570 """
570571 score_threshold = kwargs .pop ("score_threshold" , None )
571572
@@ -667,7 +668,7 @@ def max_marginal_relevance_search(
667668 k: Number of `Document` objects to return.
668669 fetch_k: Number of `Document` objects to fetch to pass to MMR algorithm.
669670 lambda_mult: Number between `0` and `1` that determines the degree
670- of diversity among the results with 0 corresponding
671+ of diversity among the results with `0` corresponding
671672 to maximum diversity and `1` to minimum diversity.
672673 **kwargs: Arguments to pass to the search method.
673674
@@ -694,7 +695,7 @@ async def amax_marginal_relevance_search(
694695 k: Number of `Document` objects to return.
695696 fetch_k: Number of `Document` objects to fetch to pass to MMR algorithm.
696697 lambda_mult: Number between `0` and `1` that determines the degree
697- of diversity among the results with 0 corresponding
698+ of diversity among the results with `0` corresponding
698699 to maximum diversity and `1` to minimum diversity.
699700 **kwargs: Arguments to pass to the search method.
700701
@@ -732,7 +733,7 @@ def max_marginal_relevance_search_by_vector(
732733 k: Number of `Document` objects to return.
733734 fetch_k: Number of `Document` objects to fetch to pass to MMR algorithm.
734735 lambda_mult: Number between `0` and `1` that determines the degree
735- of diversity among the results with 0 corresponding
736+ of diversity among the results with `0` corresponding
736737 to maximum diversity and `1` to minimum diversity.
737738 **kwargs: Arguments to pass to the search method.
738739
@@ -759,7 +760,7 @@ async def amax_marginal_relevance_search_by_vector(
759760 k: Number of `Document` objects to return.
760761 fetch_k: Number of `Document` objects to fetch to pass to MMR algorithm.
761762 lambda_mult: Number between `0` and `1` that determines the degree
762- of diversity among the results with 0 corresponding
763+ of diversity among the results with `0` corresponding
763764 to maximum diversity and `1` to minimum diversity.
764765 **kwargs: Arguments to pass to the search method.
765766
0 commit comments