-
Notifications
You must be signed in to change notification settings - Fork 5
/
analyze_approximation_losses.cpp
237 lines (208 loc) · 10.2 KB
/
analyze_approximation_losses.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#include <iostream>
#include <filesystem>
#include <recall.h>
#include <parlay/primitives.h>
#include "routes.h"
#include "points_io.h"
#include "metis_io.h"
#include "dist.h"
std::vector<double> RecallForIncreasingProbes(
const std::vector<std::vector<int>>& buckets_to_probe, const Partition& partition, const std::vector<NNVec>& ground_truth, int num_neighbors, size_t
num_shards) {
size_t num_queries = ground_truth.size();
std::vector<std::unordered_set<uint32_t>> neighbors(num_queries);
std::vector<double> recall_values;
size_t hits = 0;
for (size_t probes = 0; probes < num_shards; ++probes) {
hits += parlay::reduce(
parlay::tabulate(num_queries, [&](size_t q) {
int cluster = buckets_to_probe[q][probes];
size_t my_new_hits = 0;
for (int j = 0; j < num_neighbors; ++j) {
uint32_t neighbor = ground_truth[q][j].second;
// if we haven't seen the neighbor before
// and it's in the cluster we are looking at right now
if (!neighbors[q].contains(neighbor) && partition[neighbor] == cluster) {
neighbors[q].insert(neighbor);
my_new_hits++;
}
}
return my_new_hits;
})
);
double recall = static_cast<double>(hits) / num_neighbors / num_queries;
recall_values.push_back(recall);
}
return recall_values;
}
std::vector<std::vector<int>> BruteForceRouting(PointSet& queries, PointSet& points, const Partition& partition, size_t num_shards) {
std::vector<std::vector<int>> probes(queries.n, std::vector<int>(num_shards));
parlay::parallel_for(0, queries.n, [&](size_t q) {
std::vector<float> min_dist(num_shards, std::numeric_limits<float>::max());
for (size_t i = 0; i < points.n; ++i) {
if (float dist = distance(points.GetPoint(i), queries.GetPoint(q), points.d); dist < min_dist[partition[i]]) {
min_dist[partition[i]] = dist;
}
}
auto& p = probes[q];
std::iota(p.begin(), p.end(), 0);
std::sort(p.begin(), p.end(), [&](int l, int r) { return min_dist[l] < min_dist[r]; });
}, 1);
return probes;
}
std::vector<std::vector<int>> FullDatasetRouting(
const std::vector<NNVec>& ground_truth, PointSet& queries, PointSet& points, const Partition& partition, size_t num_shards) {
std::vector<std::vector<float>> min_dist(queries.n, std::vector<float>(num_shards, std::numeric_limits<float>::max()));
std::vector<uint32_t> non_covered_queries;
for (size_t q = 0; q < queries.n; ++q) {
for (const auto& [dist, neigh] : ground_truth[q]) { if (dist < min_dist[q][partition[neigh]]) { min_dist[q][partition[neigh]] = dist; } }
if (std::any_of(min_dist[q].begin(), min_dist[q].end(), [](float x) { return x == std::numeric_limits<float>::max(); })) {
non_covered_queries.push_back(q);
}
}
std::cout << non_covered_queries.size() << " queries have unconvered shards from the ground-truth set" << std::endl;
#if false
parlay::parallel_for(0, non_covered_queries.size(), [&](size_t j) {
uint32_t q = non_covered_queries[j];
for (size_t i = 0; i < points.n; ++i) {
if (float dist = distance(points.GetPoint(i), queries.GetPoint(q), points.d); dist < min_dist[q][partition[i]]) {
min_dist[q][partition[i]] = dist;
}
}
});
#endif
std::vector<std::vector<int>> probes(queries.n, std::vector<int>(num_shards));
for (size_t q = 0; q < queries.n; ++q) {
auto& p = probes[q];
std::iota(p.begin(), p.end(), 0);
std::sort(p.begin(), p.end(), [&](int l, int r) { return min_dist[q][l] < min_dist[q][r]; });
}
return probes;
}
std::vector<std::vector<int>> RouteUsingSingleCenter(PointSet& points, PointSet& queries, const Clusters& clusters) {
PointSet centers;
centers.d = points.d;
centers.n = clusters.size();
centers.Alloc();
parlay::parallel_for(0, clusters.size(), [&](size_t c) {
// avoid false sharing
PointSet CC;
CC.d = points.d;
CC.n = 1;
CC.Alloc();
float* C = CC.GetPoint(0);
double norm_sum = 0.0;
for (uint32_t v : clusters[c]) {
float* V = points.GetPoint(v);
#ifdef MIPS_DISTANCE
double norm = vec_norm(V, centers.d);
norm_sum += norm;
float multiplier = 1.0f / std::sqrt(norm);
for (size_t j = 0; j < centers.d; ++j) {
C[j] += V[j] * multiplier;
}
#else
for (size_t j = 0; j < centers.d; ++j) { C[j] += V[j]; }
#endif
}
#ifdef MIPS_DISTANCE
float desired_norm = norm_sum / clusters[c].size();
float current_norm = vec_norm(C, centers.d);
float multiplier = std::sqrt(desired_norm / current_norm);
for (size_t j = 0; j < centers.d; ++j) { C[j] *= multiplier; }
#else
for (size_t j = 0; j < centers.d; ++j) { C[j] /= clusters[c].size(); }
// copy over
float* C2 = centers.GetPoint(c);
for (size_t j = 0; j < centers.d; ++j) { C2[j] = C[j]; }
#endif
}, 1);
std::vector<std::vector<int>> probes(queries.n, std::vector<int>(clusters.size()));
parlay::parallel_for(0, queries.n, [&](size_t q) {
std::vector<float> min_dist;
for (size_t c = 0; c < clusters.size(); ++c) { min_dist.push_back(distance(queries.GetPoint(q), centers.GetPoint(c), queries.d)); }
auto& p = probes[q];
std::iota(p.begin(), p.end(), 0);
std::sort(p.begin(), p.end(), [&](int l, int r) { return min_dist[l] < min_dist[r]; });
});
return probes;
}
int main(int argc, const char* argv[]) {
if (argc != 8) {
std::cerr << "Usage ./AnalyzeApproximationLosses point-file query-file ground-truth-file num_neighbors partition-file part-method out-file" <<
std::endl;
std::abort();
}
std::string point_file = argv[1];
std::string query_file = argv[2];
std::string ground_truth_file = argv[3];
std::string k_string = argv[4];
std::string partition_file = argv[5];
std::string part_method = argv[6];
std::string out_file = argv[7];
int num_neighbors = std::stoi(k_string);
#if false
auto clusters = ReadClusters(partition_file);
Cover cover = ConvertClustersToCover(clusters);
size_t num_shards = clusters.size();
#else
auto partition = ReadMetisPartition(partition_file);
auto clusters = ConvertPartitionToClusters(partition);
size_t num_shards = clusters.size();
#endif
std::cout << "Finished reading partition file" << std::endl;
std::vector<NNVec> ground_truth;
if (std::filesystem::exists(ground_truth_file)) {
ground_truth = ReadGroundTruth(ground_truth_file);
std::cout << "Read ground truth file" << std::endl;
} else { throw std::runtime_error("ground truth file doesnt exist"); }
PointSet points = ReadPoints(point_file);
PointSet queries = ReadPoints(query_file);
ConvertGroundTruthToDistanceToKthNeighbor(ground_truth, 10, points, queries);
auto single_center_probes = RouteUsingSingleCenter(points, queries, clusters);
auto single_center_recall = RecallForIncreasingProbes(single_center_probes, partition, ground_truth, num_neighbors, num_shards);
std::ofstream out2(out_file);
out2 << "partitioning,num probes,recall,type" << std::endl; // header
for (size_t j = 0; j < num_shards; ++j) {
out2 << part_method << "," << j + 1 << "," << single_center_recall[j] << ",single center" << std::endl;
std::cout << part_method << "," << j + 1 << "," << single_center_recall[j] << ",single center" << std::endl;
}
return 0;
// --- Routing on full pointset --- //
Timer timer;
timer.Start();
auto full_probes = FullDatasetRouting(ground_truth, queries, points, partition, num_shards);
std::cout << "Finished full dataset routing. Took " << timer.Stop() << std::endl;
std::vector<double> recall = RecallForIncreasingProbes(full_probes, partition, ground_truth, num_neighbors, num_shards);
std::ofstream out(out_file);
out << "partitioning,num probes,recall,type" << std::endl; // header
for (size_t j = 0; j < num_shards; ++j) { out << part_method << "," << j + 1 << "," << recall[j] << ",full data" << std::endl; }
// --- Routing on KMTR sample --- //
timer.Start();
KMeansTreeRouterOptions options;
options.budget = 10000000;
KMeansTreeRouter kmtr;
kmtr.Train(points, clusters, options);
auto [kmtr_points, kmtr_partition] = kmtr.ExtractPoints();
std::cout << "Finished KMTR training. Took " << timer.Stop() << std::endl;
std::cout << kmtr_points.n << " " << kmtr_partition.size() << " " << num_shards << std::endl;
timer.Start();
std::vector<std::vector<int>> kmtr_probes = BruteForceRouting(queries, kmtr_points, kmtr_partition, num_shards);
std::cout << "brute force routing finished. took " << timer.Stop() << std::endl;
recall = RecallForIncreasingProbes(kmtr_probes, partition, ground_truth, num_neighbors, num_shards);
std::cout << "Finished KMTR sample brute force routing." << std::endl;
for (size_t j = 0; j < num_shards; ++j) { out << part_method << "," << j + 1 << "," << recall[j] << ",kRt sample" << std::endl; }
// --- Routing on uniform random sample --- //
std::vector<uint32_t> iota(points.n);
std::iota(iota.begin(), iota.end(), 0);
std::mt19937 prng(420);
std::vector<uint32_t> sample(options.budget);
std::sample(iota.begin(), iota.end(), sample.begin(), sample.size(), prng);
PointSet uf_points = ExtractPointsInBucket(sample, points);
Partition uf_partition(sample.size());
for (size_t i = 0; i < sample.size(); ++i) { uf_partition[i] = partition[sample[i]]; }
auto uf_probes = BruteForceRouting(queries, uf_points, uf_partition, num_shards);
recall = RecallForIncreasingProbes(uf_probes, partition, ground_truth, num_neighbors, num_shards);
std::cout << "Finished UF sample brute force routing" << std::endl;
for (size_t j = 0; j < num_shards; ++j) { out << part_method << "," << j + 1 << "," << recall[j] << ",uniform sample" << std::endl; }
}