From 45562ac2dbeea57a7e4ec89e226cb09ad2f46423 Mon Sep 17 00:00:00 2001 From: Mason Daugherty Date: Wed, 8 Oct 2025 23:40:35 -0400 Subject: [PATCH] chore(cohere): delete `CohereRerank` --- .../document_compressors/cohere_rerank.py | 125 ------------------ 1 file changed, 125 deletions(-) delete mode 100644 libs/langchain/langchain_classic/retrievers/document_compressors/cohere_rerank.py diff --git a/libs/langchain/langchain_classic/retrievers/document_compressors/cohere_rerank.py b/libs/langchain/langchain_classic/retrievers/document_compressors/cohere_rerank.py deleted file mode 100644 index 8930f052c1576..0000000000000 --- a/libs/langchain/langchain_classic/retrievers/document_compressors/cohere_rerank.py +++ /dev/null @@ -1,125 +0,0 @@ -from __future__ import annotations - -from collections.abc import Sequence -from copy import deepcopy -from typing import Any - -from langchain_core._api.deprecation import deprecated -from langchain_core.callbacks import Callbacks -from langchain_core.documents import BaseDocumentCompressor, Document -from langchain_core.utils import get_from_dict_or_env -from pydantic import ConfigDict, model_validator -from typing_extensions import override - - -@deprecated( - since="0.0.30", - removal="1.0", - alternative_import="langchain_cohere.CohereRerank", -) -class CohereRerank(BaseDocumentCompressor): - """Document compressor that uses `Cohere Rerank API`.""" - - client: Any = None - """Cohere client to use for compressing documents.""" - top_n: int | None = 3 - """Number of documents to return.""" - model: str = "rerank-english-v2.0" - """Model to use for reranking.""" - cohere_api_key: str | None = None - """Cohere API key. Must be specified directly or via environment variable - COHERE_API_KEY.""" - user_agent: str = "langchain" - """Identifier for the application making the request.""" - - model_config = ConfigDict( - arbitrary_types_allowed=True, - extra="forbid", - ) - - @model_validator(mode="before") - @classmethod - def validate_environment(cls, values: dict) -> Any: - """Validate that api key and python package exists in environment.""" - if not values.get("client"): - try: - import cohere - except ImportError as e: - msg = ( - "Could not import cohere python package. " - "Please install it with `pip install cohere`." - ) - raise ImportError(msg) from e - cohere_api_key = get_from_dict_or_env( - values, - "cohere_api_key", - "COHERE_API_KEY", - ) - client_name = values.get("user_agent", "langchain") - values["client"] = cohere.Client(cohere_api_key, client_name=client_name) - return values - - def rerank( - self, - documents: Sequence[str | Document | dict], - query: str, - *, - model: str | None = None, - top_n: int | None = -1, - max_chunks_per_doc: int | None = None, - ) -> list[dict[str, Any]]: - """Returns an ordered list of documents ordered by their relevance to the provided query. - - Args: - query: The query to use for reranking. - documents: A sequence of documents to rerank. - model: The model to use for re-ranking. Default to self.model. - top_n : The number of results to return. If `None` returns all results. - Defaults to self.top_n. - max_chunks_per_doc : The maximum number of chunks derived from a document. - """ # noqa: E501 - if len(documents) == 0: # to avoid empty api call - return [] - docs = [ - doc.page_content if isinstance(doc, Document) else doc for doc in documents - ] - model = model or self.model - top_n = top_n if (top_n is None or top_n > 0) else self.top_n - results = self.client.rerank( - query=query, - documents=docs, - model=model, - top_n=top_n, - max_chunks_per_doc=max_chunks_per_doc, - ) - if hasattr(results, "results"): - results = results.results - return [ - {"index": res.index, "relevance_score": res.relevance_score} - for res in results - ] - - @override - def compress_documents( - self, - documents: Sequence[Document], - query: str, - callbacks: Callbacks | None = None, - ) -> Sequence[Document]: - """Compress documents using Cohere's rerank API. - - Args: - documents: A sequence of documents to compress. - query: The query to use for compressing the documents. - callbacks: Callbacks to run during the compression process. - - Returns: - A sequence of compressed documents. - """ - compressed = [] - for res in self.rerank(documents, query): - doc = documents[res["index"]] - doc_copy = Document(doc.page_content, metadata=deepcopy(doc.metadata)) - doc_copy.metadata["relevance_score"] = res["relevance_score"] - compressed.append(doc_copy) - return compressed