forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathintfuncs.jl
608 lines (517 loc) · 14.9 KB
/
intfuncs.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
# This file is a part of Julia. License is MIT: http://julialang.org/license
## number-theoretic functions ##
"""
gcd(x,y)
Greatest common (positive) divisor (or zero if `x` and `y` are both zero).
```jldoctest
julia> gcd(6,9)
3
julia> gcd(6,-9)
3
```
"""
function gcd{T<:Integer}(a::T, b::T)
while b != 0
t = b
b = rem(a, b)
a = t
end
checked_abs(a)
end
# binary GCD (aka Stein's) algorithm
# about 1.7x (2.1x) faster for random Int64s (Int128s)
function gcd{T<:Union{Int64,UInt64,Int128,UInt128}}(a::T, b::T)
a == 0 && return abs(b)
b == 0 && return abs(a)
za = trailing_zeros(a)
zb = trailing_zeros(b)
k = min(za, zb)
u = unsigned(abs(a >> za))
v = unsigned(abs(b >> zb))
while u != v
if u > v
u, v = v, u
end
v -= u
v >>= trailing_zeros(v)
end
r = u << k
# T(r) would throw InexactError; we want OverflowError instead
r > typemax(T) && throw(OverflowError())
r % T
end
"""
lcm(x,y)
Least common (non-negative) multiple.
```jldoctest
julia> lcm(2,3)
6
julia> lcm(-2,3)
6
```
"""
function lcm{T<:Integer}(a::T, b::T)
# explicit a==0 test is to handle case of lcm(0,0) correctly
if a == 0
return a
else
return checked_abs(a * div(b, gcd(b,a)))
end
end
gcd(a::Integer) = a
lcm(a::Integer) = a
gcd(a::Integer, b::Integer) = gcd(promote(a,b)...)
lcm(a::Integer, b::Integer) = lcm(promote(a,b)...)
gcd(a::Integer, b::Integer...) = gcd(a, gcd(b...))
lcm(a::Integer, b::Integer...) = lcm(a, lcm(b...))
gcd(abc::AbstractArray{<:Integer}) = reduce(gcd,abc)
lcm(abc::AbstractArray{<:Integer}) = reduce(lcm,abc)
# return (gcd(a,b),x,y) such that ax+by == gcd(a,b)
"""
gcdx(x,y)
Computes the greatest common (positive) divisor of `x` and `y` and their Bézout
coefficients, i.e. the integer coefficients `u` and `v` that satisfy
``ux+vy = d = gcd(x,y)``. ``gcdx(x,y)`` returns ``(d,u,v)``.
```jldoctest
julia> gcdx(12, 42)
(6, -3, 1)
```
```jldoctest
julia> gcdx(240, 46)
(2, -9, 47)
```
!!! note
Bézout coefficients are *not* uniquely defined. `gcdx` returns the minimal
Bézout coefficients that are computed by the extended Euclidean algorithm.
(Ref: D. Knuth, TAoCP, 2/e, p. 325, Algorithm X.)
For signed integers, these coefficients `u` and `v` are minimal in
the sense that ``|u| < |y/d|`` and ``|v| < |x/d|``. Furthermore,
the signs of `u` and `v` are chosen so that `d` is positive.
For unsigned integers, the coefficients `u` and `v` might be near
their `typemax`, and the identity then holds only via the unsigned
integers' modulo arithmetic.
"""
function gcdx{T<:Integer}(a::T, b::T)
# a0, b0 = a, b
s0, s1 = oneunit(T), zero(T)
t0, t1 = s1, s0
# The loop invariant is: s0*a0 + t0*b0 == a
while b != 0
q = div(a, b)
a, b = b, rem(a, b)
s0, s1 = s1, s0 - q*s1
t0, t1 = t1, t0 - q*t1
end
a < 0 ? (-a, -s0, -t0) : (a, s0, t0)
end
gcdx(a::Integer, b::Integer) = gcdx(promote(a,b)...)
# multiplicative inverse of n mod m, error if none
"""
invmod(x,m)
Take the inverse of `x` modulo `m`: `y` such that ``x y = 1 \\pmod m``,
with ``div(x,y) = 0``. This is undefined for ``m = 0``, or if
``gcd(x,m) \\neq 1``.
```jldoctest
julia> invmod(2,5)
3
julia> invmod(2,3)
2
julia> invmod(5,6)
5
```
"""
function invmod{T<:Integer}(n::T, m::T)
g, x, y = gcdx(n, m)
(g != 1 || m == 0) && throw(DomainError())
# Note that m might be negative here.
# For unsigned T, x might be close to typemax; add m to force a wrap-around.
r = mod(x + m, m)
# The postcondition is: mod(r * n, m) == mod(T(1), m) && div(r, m) == 0
r
end
invmod(n::Integer, m::Integer) = invmod(promote(n,m)...)
# ^ for any x supporting *
to_power_type(x::Number) = oftype(x*x, x)
to_power_type(x) = x
function power_by_squaring(x_, p::Integer)
x = to_power_type(x_)
if p == 1
return copy(x)
elseif p == 0
return one(x)
elseif p == 2
return x*x
elseif p < 0
x == 1 && return copy(x)
x == -1 && return iseven(p) ? one(x) : copy(x)
throw(DomainError())
end
t = trailing_zeros(p) + 1
p >>= t
while (t -= 1) > 0
x *= x
end
y = x
while p > 0
t = trailing_zeros(p) + 1
p >>= t
while (t -= 1) >= 0
x *= x
end
y *= x
end
return y
end
power_by_squaring(x::Bool, p::Unsigned) = ((p==0) | x)
function power_by_squaring(x::Bool, p::Integer)
p < 0 && !x && throw(DomainError())
return (p==0) | x
end
^{T<:Integer}(x::T, p::T) = power_by_squaring(x,p)
^(x::Number, p::Integer) = power_by_squaring(x,p)
^(x, p::Integer) = power_by_squaring(x,p)
# b^p mod m
"""
powermod(x::Integer, p::Integer, m)
Compute ``x^p \\pmod m``.
"""
function powermod{T<:Integer}(x::Integer, p::Integer, m::T)
p < 0 && return powermod(invmod(x, m), -p, m)
p == 0 && return mod(one(m),m)
(m == 1 || m == -1) && return zero(m)
b = oftype(m,mod(x,m)) # this also checks for divide by zero
t = prevpow2(p)
local r::T
r = 1
while true
if p >= t
r = mod(widemul(r,b),m)
p -= t
end
t >>>= 1
t <= 0 && break
r = mod(widemul(r,r),m)
end
return r
end
# optimization: promote the modulus m to BigInt only once (cf. widemul in generic powermod above)
powermod(x::Integer, p::Integer, m::Union{Int128,UInt128}) = oftype(m, powermod(x, p, big(m)))
# smallest power of 2 >= x
"""
nextpow2(n::Integer)
The smallest power of two not less than `n`. Returns 0 for `n==0`, and returns
`-nextpow2(-n)` for negative arguments.
```jldoctest
julia> nextpow2(16)
16
julia> nextpow2(17)
32
```
"""
nextpow2(x::Unsigned) = oneunit(x)<<((sizeof(x)<<3)-leading_zeros(x-oneunit(x)))
nextpow2(x::Integer) = reinterpret(typeof(x),x < 0 ? -nextpow2(unsigned(-x)) : nextpow2(unsigned(x)))
"""
prevpow2(n::Integer)
The largest power of two not greater than `n`. Returns 0 for `n==0`, and returns
`-prevpow2(-n)` for negative arguments.
```jldoctest
julia> prevpow2(5)
4
```
"""
prevpow2(x::Unsigned) = one(x) << unsigned((sizeof(x)<<3)-leading_zeros(x)-1)
prevpow2(x::Integer) = reinterpret(typeof(x),x < 0 ? -prevpow2(unsigned(-x)) : prevpow2(unsigned(x)))
"""
ispow2(n::Integer) -> Bool
Test whether `n` is a power of two.
```jldoctest
julia> ispow2(4)
true
julia> ispow2(5)
false
```
"""
ispow2(x::Integer) = x > 0 && count_ones(x) == 1
"""
nextpow(a, x)
The smallest `a^n` not less than `x`, where `n` is a non-negative integer. `a` must be
greater than 1, and `x` must be greater than 0.
"""
function nextpow(a::Real, x::Real)
(a <= 1 || x <= 0) && throw(DomainError())
x <= 1 && return one(a)
n = ceil(Integer,log(a, x))
p = a^(n-1)
# guard against roundoff error, e.g., with a=5 and x=125
p >= x ? p : a^n
end
"""
prevpow(a, x)
The largest `a^n` not greater than `x`, where `n` is a non-negative integer.
`a` must be greater than 1, and `x` must not be less than 1.
"""
function prevpow(a::Real, x::Real)
(a <= 1 || x < 1) && throw(DomainError())
n = floor(Integer,log(a, x))
p = a^(n+1)
p <= x ? p : a^n
end
# decimal digits in an unsigned integer
const powers_of_ten = [
0x0000000000000001, 0x000000000000000a, 0x0000000000000064, 0x00000000000003e8,
0x0000000000002710, 0x00000000000186a0, 0x00000000000f4240, 0x0000000000989680,
0x0000000005f5e100, 0x000000003b9aca00, 0x00000002540be400, 0x000000174876e800,
0x000000e8d4a51000, 0x000009184e72a000, 0x00005af3107a4000, 0x00038d7ea4c68000,
0x002386f26fc10000, 0x016345785d8a0000, 0x0de0b6b3a7640000, 0x8ac7230489e80000,
]
function ndigits0z(x::Union{UInt8,UInt16,UInt32,UInt64})
lz = (sizeof(x)<<3)-leading_zeros(x)
nd = (1233*lz)>>12+1
nd -= x < powers_of_ten[nd]
end
function ndigits0z(x::UInt128)
n = 0
while x > 0x8ac7230489e80000
x = div(x,0x8ac7230489e80000)
n += 19
end
return n + ndigits0z(UInt64(x))
end
ndigits0z(x::Integer) = ndigits0z(unsigned(abs(x)))
function ndigits0znb(n::Signed, b::Int)
d = 0
while n != 0
n = cld(n,b)
d += 1
end
return d
end
function ndigits0z(n::Unsigned, b::Int)
b < 0 && return ndigits0znb(signed(n), b)
b == 2 && return sizeof(n)<<3 - leading_zeros(n)
b == 8 && return (sizeof(n)<<3 - leading_zeros(n) + 2) ÷ 3
b == 16 && return sizeof(n)<<1 - leading_zeros(n)>>2
b == 10 && return ndigits0z(n)
d = 0
while n > typemax(Int)
n = div(n,b)
d += 1
end
n = div(n,b)
d += 1
m = 1
while m <= n
m *= b
d += 1
end
return d
end
ndigits0z(x::Integer, b::Integer) = ndigits0z(unsigned(abs(x)),Int(b))
ndigitsnb(x::Integer, b::Integer) = x==0 ? 1 : ndigits0znb(x, b)
ndigits(x::Unsigned, b::Integer) = x==0 ? 1 : ndigits0z(x,Int(b))
ndigits(x::Unsigned) = x==0 ? 1 : ndigits0z(x)
"""
ndigits(n::Integer, b::Integer=10)
Compute the number of digits in integer `n` written in base `b`.
"""
ndigits(x::Integer, b::Integer) = b >= 0 ? ndigits(unsigned(abs(x)),Int(b)) : ndigitsnb(x, b)
ndigits(x::Integer) = ndigits(unsigned(abs(x)))
## integer to string functions ##
string(x::Union{Int8,Int16,Int32,Int64,Int128}) = dec(x)
function bin(x::Unsigned, pad::Int, neg::Bool)
i = neg + max(pad,sizeof(x)<<3-leading_zeros(x))
a = StringVector(i)
while i > neg
a[i] = '0'+(x&0x1)
x >>= 1
i -= 1
end
if neg; a[1]='-'; end
String(a)
end
function oct(x::Unsigned, pad::Int, neg::Bool)
i = neg + max(pad,div((sizeof(x)<<3)-leading_zeros(x)+2,3))
a = StringVector(i)
while i > neg
a[i] = '0'+(x&0x7)
x >>= 3
i -= 1
end
if neg; a[1]='-'; end
String(a)
end
function dec(x::Unsigned, pad::Int, neg::Bool)
i = neg + max(pad,ndigits0z(x))
a = StringVector(i)
while i > neg
a[i] = '0'+rem(x,10)
x = oftype(x,div(x,10))
i -= 1
end
if neg; a[1]='-'; end
String(a)
end
function hex(x::Unsigned, pad::Int, neg::Bool)
i = neg + max(pad,(sizeof(x)<<1)-(leading_zeros(x)>>2))
a = StringVector(i)
while i > neg
d = x & 0xf
a[i] = '0'+d+39*(d>9)
x >>= 4
i -= 1
end
if neg; a[1]='-'; end
String(a)
end
num2hex(n::Integer) = hex(n, sizeof(n)*2)
const base36digits = ['0':'9';'a':'z']
const base62digits = ['0':'9';'A':'Z';'a':'z']
function base(b::Int, x::Unsigned, pad::Int, neg::Bool)
2 <= b <= 62 || throw(ArgumentError("base must be 2 ≤ base ≤ 62, got $b"))
digits = b <= 36 ? base36digits : base62digits
i = neg + max(pad,ndigits0z(x,b))
a = StringVector(i)
while i > neg
a[i] = digits[1+rem(x,b)]
x = div(x,b)
i -= 1
end
if neg; a[1]='-'; end
String(a)
end
"""
base(base::Integer, n::Integer, pad::Integer=1)
Convert an integer `n` to a string in the given `base`,
optionally specifying a number of digits to pad to.
```jldoctest
julia> base(13,5,4)
"0005"
julia> base(5,13,4)
"0023"
```
"""
base(b::Integer, n::Integer, pad::Integer=1) = base(Int(b), unsigned(abs(n)), pad, n<0)
for sym in (:bin, :oct, :dec, :hex)
@eval begin
($sym)(x::Unsigned, p::Int) = ($sym)(x,p,false)
($sym)(x::Unsigned) = ($sym)(x,1,false)
($sym)(x::Char, p::Int) = ($sym)(unsigned(x),p,false)
($sym)(x::Char) = ($sym)(unsigned(x),1,false)
($sym)(x::Integer, p::Int) = ($sym)(unsigned(abs(x)),p,x<0)
($sym)(x::Integer) = ($sym)(unsigned(abs(x)),1,x<0)
end
end
"""
bin(n, pad::Int=1)
Convert an integer to a binary string, optionally specifying a number of digits to pad to.
```jldoctest
julia> bin(10,2)
"1010"
julia> bin(10,8)
"00001010"
```
"""
bin
"""
hex(n, pad::Int=1)
Convert an integer to a hexadecimal string, optionally specifying a number of digits to pad to.
"""
hex
"""
oct(n, pad::Int=1)
Convert an integer to an octal string, optionally specifying a number of digits to pad to.
"""
oct
"""
dec(n, pad::Int=1)
Convert an integer to a decimal string, optionally specifying a number of digits to pad to.
"""
dec
bits(x::Union{Bool,Int8,UInt8}) = bin(reinterpret(UInt8,x),8)
bits(x::Union{Int16,UInt16,Float16}) = bin(reinterpret(UInt16,x),16)
bits(x::Union{Char,Int32,UInt32,Float32}) = bin(reinterpret(UInt32,x),32)
bits(x::Union{Int64,UInt64,Float64}) = bin(reinterpret(UInt64,x),64)
bits(x::Union{Int128,UInt128}) = bin(reinterpret(UInt128,x),128)
"""
digits([T<:Integer], n::Integer, base::T=10, pad::Integer=1)
Returns an array with element type `T` (default `Int`) of the digits of `n` in the given
base, optionally padded with zeros to a specified size. More significant digits are at
higher indexes, such that `n == sum([digits[k]*base^(k-1) for k=1:length(digits)])`.
"""
digits{T<:Integer}(n::Integer, base::T=10, pad::Integer=1) = digits(T, n, base, pad)
function digits{T<:Integer}(::Type{T}, n::Integer, base::Integer=10, pad::Integer=1)
2 <= base || throw(ArgumentError("base must be ≥ 2, got $base"))
digits!(zeros(T, max(pad, ndigits0z(n,base))), n, base)
end
"""
digits!(array, n::Integer, base::Integer=10)
Fills an array of the digits of `n` in the given base. More significant digits are at higher
indexes. If the array length is insufficient, the least significant digits are filled up to
the array length. If the array length is excessive, the excess portion is filled with zeros.
"""
function digits!{T<:Integer}(a::AbstractArray{T,1}, n::Integer, base::Integer=10)
2 <= base || throw(ArgumentError("base must be ≥ 2, got $base"))
base - 1 <= typemax(T) || throw(ArgumentError("type $T too small for base $base"))
for i in eachindex(a)
a[i] = rem(n, base)
n = div(n, base)
end
return a
end
"""
isqrt(n::Integer)
Integer square root: the largest integer `m` such that `m*m <= n`.
```jldoctest
julia> isqrt(5)
2
```
"""
isqrt(x::Integer) = oftype(x, trunc(sqrt(x)))
function isqrt(x::Union{Int64,UInt64,Int128,UInt128})
x==0 && return x
s = oftype(x, trunc(sqrt(x)))
# fix with a Newton iteration, since conversion to float discards
# too many bits.
s = (s + div(x,s)) >> 1
s*s > x ? s-1 : s
end
function factorial(n::Integer)
n < 0 && throw(DomainError())
local f::typeof(n*n), i::typeof(n*n)
f = 1
for i = 2:n
f *= i
end
return f
end
"""
binomial(n,k)
Number of ways to choose `k` out of `n` items.
"""
function binomial{T<:Integer}(n::T, k::T)
k < 0 && return zero(T)
sgn = one(T)
if n < 0
n = -n + k -1
if isodd(k)
sgn = -sgn
end
end
k > n && return zero(T)
(k == 0 || k == n) && return sgn
k == 1 && return sgn*n
if k > (n>>1)
k = (n - k)
end
x::T = nn = n - k + 1
nn += 1
rr = 2
while rr <= k
xt = div(widemul(x, nn), rr)
x = xt
x == xt || throw(OverflowError())
rr += 1
nn += 1
end
convert(T, copysign(x, sgn))
end