forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtuple.jl
292 lines (240 loc) · 8.14 KB
/
tuple.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# This file is a part of Julia. License is MIT: http://julialang.org/license
# Document NTuple here where we have everything needed for the doc system
"""
NTuple{N, T}
A compact way of representing the type for a tuple of length `N` where all elements are of type `T`.
```jldoctest
julia> isa((1, 2, 3, 4, 5, 6), NTuple{6, Int})
true
```
"""
NTuple
## indexing ##
length(t::Tuple) = nfields(t)
endof(t::Tuple) = length(t)
size(t::Tuple, d) = d==1 ? length(t) : throw(ArgumentError("invalid tuple dimension $d"))
getindex(t::Tuple, i::Int) = getfield(t, i)
getindex(t::Tuple, i::Real) = getfield(t, convert(Int, i))
getindex(t::Tuple, r::AbstractArray{<:Any,1}) = tuple([t[ri] for ri in r]...)
getindex(t::Tuple, b::AbstractArray{Bool,1}) = length(b) == length(t) ? getindex(t,find(b)) : throw(BoundsError(t, b))
# returns new tuple; N.B.: becomes no-op if i is out-of-bounds
setindex(x::Tuple, v, i::Integer) = _setindex((), x, v, i::Integer)
function _setindex(y::Tuple, r::Tuple, v, i::Integer)
@_inline_meta
_setindex((y..., ifelse(length(y) + 1 == i, v, first(r))), tail(r), v, i)
end
_setindex(y::Tuple, r::Tuple{}, v, i::Integer) = y
## iterating ##
start(t::Tuple) = 1
done(t::Tuple, i::Int) = (length(t) < i)
next(t::Tuple, i::Int) = (t[i], i+1)
eachindex(t::Tuple) = 1:length(t)
function eachindex(t::Tuple, t2::Tuple...)
@_inline_meta
1:_maxlength(t, t2...)
end
_maxlength(t::Tuple) = length(t)
function _maxlength(t::Tuple, t2::Tuple, t3::Tuple...)
@_inline_meta
max(length(t), _maxlength(t2, t3...))
end
# this allows partial evaluation of bounded sequences of next() calls on tuples,
# while reducing to plain next() for arbitrary iterables.
indexed_next(t::Tuple, i::Int, state) = (t[i], i+1)
indexed_next(a::Array, i::Int, state) = (a[i], i+1)
indexed_next(I, i, state) = done(I,state) ? throw(BoundsError()) : next(I, state)
# Use dispatch to avoid a branch in first
first(::Tuple{}) = throw(ArgumentError("tuple must be non-empty"))
first(t::Tuple) = t[1]
# eltype
eltype(::Type{Tuple{}}) = Bottom
eltype(::Type{<:Tuple{Vararg{E}}}) where {E} = E
# version of tail that doesn't throw on empty tuples (used in array indexing)
safe_tail(t::Tuple) = tail(t)
safe_tail(t::Tuple{}) = ()
# front (the converse of tail: it skips the last entry)
function front(t::Tuple)
@_inline_meta
_front((), t...)
end
front(::Tuple{}) = throw(ArgumentError("Cannot call front on an empty tuple"))
_front(out, v) = out
function _front(out, v, t...)
@_inline_meta
_front((out..., v), t...)
end
## mapping ##
"""
ntuple(f::Function, n::Integer)
Create a tuple of length `n`, computing each element as `f(i)`,
where `i` is the index of the element.
```jldoctest
julia> ntuple(i -> 2*i, 4)
(2, 4, 6, 8)
```
"""
ntuple(f::Function, n::Integer) =
n <= 0 ? () :
n == 1 ? (f(1),) :
n == 2 ? (f(1),f(2),) :
n == 3 ? (f(1),f(2),f(3),) :
n == 4 ? (f(1),f(2),f(3),f(4),) :
n == 5 ? (f(1),f(2),f(3),f(4),f(5),) :
n < 16 ? (ntuple(f,n-5)..., f(n-4), f(n-3), f(n-2), f(n-1), f(n)) :
_ntuple(f, n)
_ntuple(f::Function, n::Integer) = (@_noinline_meta; ((f(i) for i = 1:n)...))
# inferrable ntuple
function ntuple{F,N}(f::F, ::Type{Val{N}})
Core.typeassert(N, Int)
_ntuple((), f, Val{N})
end
# Build up the output until it has length N
_ntuple{F,N}(out::NTuple{N,Any}, f::F, ::Type{Val{N}}) = out
function _ntuple{F,N,M}(out::NTuple{M}, f::F, ::Type{Val{N}})
@_inline_meta
_ntuple((out..., f(M+1)), f, Val{N})
end
# 1 argument function
map(f, t::Tuple{}) = ()
map(f, t::Tuple{Any,}) = (f(t[1]),)
map(f, t::Tuple{Any, Any}) = (f(t[1]), f(t[2]))
map(f, t::Tuple{Any, Any, Any}) = (f(t[1]), f(t[2]), f(t[3]))
map(f, t::Tuple) = (@_inline_meta; (f(t[1]), map(f,tail(t))...))
# stop inlining after some number of arguments to avoid code blowup
typealias Any16{N} Tuple{Any,Any,Any,Any,Any,Any,Any,Any,
Any,Any,Any,Any,Any,Any,Any,Any,Vararg{Any,N}}
typealias All16{T,N} Tuple{T,T,T,T,T,T,T,T,
T,T,T,T,T,T,T,T,Vararg{T,N}}
function map(f, t::Any16)
n = length(t)
A = Array{Any}(n)
for i=1:n
A[i] = f(t[i])
end
(A...,)
end
# 2 argument function
map(f, t::Tuple{}, s::Tuple{}) = ()
map(f, t::Tuple{Any,}, s::Tuple{Any,}) = (f(t[1],s[1]),)
map(f, t::Tuple{Any,Any}, s::Tuple{Any,Any}) = (f(t[1],s[1]), f(t[2],s[2]))
function map(f, t::Tuple, s::Tuple)
@_inline_meta
(f(t[1],s[1]), map(f, tail(t), tail(s))...)
end
function map(f, t::Any16, s::Any16)
n = length(t)
A = Array{Any}(n)
for i = 1:n
A[i] = f(t[i], s[i])
end
(A...,)
end
# n argument function
heads() = ()
heads(t::Tuple, ts::Tuple...) = (t[1], heads(ts...)...)
tails() = ()
tails(t::Tuple, ts::Tuple...) = (tail(t), tails(ts...)...)
map(f, ::Tuple{}, ts::Tuple...) = ()
map(f, t1::Tuple, t2::Tuple, ts::Tuple...) = (f(heads(t1, t2, ts...)...), map(f, tails(t1, t2, ts...)...)...)
# type-stable padding
fill_to_length{N}(t::Tuple, val, ::Type{Val{N}}) = _ftl((), val, Val{N}, t...)
_ftl{N}(out::NTuple{N,Any}, val, ::Type{Val{N}}) = out
function _ftl{N}(out::NTuple{N,Any}, val, ::Type{Val{N}}, t...)
@_inline_meta
throw(ArgumentError("input tuple of length $(N+length(t)), requested $N"))
end
function _ftl{N}(out, val, ::Type{Val{N}}, t1, t...)
@_inline_meta
_ftl((out..., t1), val, Val{N}, t...)
end
function _ftl{N}(out, val, ::Type{Val{N}})
@_inline_meta
_ftl((out..., val), val, Val{N})
end
# constructing from an iterator
# only define these in Base, to avoid overwriting the constructors
if isdefined(Main, :Base)
(::Type{T}){T<:Tuple}(x::Tuple) = convert(T, x) # still use `convert` for tuples
function (T::Type{All16{E,N}}){E,N}(itr)
len = N+16
elts = collect(E, Iterators.take(itr,len))
if length(elts) != len
_totuple_err(T)
end
(elts...,)
end
(::Type{T}){T<:Tuple}(itr) = _totuple(T, itr, start(itr))
_totuple(::Type{Tuple{}}, itr, s) = ()
function _totuple_err(T::ANY)
@_noinline_meta
throw(ArgumentError("too few elements for tuple type $T"))
end
function _totuple(T, itr, s)
@_inline_meta
done(itr, s) && _totuple_err(T)
v, s = next(itr, s)
(convert(tuple_type_head(T), v), _totuple(tuple_type_tail(T), itr, s)...)
end
_totuple{E}(::Type{Tuple{Vararg{E}}}, itr, s) = (collect(E, Iterators.rest(itr,s))...,)
_totuple(::Type{Tuple}, itr, s) = (collect(Iterators.rest(itr,s))...,)
end
## comparison ##
function isequal(t1::Tuple, t2::Tuple)
if length(t1) != length(t2)
return false
end
for i = 1:length(t1)
if !isequal(t1[i], t2[i])
return false
end
end
return true
end
function ==(t1::Tuple, t2::Tuple)
if length(t1) != length(t2)
return false
end
for i = 1:length(t1)
if !(t1[i] == t2[i])
return false
end
end
return true
end
const tuplehash_seed = UInt === UInt64 ? 0x77cfa1eef01bca90 : 0xf01bca90
hash( ::Tuple{}, h::UInt) = h + tuplehash_seed
hash(x::Tuple{Any,}, h::UInt) = hash(x[1], hash((), h))
hash(x::Tuple{Any,Any}, h::UInt) = hash(x[1], hash(x[2], hash((), h)))
hash(x::Tuple, h::UInt) = hash(x[1], hash(x[2], hash(tail(tail(x)), h)))
function isless(t1::Tuple, t2::Tuple)
n1, n2 = length(t1), length(t2)
for i = 1:min(n1, n2)
a, b = t1[i], t2[i]
if !isequal(a, b)
return isless(a, b)
end
end
return n1 < n2
end
## functions ##
isempty(x::Tuple{}) = true
isempty(x::Tuple) = false
revargs() = ()
revargs(x, r...) = (revargs(r...)..., x)
reverse(t::Tuple) = revargs(t...)
## specialized reduction ##
# TODO: these definitions cannot yet be combined, since +(x...)
# where x might be any tuple matches too many methods.
sum(x::Tuple{Any, Vararg{Any}}) = +(x...)
# NOTE: should remove, but often used on array sizes
prod(x::Tuple{}) = 1
prod(x::Tuple{Any, Vararg{Any}}) = *(x...)
all(x::Tuple{}) = true
all(x::Tuple{Bool}) = x[1]
all(x::Tuple{Bool, Bool}) = x[1]&x[2]
all(x::Tuple{Bool, Bool, Bool}) = x[1]&x[2]&x[3]
# use generic reductions for the rest
any(x::Tuple{}) = false
any(x::Tuple{Bool}) = x[1]
any(x::Tuple{Bool, Bool}) = x[1]|x[2]
any(x::Tuple{Bool, Bool, Bool}) = x[1]|x[2]|x[3]