diff --git a/.gitignore b/.gitignore
index cd5d1d84b..7d71837a3 100644
--- a/.gitignore
+++ b/.gitignore
@@ -145,3 +145,5 @@ dmypy.json
.idea/
.vscode/
.history/
+.flakeheaven_cache/
+tutorials/in_depth/results/
diff --git a/src/lava/proc/atrlif/models.py b/src/lava/proc/atrlif/models.py
new file mode 100644
index 000000000..bb2aa1c9d
--- /dev/null
+++ b/src/lava/proc/atrlif/models.py
@@ -0,0 +1,267 @@
+# Copyright (C) 2024 Intel Corporation
+# Copyright (C) 2024 Jannik Luboeinski
+# SPDX-License-Identifier: BSD-3-Clause
+# See: https://spdx.org/licenses/
+
+import numpy as np
+from lava.magma.core.sync.protocols.loihi_protocol import LoihiProtocol
+from lava.magma.core.model.py.ports import PyInPort, PyOutPort
+from lava.magma.core.model.py.type import LavaPyType
+from lava.magma.core.resources import CPU
+from lava.magma.core.decorator import implements, requires, tag
+from lava.magma.core.model.py.model import PyLoihiProcessModel
+
+from lava.proc.atrlif.process import ATRLIF
+
+
+@implements(proc=ATRLIF, protocol=LoihiProtocol)
+@requires(CPU)
+@tag("floating_pt")
+class PyATRLIFModelFloat(PyLoihiProcessModel):
+ """
+ Implementation of Adaptive Threshold and Refractoriness Leaky-Integrate-
+ and-Fire neuron process in floating-point precision. This short and simple
+ ProcessModel can be used for quick algorithmic prototyping, without
+ engaging with the nuances of a fixed-point implementation.
+ """
+ a_in: PyInPort = LavaPyType(PyInPort.VEC_DENSE, float)
+ s_out = None
+ i: np.ndarray = LavaPyType(np.ndarray, float)
+ v: np.ndarray = LavaPyType(np.ndarray, float)
+ theta: np.ndarray = LavaPyType(np.ndarray, float)
+ r: np.ndarray = LavaPyType(np.ndarray, float)
+ s: np.ndarray = LavaPyType(np.ndarray, bool)
+ bias_mant: np.ndarray = LavaPyType(np.ndarray, float)
+ bias_exp: np.ndarray = LavaPyType(np.ndarray, float)
+ delta_i: float = LavaPyType(float, float)
+ delta_v: float = LavaPyType(float, float)
+ delta_theta: float = LavaPyType(float, float)
+ delta_r: float = LavaPyType(float, float)
+ theta_0: float = LavaPyType(float, float)
+ theta_step: float = LavaPyType(float, float)
+ s_out: PyOutPort = LavaPyType(PyOutPort.VEC_DENSE, float)
+
+ def __init__(self, proc_params):
+ super(PyATRLIFModelFloat, self).__init__(proc_params)
+
+ def subthr_dynamics(self, activation_in: np.ndarray):
+ """
+ Sub-threshold dynamics for the model:
+ i[t] = (1-delta_i)*i[t-1] + x[t]
+ v[t] = (1-delta_v)*v[t-1] + i[t] + bias_mant
+ theta[t] = (1-delta_theta)*(theta[t-1] - theta_0) + theta_0
+ r[t] = (1-delta_r)*r[t-1]
+ """
+ self.i[:] = (1 - self.delta_i) * self.i + activation_in
+ self.v[:] = (1 - self.delta_v) * self.v + self.i + self.bias_mant
+ self.theta[:] = (1 - self.delta_theta) * (self.theta - self.theta_0) \
+ + self.theta_0
+ self.r[:] = (1 - self.delta_r) * self.r
+
+ def post_spike(self, spike_vector: np.ndarray):
+ """
+ Post spike/refractory behavior:
+ r[t] = r[t] + 2*theta[t]
+ theta[t] = theta[t] + theta_step
+ """
+ # For spiking neurons, set new values for refractory state and
+ # threshold
+ r_spiking = self.r[spike_vector]
+ theta_spiking = self.theta[spike_vector]
+ self.r[spike_vector] = r_spiking + 2 * theta_spiking
+ self.theta[spike_vector] = theta_spiking + self.theta_step
+
+ def run_spk(self):
+ """
+ The run function that performs the actual computation. Processes spike
+ events that occur if (v[t] - r[t]) >= theta[t].
+ """
+ # Receive synaptic input
+ a_in_data = self.a_in.recv()
+
+ # Perform the sub-threshold and spike computations
+ self.subthr_dynamics(activation_in=a_in_data)
+ self.s[:] = (self.v - self.r) >= self.theta
+ self.post_spike(spike_vector=self.s)
+ self.s_out.send(self.s)
+
+
+@implements(proc=ATRLIF, protocol=LoihiProtocol)
+@requires(CPU)
+@tag("bit_accurate_loihi", "fixed_pt")
+class PyATRLIFModelFixed(PyLoihiProcessModel):
+ """
+ Implementation of Adaptive Threshold and Refractoriness Leaky-Integrate-
+ and-Fire neuron process in fixed-point precision, bit-by-bit mimicking the
+ fixed-point computation behavior of Loihi 2.
+ """
+ a_in: PyInPort = LavaPyType(PyInPort.VEC_DENSE, np.int16, precision=16)
+ i: np.ndarray = LavaPyType(np.ndarray, np.int32, precision=24)
+ v: np.ndarray = LavaPyType(np.ndarray, np.int32, precision=24)
+ theta: np.ndarray = LavaPyType(np.ndarray, np.int32, precision=24)
+ r: np.ndarray = LavaPyType(np.ndarray, np.int32, precision=24)
+ s: np.ndarray = LavaPyType(np.ndarray, bool)
+ bias_mant: np.ndarray = LavaPyType(np.ndarray, np.int16, precision=13)
+ bias_exp: np.ndarray = LavaPyType(np.ndarray, np.int16, precision=3)
+ delta_i: int = LavaPyType(int, np.uint16, precision=12)
+ delta_v: int = LavaPyType(int, np.uint16, precision=12)
+ delta_theta: int = LavaPyType(int, np.uint16, precision=12)
+ delta_r: int = LavaPyType(int, np.uint16, precision=12)
+ theta_0: int = LavaPyType(int, np.uint16, precision=12)
+ theta_step: int = LavaPyType(int, np.uint16, precision=12)
+ s_out: PyOutPort = LavaPyType(PyOutPort.VEC_DENSE, np.int32, precision=24)
+
+ def __init__(self, proc_params):
+ super(PyATRLIFModelFixed, self).__init__(proc_params)
+
+ # The `ds_offset` constant enables setting decay constant values to
+ # exact 4096 = 2**12. Without it, the range of 12-bit unsigned
+ # `delta_i` is 0 to 4095.
+ self.ds_offset = 1
+ self.isthrscaled = False
+ self.effective_bias = 0
+ # State variables i and v are 24 bits wide
+ self.iv_bitwidth = 24
+ self.max_iv_val = 2**(self.iv_bitwidth - 1)
+ # Decays need an MSB alignment by 12 bits
+ self.decay_shift = 12
+ self.decay_unity = 2**self.decay_shift
+ # Threshold and incoming activation are MSB-aligned by 6 bits
+ self.theta_unity = 2**6
+ self.act_unity = 2**6
+
+ def subthr_dynamics(self, activation_in: np.ndarray):
+ """
+ Sub-threshold dynamics for the model:
+ i[t] = (1-delta_i)*i[t-1] + x[t]
+ v[t] = (1-delta_v)*v[t-1] + i[t] + bias_mant
+ theta[t] = (1-delta_theta)*(theta[t-1] - theta_0) + theta_0
+ r[t] = (1-delta_r)*r[t-1]
+ """
+ # Update current
+ # --------------
+ # Multiplication is done for left shifting, offset is added
+ decay_const_i = self.delta_i * self.decay_unity + self.ds_offset
+ # Below, i is promoted to int64 to avoid overflow of the product
+ # between i and decay constant beyond int32.
+ # Subsequent right shift by 12 brings us back within 24-bits (and
+ # hence, within 32-bits).
+ i_decayed = np.int64(self.i * (self.decay_unity - decay_const_i))
+ i_decayed = np.sign(i_decayed) * np.right_shift(
+ np.abs(i_decayed), self.decay_shift
+ )
+ # Multiplication is done for left shifting (to account for MSB
+ # alignment done by the hardware).
+ activation_in = activation_in * self.act_unity
+ # Add synaptic input to decayed current
+ i_updated = np.int32(i_decayed + activation_in)
+ # Check if value of current is within bounds of 24-bit. Overflows are
+ # handled by wrapping around modulo.
+ # 2 ** 23. E.g., (2 ** 23) + k becomes k and -(2**23 + k) becomes -k
+ wrapped_curr = np.where(
+ i_updated > self.max_iv_val,
+ i_updated - 2 * self.max_iv_val,
+ i_updated,
+ )
+ wrapped_curr = np.where(
+ wrapped_curr <= -self.max_iv_val,
+ i_updated + 2 * self.max_iv_val,
+ wrapped_curr,
+ )
+ self.i[:] = wrapped_curr
+
+ # Update voltage (proceeding similar to current update)
+ # -----------------------------------------------------
+ decay_const_v = self.delta_v * self.decay_unity
+ neg_voltage_limit = -np.int32(self.max_iv_val) + 1
+ pos_voltage_limit = np.int32(self.max_iv_val) - 1
+ v_decayed = np.int64(self.v) * np.int64(self.decay_unity
+ - decay_const_v)
+ v_decayed = np.sign(v_decayed) * np.right_shift(
+ np.abs(v_decayed), self.decay_shift
+ )
+ v_updated = np.int32(v_decayed + self.i + self.effective_bias)
+ self.v[:] = np.clip(v_updated, neg_voltage_limit, pos_voltage_limit)
+
+ # Update threshold (proceeding similar to current update)
+ # -------------------------------------------------------
+ decay_const_theta = self.delta_theta * self.decay_unity
+ theta_diff_decayed = np.int64(self.theta - self.theta_0) * \
+ np.int64(self.decay_unity - decay_const_theta)
+ theta_diff_decayed = np.sign(theta_diff_decayed) * np.right_shift(
+ np.abs(theta_diff_decayed), self.decay_shift
+ )
+ self.theta[:] = np.int32(theta_diff_decayed) + self.theta_0
+ # TODO do clipping here?
+
+ # Update refractoriness (decaying similar to current)
+ # ---------------------------------------------------
+ decay_const_r = self.delta_r * self.decay_unity
+ r_decayed = np.int64(self.r) * np.int64(self.decay_unity
+ - decay_const_r)
+ r_decayed = np.sign(r_decayed) * np.right_shift(
+ np.abs(r_decayed), self.decay_shift
+ )
+ self.r[:] = np.int32(r_decayed)
+ # TODO do clipping here?
+
+ def scale_bias(self):
+ """
+ Scale bias with bias exponent by taking into account sign of the
+ exponent.
+ """
+ # Create local copy of `bias_mant` with promoted dtype to prevent
+ # overflow when applying shift of `bias_exp`.
+ bias_mant = self.bias_mant.copy().astype(np.int32)
+ self.effective_bias = np.where(
+ self.bias_exp >= 0,
+ np.left_shift(bias_mant, self.bias_exp),
+ np.right_shift(bias_mant, -self.bias_exp),
+ )
+
+ def scale_threshold(self):
+ """
+ Scale threshold according to the way Loihi hardware scales it. In Loihi
+ hardware, threshold is left-shifted by 6-bits to MSB-align it with
+ other state variables of higher precision.
+ """
+ # Multiplication is done for left shifting
+ self.theta_0 = np.int32(self.theta_0 * self.theta_unity)
+ self.theta = np.full(self.theta.shape, self.theta_0)
+ self.theta_step = np.int32(self.theta_step * self.theta_unity)
+ self.isthrscaled = True
+
+ def post_spike(self, spike_vector: np.ndarray):
+ """
+ Post spike/refractory behavior:
+ r[t] = r[t] + 2*theta[t]
+ theta[t] = theta[t] + theta_step
+ """
+ # For spiking neurons, set new values for refractory state and
+ # threshold.
+ r_spiking = self.r[spike_vector]
+ theta_spiking = self.theta[spike_vector]
+ self.r[spike_vector] = r_spiking + 2 * theta_spiking
+ self.theta[spike_vector] = theta_spiking + self.theta_step
+
+ def run_spk(self):
+ """
+ The run function that performs the actual computation. Processes spike
+ events that occur if (v[t] - r[t]) >= theta[t].
+ """
+ # Receive synaptic input
+ a_in_data = self.a_in.recv()
+
+ # Compute effective bias
+ self.scale_bias()
+
+ # Compute scaled threshold-related variables only once, not every
+ # timestep (has to be done once after object construction).
+ if not self.isthrscaled:
+ self.scale_threshold()
+
+ # Perform the sub-threshold and spike computations
+ self.subthr_dynamics(activation_in=a_in_data)
+ self.s[:] = (self.v - self.r) >= self.theta
+ self.post_spike(spike_vector=self.s)
+ self.s_out.send(self.s)
diff --git a/src/lava/proc/atrlif/process.py b/src/lava/proc/atrlif/process.py
new file mode 100644
index 000000000..1f5bf8152
--- /dev/null
+++ b/src/lava/proc/atrlif/process.py
@@ -0,0 +1,138 @@
+# Copyright (C) 2024 Intel Corporation
+# Copyright (C) 2024 Jannik Luboeinski
+# SPDX-License-Identifier: BSD-3-Clause
+# See: https://spdx.org/licenses/
+
+import numpy as np
+import typing as ty
+
+from lava.magma.core.process.process import AbstractProcess, LogConfig
+from lava.magma.core.process.variable import Var
+from lava.magma.core.process.ports.ports import InPort, OutPort
+
+
+class ATRLIF(AbstractProcess):
+ """
+ Adaptive Threshold and Refractoriness Leaky-Integrate-and-Fire Process.
+ With activation input port `a_in` and spike output port `s_out`.
+
+ Note that non-integer parameter values are supported, but can lead to
+ deviating results in models that employ fixed-point computation.
+
+ Dynamics (cf. https://github.com/lava-nc/lava-dl/blob/main/src/lava/lib/dl/
+ slayer/neuron/alif.py,
+ https://github.com/lava-nc/lava-dl/blob/main/tutorials/lava/
+ lib/dl/slayer/neuron_dynamics/dynamics.ipynb):
+ i[t] = (1-delta_i)*i[t-1] + x[t]
+ v[t] = (1-delta_v)*v[t-1] + i[t] + bias
+ theta[t] = (1-delta_theta)*(theta[t-1] - theta_0) + theta_0
+ r[t] = (1-delta_r)*r[t-1]
+
+ Spike event:
+ s[t] = (v[t] - r[t]) >= theta[t]
+
+ Post spike event:
+ r[t] = r[t] + 2*theta[t]
+ theta[t] = theta[t] + theta_step
+
+ Parameters
+ ----------
+ shape : tuple(int)
+ Number and topology of LIF neurons.
+ i : float, list, numpy.ndarray, optional
+ Initial value of the neuron's current.
+ v : float, list, numpy.ndarray, optional
+ Initial value of the neuron's voltage (membrane potential).
+ theta : float, list, numpy.ndarray, optional
+ Initial value of the threshold
+ r : float, list, numpy.ndarray, optional
+ Initial value of the refractory state
+ s : bool, list, numpy.ndarray, optional
+ Initial spike state
+ delta_i : float, optional
+ Decay constant for current i.
+ delta_v : float, optional
+ Decay constant for voltage v.
+ delta_theta : float, optional
+ Decay constant for threshold theta.
+ delta_r : float, optional
+ Decay constant for refractory state r.
+ theta_0 : float, optional
+ Initial/baselien value of threshold theta.
+ theta_step : float, optional
+ Increase of threshold theta upon the occurrence of a spike.
+ bias_mant : float, list, numpy.ndarray, optional
+ Mantissa part of the neuron's bias.
+ bias_exp : float, list, numpy.ndarray, optional
+ Exponent part of the neuron's bias, if needed. Mostly for fixed-point
+ implementations. Ignored for floating-point implementations.
+
+ Example
+ -------
+ >>> atrlif = ATRLIF(shape=(200, 15), decay_theta=10, decay_v=5)
+ This will create 200x15 ATRLIF neurons that all have the same threshold
+ decay of 10 and voltage decay of 5.
+ """
+
+ def __init__(
+ self,
+ *,
+ shape: ty.Tuple[int, ...],
+ i: ty.Optional[ty.Union[float, list, np.ndarray]] = 0,
+ v: ty.Optional[ty.Union[float, list, np.ndarray]] = 0,
+ theta: ty.Optional[ty.Union[float, list, np.ndarray]] = 5,
+ r: ty.Optional[ty.Union[float, list, np.ndarray]] = 0,
+ s: ty.Optional[ty.Union[bool, list, np.ndarray]] = 0,
+ delta_i: ty.Optional[float] = 0.4,
+ delta_v: ty.Optional[float] = 0.4,
+ delta_theta: ty.Optional[float] = 0.2,
+ delta_r: ty.Optional[float] = 0.2,
+ theta_0: ty.Optional[float] = 5,
+ theta_step: ty.Optional[float] = 3.75,
+ bias_mant: ty.Optional[ty.Union[float, list, np.ndarray]] = 0,
+ bias_exp: ty.Optional[ty.Union[float, list, np.ndarray]] = 0,
+ name: ty.Optional[str] = None,
+ log_config: ty.Optional[LogConfig] = None
+ ) -> None:
+
+ super().__init__(
+ shape=shape,
+ i=i,
+ v=v,
+ theta=theta,
+ r=r,
+ s=s,
+ delta_i=delta_i,
+ delta_v=delta_v,
+ delta_theta=delta_theta,
+ delta_r=delta_r,
+ theta_0=theta_0,
+ theta_step=theta_step,
+ bias_mant=bias_mant,
+ bias_exp=bias_exp,
+ name=name,
+ log_config=log_config
+ )
+
+ # Ports
+ self.a_in = InPort(shape=shape)
+ self.s_out = OutPort(shape=shape)
+
+ # Bias
+ self.bias_mant = Var(shape=shape, init=bias_mant)
+ self.bias_exp = Var(shape=shape, init=bias_exp)
+
+ # Variables
+ self.i = Var(shape=shape, init=i)
+ self.v = Var(shape=shape, init=v)
+ self.theta = Var(shape=shape, init=theta)
+ self.r = Var(shape=shape, init=r)
+ self.s = Var(shape=shape, init=s)
+
+ # Parameters
+ self.delta_i = Var(shape=(1,), init=delta_i)
+ self.delta_v = Var(shape=(1,), init=delta_v)
+ self.delta_theta = Var(shape=(1,), init=delta_theta)
+ self.delta_r = Var(shape=(1,), init=delta_r)
+ self.theta_0 = Var(shape=(1,), init=theta_0)
+ self.theta_step = Var(shape=(1,), init=theta_step)
diff --git a/tests/lava/proc/atrlif/__init__.py b/tests/lava/proc/atrlif/__init__.py
new file mode 100644
index 000000000..e69de29bb
diff --git a/tests/lava/proc/atrlif/test_models.py b/tests/lava/proc/atrlif/test_models.py
new file mode 100644
index 000000000..6db21b91f
--- /dev/null
+++ b/tests/lava/proc/atrlif/test_models.py
@@ -0,0 +1,696 @@
+# Copyright (C) 2024 Intel Corporation
+# Copyright (C) 2024 Jannik Luboeinski
+# SPDX-License-Identifier: BSD-3-Clause
+# See: https://spdx.org/licenses/
+
+import unittest
+import numpy as np
+
+from lava.magma.core.decorator import implements, requires, tag
+from lava.magma.core.model.py.model import PyLoihiProcessModel
+from lava.magma.core.model.py.ports import PyOutPort, PyInPort
+from lava.magma.core.model.py.type import LavaPyType
+from lava.magma.core.process.ports.ports import OutPort, InPort
+from lava.magma.core.process.process import AbstractProcess
+from lava.magma.core.process.variable import Var
+from lava.magma.core.resources import CPU
+from lava.magma.core.run_configs import RunConfig
+from lava.magma.core.run_conditions import RunSteps
+from lava.magma.core.sync.protocols.loihi_protocol import LoihiProtocol
+from lava.proc.atrlif.process import ATRLIF
+
+
+class AtrlifRunConfig(RunConfig):
+ """Run configuration selects appropriate ATRLIF ProcessModel based on tag:
+ floating point precision or Loihi bit-accurate fixed point precision"""
+ def __init__(self, custom_sync_domains=None, select_tag='fixed_pt'):
+ super().__init__(custom_sync_domains=custom_sync_domains)
+ self.select_tag = select_tag
+
+ def select(self, proc, proc_models):
+ for pm in proc_models:
+ if self.select_tag in pm.tags:
+ return pm
+ raise AssertionError("No legal ProcessModel found.")
+
+
+class VecSendProcess(AbstractProcess):
+ """
+ Process of a user-defined shape that sends an arbitrary vector
+
+ Parameters
+ ----------
+ shape: tuple, shape of the process
+ vec_to_send: np.ndarray, vector of spike values to send
+ send_at_times: np.ndarray, vector bools. Send the `vec_to_send` at times
+ when there is a True
+ """
+ def __init__(self, **kwargs):
+ super().__init__()
+ shape = kwargs.pop("shape", (1,))
+ vec_to_send = kwargs.pop("vec_to_send")
+ send_at_times = kwargs.pop("send_at_times")
+ num_steps = kwargs.pop("num_steps", 1)
+ self.shape = shape
+ self.num_steps = num_steps
+ self.vec_to_send = Var(shape=shape, init=vec_to_send)
+ self.send_at_times = Var(shape=(num_steps,), init=send_at_times)
+ self.s_out = OutPort(shape=shape)
+
+
+class VecRecvProcess(AbstractProcess):
+ """
+ Process that receives arbitrary vectors
+
+ Parameters
+ ----------
+ shape: tuple, shape of the process
+ """
+ def __init__(self, **kwargs):
+ super().__init__()
+ shape = kwargs.get("shape", (1,))
+ self.shape = shape
+ self.s_in = InPort(shape=(shape[1],))
+ self.spk_data = Var(shape=shape, init=0) # This Var expands with time
+
+
+@implements(proc=VecSendProcess, protocol=LoihiProtocol)
+@requires(CPU)
+# Following tag is needed to discover the ProcessModel using AtrlifRunConfig
+@tag('floating_pt')
+class PyVecSendModelFloat(PyLoihiProcessModel):
+ s_out: PyOutPort = LavaPyType(PyOutPort.VEC_DENSE, float)
+ vec_to_send: np.ndarray = LavaPyType(np.ndarray, float)
+ send_at_times: np.ndarray = LavaPyType(np.ndarray, bool, precision=1)
+
+ def run_spk(self):
+ """
+ Send `spikes_to_send` if current time-step requires it
+ """
+ if self.send_at_times[self.time_step - 1]:
+ self.s_out.send(self.vec_to_send)
+ else:
+ self.s_out.send(np.zeros_like(self.vec_to_send))
+
+
+@implements(proc=VecSendProcess, protocol=LoihiProtocol)
+@requires(CPU)
+# Following tag is needed to discover the ProcessModel using AtrlifRunConfig
+@tag('fixed_pt')
+class PyVecSendModelFixed(PyLoihiProcessModel):
+ s_out: PyOutPort = LavaPyType(PyOutPort.VEC_DENSE, np.int16, precision=16)
+ vec_to_send: np.ndarray = LavaPyType(np.ndarray, np.int16, precision=16)
+ send_at_times: np.ndarray = LavaPyType(np.ndarray, bool, precision=1)
+
+ def run_spk(self):
+ """
+ Send `spikes_to_send` if current time-step requires it
+ """
+ if self.send_at_times[self.time_step - 1]:
+ self.s_out.send(self.vec_to_send)
+ else:
+ self.s_out.send(np.zeros_like(self.vec_to_send))
+
+
+@implements(proc=VecRecvProcess, protocol=LoihiProtocol)
+@requires(CPU)
+# Following tag is needed to discover the ProcessModel using AtrlifRunConfig
+@tag('floating_pt')
+class PySpkRecvModelFloat(PyLoihiProcessModel):
+ s_in: PyInPort = LavaPyType(PyInPort.VEC_DENSE, bool, precision=1)
+ spk_data: np.ndarray = LavaPyType(np.ndarray, float)
+
+ def run_spk(self):
+ """Receive spikes and store in an internal variable"""
+ spk_in = self.s_in.recv()
+ self.spk_data[self.time_step - 1, :] = spk_in
+
+
+@implements(proc=VecRecvProcess, protocol=LoihiProtocol)
+@requires(CPU)
+# Following tag is needed to discover the ProcessModel using AtrlifRunConfig
+@tag('fixed_pt')
+class PySpkRecvModelFixed(PyLoihiProcessModel):
+ s_in: PyInPort = LavaPyType(PyInPort.VEC_DENSE, bool, precision=1)
+ spk_data: np.ndarray = LavaPyType(np.ndarray, int, precision=1)
+
+ def run_spk(self):
+ """Receive spikes and store in an internal variable"""
+ spk_in = self.s_in.recv()
+ self.spk_data[self.time_step - 1, :] = spk_in
+
+
+class TestATRLIFProcessModelsFloat(unittest.TestCase):
+ """
+ Tests for floating point ProcessModels of ATRLIF, resembling the
+ existing tests for the LIF process.
+ """
+ def test_float_pm_no_decay(self):
+ """
+ Tests floating point ATRLIF ProcessModel with no current or voltage
+ decay and neurons driven by internal biases.
+ """
+ shape = (10,)
+ num_steps = 50
+ # Set up external input to 0
+ sps = VecSendProcess(shape=shape, num_steps=num_steps,
+ vec_to_send=np.zeros(shape, dtype=float),
+ send_at_times=np.ones((num_steps,), dtype=bool))
+ # `delta_i` and `delta_v` = 0 => bias driven neurons spike first after
+ # `theta_0 / bias` time steps, then less often due to the refractor-
+ # iness. For the test implementation below, `theta_0` has to be a
+ # multiple of `bias`.
+ bias = 2
+ theta_0 = 4
+ neur = ATRLIF(shape=shape,
+ delta_i=0.,
+ delta_v=0.,
+ delta_theta=0.,
+ delta_r=0.,
+ theta_0=theta_0,
+ theta=theta_0,
+ theta_step=0.,
+ bias_mant=bias * np.ones(shape, dtype=float))
+ # Receive neuron spikes
+ spr = VecRecvProcess(shape=(num_steps, shape[0]))
+ sps.s_out.connect(neur.a_in)
+ neur.s_out.connect(spr.s_in)
+ # Configure execution and run
+ rcnd = RunSteps(num_steps=num_steps)
+ rcfg = AtrlifRunConfig(select_tag='floating_pt')
+ neur.run(condition=rcnd, run_cfg=rcfg)
+ # Gather spike data and stop
+ spk_data_through_run = spr.spk_data.get()
+ neur.stop()
+ # Compute the number of time steps until the first spike
+ t_spike_0 = theta_0 // bias
+ # Compute the following number of time steps until the second spike
+ # (according to `bias * (t_spike_0 + t_spike_refr) - 2 * theta_0 >=
+ # theta_0`)
+ t_spike_refr = 3 * theta_0 // bias - t_spike_0
+ # Gold standard for the test
+ expected_spk_data = np.zeros((t_spike_0 + t_spike_refr + 1, shape[0]))
+ expected_spk_data[t_spike_0 - 1:t_spike_0 + t_spike_refr + 1:
+ t_spike_refr, :] = 1.
+ spk_data_through_run_needed = \
+ spk_data_through_run[0:t_spike_0 + t_spike_refr + 1, :]
+ self.assertTrue(np.all(expected_spk_data
+ == spk_data_through_run_needed))
+
+ def test_float_pm_impulse_delta_i(self):
+ """
+ Tests floating point ATRLIF ProcessModel's impulse response with no
+ voltage decay and input activation at the very first time-step.
+ """
+ # Use a single neuron
+ shape = (1,)
+ num_steps = 8
+ # Send activation of 128. at timestep = 1
+ sps = VecSendProcess(shape=shape, num_steps=num_steps,
+ vec_to_send=(2 ** 7) * np.ones(shape,
+ dtype=float),
+ send_at_times=np.array([True, False, False,
+ False, False, False,
+ False, False]))
+ # Set up no bias, no voltage decay. Current decay = 0.5.
+ # Set up high constant threshold, such that there are no output spikes.
+ neur = ATRLIF(shape=shape,
+ delta_i=0.5,
+ delta_v=0.,
+ delta_theta=0.,
+ delta_r=0.,
+ theta_0=256.,
+ theta=256.,
+ theta_step=0.,
+ bias_mant=np.zeros(shape, dtype=float))
+ spr = VecRecvProcess(shape=(num_steps, shape[0]))
+ sps.s_out.connect(neur.a_in)
+ neur.s_out.connect(spr.s_in)
+ # Configure to run 1 step at a time
+ rcnd = RunSteps(num_steps=1)
+ rcfg = AtrlifRunConfig(select_tag='floating_pt')
+ neur_i = []
+ # Run 1 timestep at a time and collect state variable i
+ for _ in range(num_steps):
+ neur.run(condition=rcnd, run_cfg=rcfg)
+ neur_i.append(neur.i.get()[0])
+ neur.stop()
+ # Gold standard for testing: current decay of 0.5 should halve the
+ # current every time-step
+ expected_i_timeseries = [2. ** (7 - j) for j in range(8)]
+ self.assertListEqual(expected_i_timeseries, neur_i)
+
+ def test_float_pm_impulse_delta_v(self):
+ """
+ Tests floating point ATRLIF ProcessModel's impulse response with no
+ current decay and input activation at the very first time-step.
+ """
+ # Use a single neuron
+ shape = (1,)
+ num_steps = 8
+ # Send activation of 128. at timestep = 1
+ sps = VecSendProcess(shape=shape, num_steps=num_steps,
+ vec_to_send=(2 ** 7) * np.ones(shape,
+ dtype=float),
+ send_at_times=np.array([True, False, False,
+ False, False, False,
+ False, False]))
+ # Set up no bias, no current decay. Voltage decay = 0.5.
+ # Set up high constant threshold, such that there are no output spikes.
+ neur = ATRLIF(shape=shape,
+ delta_i=0.,
+ delta_v=0.5,
+ delta_theta=0.,
+ delta_r=0.,
+ theta_0=256.,
+ theta=256.,
+ theta_step=0.,
+ bias_mant=np.zeros(shape, dtype=float))
+ spr = VecRecvProcess(shape=(num_steps, shape[0]))
+ sps.s_out.connect(neur.a_in)
+ neur.s_out.connect(spr.s_in)
+ # Configure to run 1 step at a time
+ rcnd = RunSteps(num_steps=1)
+ rcfg = AtrlifRunConfig(select_tag='floating_pt')
+ neur_v = []
+ # Run 1 timestep at a time and collect state variable v
+ for _ in range(num_steps):
+ neur.run(condition=rcnd, run_cfg=rcfg)
+ neur_v.append(neur.v.get()[0])
+ neur.stop()
+ # Gold standard for testing: voltage decay of 0.5 should integrate
+ # the voltage from 128. to 255., with steps of 64., 32., 16., etc.
+ expected_v_timeseries = [128., 192., 224., 240.,
+ 248., 252., 254., 255.]
+ self.assertListEqual(expected_v_timeseries, neur_v)
+
+ def test_float_pm_instant_theta_decay(self):
+ """
+ Tests floating point ATRLIF ProcessModel's behavior for instant decay
+ of the threshold variable in the presence of constant bias.
+ """
+ # Use a single neuron
+ shape = (1,)
+ num_steps = 20
+ # Set up external input to 0
+ sps = VecSendProcess(shape=shape, num_steps=num_steps,
+ vec_to_send=np.zeros(shape, dtype=float),
+ send_at_times=np.ones((num_steps,), dtype=bool))
+ # `delta_i` and `delta_v` = 0 => bias driven neurons spike first after
+ # `theta_0 / bias` time steps, then less often due to the refractor-
+ # iness. For the test implementation below, `theta_0` has to be a
+ # multiple of `bias`. Following a spike, the threshold `theta` is
+ # increased tremendously (by 10.), but this remains without effect
+ # due to the instant decay (`delta_theta=1.`).
+ bias = 2
+ theta_0 = 4
+ neur = ATRLIF(shape=shape,
+ delta_i=0.,
+ delta_v=0.,
+ delta_theta=1.,
+ delta_r=0.,
+ theta_0=theta_0,
+ theta=theta_0,
+ theta_step=10.,
+ bias_mant=bias * np.ones(shape, dtype=float))
+ # Receive neuron spikes
+ spr = VecRecvProcess(shape=(num_steps, shape[0]))
+ sps.s_out.connect(neur.a_in)
+ neur.s_out.connect(spr.s_in)
+ # Configure execution and run
+ rcnd = RunSteps(num_steps=num_steps)
+ rcfg = AtrlifRunConfig(select_tag='floating_pt')
+ neur.run(condition=rcnd, run_cfg=rcfg)
+ # Gather spike data and stop
+ spk_data_through_run = spr.spk_data.get()
+ neur.stop()
+ # Compute the number of time steps until the first spike
+ t_spike_0 = theta_0 // bias
+ # Compute the following number of time steps until the second spike
+ # (according to `bias * (t_spike_0 + t_spike_refr) - 2 * theta_0 >=
+ # theta_0`)
+ t_spike_refr = 3 * theta_0 // bias - t_spike_0
+ # Gold standard for the test
+ expected_spk_data = np.zeros((t_spike_0 + t_spike_refr + 1, shape[0]))
+ expected_spk_data[t_spike_0 - 1:t_spike_0 + t_spike_refr + 1:
+ t_spike_refr, :] = 1.
+ spk_data_through_run_needed = \
+ spk_data_through_run[0:t_spike_0 + t_spike_refr + 1, :]
+ self.assertTrue(np.all(expected_spk_data
+ == spk_data_through_run_needed))
+
+ def test_float_pm_instant_r_decay(self):
+ """
+ Tests floating point ATRLIF ProcessModel's behavior for instant decay
+ of the refractory variable in the presence of constant bias.
+ """
+ # Use a single neuron
+ shape = (1,)
+ num_steps = 20
+ # Set up external input to 0
+ sps = VecSendProcess(shape=shape, num_steps=num_steps,
+ vec_to_send=np.zeros(shape, dtype=float),
+ send_at_times=np.ones((num_steps,), dtype=bool))
+ # `delta_i` and `delta_v` = 0 => bias driven neurons spike first after
+ # `theta_0 / bias` time steps. Following a spike, the threshold `theta`
+ # is automatically increased by `2 * theta`, but this remains without
+ # effect due to the instant decay (`delta_r=1.`).
+ bias = 8
+ theta_0 = 16
+ neur = ATRLIF(shape=shape,
+ delta_i=0.,
+ delta_v=0.,
+ delta_theta=0.,
+ delta_r=1.,
+ theta_0=theta_0,
+ theta=theta_0,
+ theta_step=0.,
+ bias_mant=bias * np.ones(shape, dtype=float))
+ # Receive neuron spikes
+ spr = VecRecvProcess(shape=(num_steps, shape[0]))
+ sps.s_out.connect(neur.a_in)
+ neur.s_out.connect(spr.s_in)
+ # Configure execution and run
+ rcnd = RunSteps(num_steps=num_steps)
+ rcfg = AtrlifRunConfig(select_tag='floating_pt')
+ neur.run(condition=rcnd, run_cfg=rcfg)
+ # Gather spike data and stop
+ spk_data_through_run = spr.spk_data.get()
+ neur.stop()
+ # Compute the number of time steps until the first spike
+ t_spike_0 = theta_0 // bias
+ # Compute the following number of time steps until the second spike
+ # (according to `bias * (t_spike_0 + t_spike_refr) >= theta_0`)
+ t_spike_refr = theta_0 // bias - t_spike_0 + 1
+ # Gold standard for the test
+ expected_spk_data = np.zeros((t_spike_0 + t_spike_refr + 1, shape[0]))
+ expected_spk_data[t_spike_0 - 1:t_spike_0 + t_spike_refr + 1:
+ t_spike_refr, :] = 1.
+ spk_data_through_run_needed = \
+ spk_data_through_run[0:t_spike_0 + t_spike_refr + 1, :]
+ self.assertTrue(np.all(expected_spk_data
+ == spk_data_through_run_needed))
+
+
+class TestATRLIFProcessModelsFixed(unittest.TestCase):
+ """
+ Tests for fixed point ProcessModels of ATRLIF (which are bit-accurate
+ with Loihi hardware), resembling the existing tests for the LIF process.
+ """
+ def test_bitacc_pm_no_decay(self):
+ """
+ Tests fixed point ATRLIF ProcessModel (bit-accurate
+ with Loihi hardware) with no current or voltage
+ decay and neurons driven by internal biases.
+ """
+ shape = (10,)
+ num_steps = 50
+ # Set up external input to 0
+ sps = VecSendProcess(shape=shape, num_steps=num_steps,
+ vec_to_send=np.zeros(shape, dtype=np.int16),
+ send_at_times=np.ones((num_steps,), dtype=bool))
+ # Set up bias = 2 * 2**6 = 128 and threshold = 8<<6
+ # `delta_i` and `delta_v` = 0 => bias driven neurons spike first after
+ # `theta_0 / bias` time steps, then less often due to the refractor-
+ # iness. For the test implementation below, `theta_0` has to be a
+ # multiple of `bias`.
+ bias = 4
+ theta_0 = 8
+ neur = ATRLIF(shape=shape,
+ delta_i=0,
+ delta_v=0,
+ delta_theta=0,
+ delta_r=0,
+ theta_0=theta_0,
+ theta=theta_0,
+ theta_step=0,
+ bias_mant=bias * np.ones(shape, dtype=np.int32),
+ bias_exp=6 * np.ones(shape, dtype=np.int32))
+ # Receive neuron spikes
+ spr = VecRecvProcess(shape=(num_steps, shape[0]))
+ sps.s_out.connect(neur.a_in)
+ neur.s_out.connect(spr.s_in)
+ # Configure execution and run
+ rcnd = RunSteps(num_steps=num_steps)
+ rcfg = AtrlifRunConfig(select_tag='fixed_pt')
+ neur.run(condition=rcnd, run_cfg=rcfg)
+ # Gather spike data and stop
+ spk_data_through_run = spr.spk_data.get()
+ neur.stop()
+ # Compute the number of time steps until the first spike
+ t_spike_0 = theta_0 // bias
+ # Compute the following number of time steps until the second spike
+ # (according to `bias * (t_spike_0 + t_spike_refr) - 2 * theta_0 >=
+ # theta_0`)
+ t_spike_refr = 3 * theta_0 // bias - t_spike_0
+ # Gold standard for the test
+ expected_spk_data = np.zeros((t_spike_0 + t_spike_refr + 1, shape[0]))
+ expected_spk_data[t_spike_0 - 1:t_spike_0 + t_spike_refr + 1:
+ t_spike_refr, :] = 1.
+ spk_data_through_run_needed = \
+ spk_data_through_run[0:t_spike_0 + t_spike_refr + 1, :]
+ self.assertTrue(np.all(expected_spk_data
+ == spk_data_through_run_needed))
+
+ def test_bitacc_pm_impulse_delta_i(self):
+ """
+ Tests fixed point ATRLIF ProcessModel's impulse response with no
+ voltage decay and input activation at the very first time-step.
+ """
+ # Use a single neuron
+ shape = (1,)
+ num_steps = 8
+ # Send activation of 128. at timestep = 1
+ sps = VecSendProcess(shape=shape, num_steps=num_steps,
+ vec_to_send=128 * np.ones(shape, dtype=np.int32),
+ send_at_times=np.array([True, False, False,
+ False, False, False,
+ False, False]))
+ # Set up no bias, no voltage decay. Current decay is a 12-bit
+ # unsigned variable in Loihi hardware. Therefore, 2**-12 is the
+ # equivalent of 1. The subtracted 1 is added by default in the
+ # hardware via the `ds_offset` setting, thereby finally giving
+ # `delta_i = 2048 = 0.5 * 2**12`.
+ # Set up threshold high, such that there are no output spikes. By
+ # default the threshold value here is left-shifted by 6.
+ neur = ATRLIF(shape=shape,
+ delta_i=0.5 - (2**-12),
+ delta_v=0,
+ delta_theta=0,
+ delta_r=0,
+ theta_0=256 * np.ones(shape, dtype=np.int32),
+ theta=256 * np.ones(shape, dtype=np.int32),
+ theta_step=0,
+ bias_mant=np.zeros(shape, dtype=np.int16),
+ bias_exp=np.ones(shape, dtype=np.int16))
+ spr = VecRecvProcess(shape=(num_steps, shape[0]))
+ sps.s_out.connect(neur.a_in)
+ neur.s_out.connect(spr.s_in)
+ # Configure to run 1 step at a time
+ rcnd = RunSteps(num_steps=1)
+ rcfg = AtrlifRunConfig(select_tag='fixed_pt')
+ neur_i = []
+ # Run 1 timestep at a time and collect state variable i
+ for _ in range(num_steps):
+ neur.run(condition=rcnd, run_cfg=rcfg)
+ neur_i.append(neur.i.get().astype(np.int32)[0])
+ neur.stop()
+ # Gold standard for testing: current decay of 0.5 should halve the
+ # current every time-step.
+ expected_i_timeseries = [1 << (13 - j) for j in range(8)]
+ # Gold standard for floating point equivalent of the current,
+ # which would be all Loihi-bit-accurate values right shifted by 6 bits
+ expected_float_i = [1 << (7 - j) for j in range(8)]
+ self.assertListEqual(expected_i_timeseries, neur_i)
+ self.assertListEqual(expected_float_i, np.right_shift(np.array(
+ neur_i), 6).tolist())
+
+ def test_bitacc_pm_impulse_delta_v(self):
+ """
+ Tests fixed point ATRLIF ProcessModel's impulse response with no
+ current decay and input activation at the very first time-step.
+ """
+ # Use a single neuron
+ shape = (1,)
+ num_steps = 8
+ # Send activation of 128. at timestep = 1
+ sps = VecSendProcess(shape=shape, num_steps=num_steps,
+ vec_to_send=128 * np.ones(shape, dtype=np.int32),
+ send_at_times=np.array([True, False, False,
+ False, False, False,
+ False, False]))
+ # Set up no bias, no current decay.
+ # Set up threshold high, such that there are no output spikes.
+ # Threshold provided here is left-shifted by 6-bits.
+ neur = ATRLIF(shape=shape,
+ delta_i=0,
+ delta_v=0.5,
+ delta_theta=0,
+ delta_r=0,
+ theta_0=256 * np.ones(shape, dtype=np.int32),
+ theta=256 * np.ones(shape, dtype=np.int32),
+ theta_step=0,
+ bias_mant=np.zeros(shape, dtype=np.int16),
+ bias_exp=np.ones(shape, dtype=np.int16))
+ spr = VecRecvProcess(shape=(num_steps, shape[0]))
+ sps.s_out.connect(neur.a_in)
+ neur.s_out.connect(spr.s_in)
+ # Configure to run 1 step at a time
+ rcnd = RunSteps(num_steps=1)
+ rcfg = AtrlifRunConfig(select_tag='fixed_pt')
+ neur_v = []
+ # Run 1 timestep at a time and collect state variable u
+ for _ in range(num_steps):
+ neur.run(condition=rcnd, run_cfg=rcfg)
+ neur_v.append(neur.v.get().astype(np.int32)[0])
+ neur.stop()
+ # Gold standard for testing: with a voltage decay of 2048, voltage
+ # should integrate from 128<<6 to 255<<6. But it is slightly smaller,
+ # because current decay is not exactly 0. Due to the default
+ # ds_offset = 1 setting in the hardware, current decay = 1. So
+ # voltage is slightly smaller than 128<<6 to 255<<6.
+ expected_v_timeseries = [8192, 12286, 14331, 15351, 15859, 16111,
+ 16235, 16295]
+ # Gold standard for floating point equivalent of the voltage,
+ # which would be all Loihi-bit-accurate values right shifted by 6 bits
+ expected_float_v = [128, 192, 224, 240, 248, 252, 254, 255]
+ neur_v_float = np.right_shift(np.array(neur_v), 6)
+ neur_v_float[1:] += 1 # This compensates the drift caused by ds_offset
+ self.assertListEqual(expected_v_timeseries, neur_v)
+ self.assertListEqual(expected_float_v, neur_v_float.tolist())
+
+ def test_bitacc_pm_scaling_of_bias(self):
+ """
+ Tests fixed point ATRLIF ProcessModel's scaling of threshold.
+ """
+ bias_mant = 2 ** 12 - 1
+ bias_exp = 5
+ # Set up high threshold and high bias current to check for potential
+ # overflow in effective bias in single neuron.
+ neur = ATRLIF(shape=(1,),
+ delta_i=0,
+ delta_v=0.5,
+ delta_theta=0,
+ delta_r=0,
+ theta_0=2 ** 17,
+ theta=2 ** 17,
+ theta_step=0,
+ bias_mant=bias_mant,
+ bias_exp=bias_exp)
+
+ rcnd = RunSteps(num_steps=1)
+ rcfg = AtrlifRunConfig(select_tag='fixed_pt')
+
+ neur.run(condition=rcnd, run_cfg=rcfg)
+ neur_v = neur.v.get()[0]
+ neur.stop()
+
+ # Check if neur_v has correct value.
+ self.assertEqual(neur_v, bias_mant * 2 ** bias_exp)
+
+ def test_fixed_pm_instant_theta_decay(self):
+ """
+ Tests fixed point ATRLIF ProcessModel's behavior for instant decay
+ of the threshold variable in the presence of constant bias.
+ """
+ # Use a single neuron
+ shape = (1,)
+ num_steps = 20
+ # Set up external input to 0
+ sps = VecSendProcess(shape=shape, num_steps=num_steps,
+ vec_to_send=np.zeros(shape, dtype=float),
+ send_at_times=np.ones((num_steps,), dtype=bool))
+ # `delta_i` and `delta_v` = 0 => bias driven neurons spike first after
+ # `theta_0 / bias` time steps, then less often due to the refractor-
+ # iness. For the test implementation below, `theta_0` has to be a
+ # multiple of `bias`. Following a spike, the threshold `theta` is
+ # increased tremendously (by 10.), but this remains without effect
+ # due to the instant decay (`delta_theta=1.`).
+ bias = 2
+ theta_0 = 4
+ neur = ATRLIF(shape=shape,
+ delta_i=0,
+ delta_v=0,
+ delta_theta=1,
+ delta_r=0,
+ theta_0=theta_0,
+ theta=theta_0,
+ theta_step=10,
+ bias_mant=bias * np.ones(shape, dtype=float))
+ # Receive neuron spikes
+ spr = VecRecvProcess(shape=(num_steps, shape[0]))
+ sps.s_out.connect(neur.a_in)
+ neur.s_out.connect(spr.s_in)
+ # Configure execution and run
+ rcnd = RunSteps(num_steps=num_steps)
+ rcfg = AtrlifRunConfig(select_tag='floating_pt')
+ neur.run(condition=rcnd, run_cfg=rcfg)
+ # Gather spike data and stop
+ spk_data_through_run = spr.spk_data.get()
+ neur.stop()
+ # Compute the number of time steps until the first spike
+ t_spike_0 = theta_0 // bias
+ # Compute the following number of time steps until the second spike
+ # (according to `bias * (t_spike_0 + t_spike_refr) - 2 * theta_0 >=
+ # theta_0`)
+ t_spike_refr = 3 * theta_0 // bias - t_spike_0
+ # Gold standard for the test
+ expected_spk_data = np.zeros((t_spike_0 + t_spike_refr + 1, shape[0]))
+ expected_spk_data[t_spike_0 - 1:t_spike_0 + t_spike_refr + 1:
+ t_spike_refr, :] = 1.
+ spk_data_through_run_needed = \
+ spk_data_through_run[0:t_spike_0 + t_spike_refr + 1, :]
+ self.assertTrue(np.all(expected_spk_data
+ == spk_data_through_run_needed))
+
+ def test_fixed_pm_instant_r_decay(self):
+ """
+ Tests fixed point ATRLIF ProcessModel's behavior for instant decay
+ of the refractory variable in the presence of constant bias.
+ """
+ # Use a single neuron
+ shape = (1,)
+ num_steps = 20
+ # Set up external input to 0
+ sps = VecSendProcess(shape=shape, num_steps=num_steps,
+ vec_to_send=np.zeros(shape, dtype=float),
+ send_at_times=np.ones((num_steps,), dtype=bool))
+ # `delta_i` and `delta_v` = 0 => bias driven neurons spike first after
+ # `theta_0 / bias` time steps. Following a spike, the threshold `theta`
+ # is automatically increased by `2 * theta`, but this remains without
+ # effect due to the instant decay (`delta_r=1`).
+ bias = 8
+ theta_0 = 16
+ neur = ATRLIF(shape=shape,
+ delta_i=0,
+ delta_v=0,
+ delta_theta=0,
+ delta_r=1,
+ theta_0=theta_0,
+ theta=theta_0,
+ theta_step=0,
+ bias_mant=bias * np.ones(shape, dtype=float))
+ # Receive neuron spikes
+ spr = VecRecvProcess(shape=(num_steps, shape[0]))
+ sps.s_out.connect(neur.a_in)
+ neur.s_out.connect(spr.s_in)
+ # Configure execution and run
+ rcnd = RunSteps(num_steps=num_steps)
+ rcfg = AtrlifRunConfig(select_tag='floating_pt')
+ neur.run(condition=rcnd, run_cfg=rcfg)
+ # Gather spike data and stop
+ spk_data_through_run = spr.spk_data.get()
+ neur.stop()
+ # Compute the number of time steps until the first spike
+ t_spike_0 = theta_0 // bias
+ # Compute the following number of time steps until the second spike
+ # (according to `bias * (t_spike_0 + t_spike_refr) >= theta_0`)
+ t_spike_refr = theta_0 // bias - t_spike_0 + 1
+ # Gold standard for the test
+ expected_spk_data = np.zeros((t_spike_0 + t_spike_refr + 1, shape[0]))
+ expected_spk_data[t_spike_0 - 1:t_spike_0 + t_spike_refr + 1:
+ t_spike_refr, :] = 1.
+ spk_data_through_run_needed = \
+ spk_data_through_run[0:t_spike_0 + t_spike_refr + 1, :]
+ self.assertTrue(np.all(expected_spk_data
+ == spk_data_through_run_needed))
diff --git a/tests/lava/proc/atrlif/test_process.py b/tests/lava/proc/atrlif/test_process.py
new file mode 100644
index 000000000..c0a16e94a
--- /dev/null
+++ b/tests/lava/proc/atrlif/test_process.py
@@ -0,0 +1,43 @@
+# Copyright (C) 2024 Intel Corporation
+# Copyright (C) 2024 Jannik Luboeinski
+# SPDX-License-Identifier: BSD-3-Clause
+# See: https://spdx.org/licenses/
+
+import unittest
+import numpy as np
+from lava.proc.atrlif.process import ATRLIF
+
+
+class TestATRLIFProcess(unittest.TestCase):
+ """Tests for ATRLIF class"""
+ def test_init(self):
+ """Tests instantiation of ATRLIF neuron"""
+ N = 100
+ delta_i = 0.6
+ delta_v = 0.6
+ delta_theta = 0.4
+ delta_r = 0.4
+ theta_0 = 4
+ theta_step = 2
+ bias_mant = 2 * np.ones((N,), dtype=float)
+ bias_exp = np.ones((N,), dtype=float)
+ name = "ATRLIF"
+
+ neur = ATRLIF(shape=(N,),
+ delta_i=delta_i,
+ delta_v=delta_v,
+ delta_theta=delta_theta,
+ delta_r=delta_r,
+ theta_0=theta_0,
+ theta=theta_0,
+ theta_step=theta_step,
+ bias_mant=bias_mant,
+ bias_exp=bias_exp,
+ name=name)
+
+ self.assertEqual(neur.proc_params["shape"], (N,))
+ self.assertEqual(neur.delta_i.init, delta_i)
+ self.assertEqual(neur.delta_v.init, delta_v)
+ self.assertListEqual(neur.bias_mant.init.tolist(), bias_mant.tolist())
+ self.assertListEqual(neur.bias_exp.init.tolist(), bias_exp.tolist())
+ self.assertEqual(neur.name, name)
diff --git a/tests/lava/tutorials/test_tutorials.py b/tests/lava/tutorials/test_tutorials.py
index 3f752c081..53996e692 100644
--- a/tests/lava/tutorials/test_tutorials.py
+++ b/tests/lava/tutorials/test_tutorials.py
@@ -1,4 +1,5 @@
-# Copyright (C) 2022 Intel Corporation
+# Copyright (C) 2022-2024 Intel Corporation
+# Copyright (C) 2024 Jannik Luboeinski
# SPDX-License-Identifier: BSD-3-Clause
# See: https://spdx.org/licenses/
@@ -285,6 +286,11 @@ def test_in_depth_11_serialization(self):
"""Test tutorial serialization."""
self._run_notebook("tutorial11_serialization.ipynb")
+ @unittest.skipIf(system_name != "linux", "Tests work on linux")
+ def test_in_depth_12_adaptive_neurons(self):
+ """Test tutorial adaptive_neurons."""
+ self._run_notebook("tutorial12_adaptive_neurons.ipynb")
+
@unittest.skipIf(system_name != "linux", "Tests work on linux")
def test_in_depth_clp_01(self):
"""Test tutorial CLP 01."""
diff --git a/tutorials/in_depth/tutorial12_adaptive_neurons.ipynb b/tutorials/in_depth/tutorial12_adaptive_neurons.ipynb
new file mode 100644
index 000000000..6dc80a662
--- /dev/null
+++ b/tutorials/in_depth/tutorial12_adaptive_neurons.ipynb
@@ -0,0 +1,329 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "*Copyright (C) 2024 Jannik Luboeinski*
\n",
+ "*SPDX-License-Identifier: BSD-3-Clause*
\n",
+ "*See: https://spdx.org/licenses/*\n",
+ "\n",
+ "---\n",
+ "\n",
+ "# ATRLIF neuron in different implementations\n",
+ "_A Leaky Integrate-and-Fire neuron with adaptive threshold and adaptive refractoriness._"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Imports"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Import general modules\n",
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n",
+ "import os\n",
+ "\n",
+ "# Import Lava core modules\n",
+ "from lava.magma.core.run_configs import Loihi2SimCfg, Loihi2HwCfg\n",
+ "from lava.magma.core.run_conditions import RunSteps\n",
+ "\n",
+ "# Import Lava monitors\n",
+ "from lava.proc.monitor.process import Monitor\n",
+ "\n",
+ "# Import ATRLIF process\n",
+ "from lava.proc.atrlif.process import *"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Simulation test function"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def simulation_test(run_config, label, bias_mant=3, bias_exp=0, **kwargs):\n",
+ " '''\n",
+ " Function to simulate and monitor a population of ATRLIF neurons.\n",
+ " \n",
+ " Parameters\n",
+ " ----------\n",
+ " run_config : `AbstractLoihiSimRunCfg`\n",
+ " Run configuratrion object for Lava.\n",
+ " label : `str`\n",
+ " Label for the current simulation.\n",
+ " bias_mant : `float`, optional\n",
+ " Mantissa part of neuron's bias. Equals `bias` for floating-point implementation.\n",
+ " bias_exp : `int`, optional\n",
+ " Exponent part of neuron's bias, if needed. Ignored in floating-point implementation.\n",
+ " **kwargs : `dict`\n",
+ " Additional keyword arguments (cf. 'atrlif_process.py').\n",
+ " '''\n",
+ "\n",
+ " # Initialization\n",
+ " n_neurons = 1 # the number of neurons\n",
+ " num_steps = 20 # the number of timesteps\n",
+ " output_period = 1 # the sampling period (in timesteps)\n",
+ " num_samples = num_steps // output_period + 1 # the number of samples\n",
+ " atrlif = ATRLIF(shape=(n_neurons,), bias_mant=bias_mant, bias_exp=bias_exp, **kwargs)\n",
+ " \n",
+ " # Set monitors for the different variables\n",
+ " voltage_mon = Monitor()\n",
+ " voltage_mon.probe(atrlif.v, num_samples)\n",
+ " refractory_mon = Monitor()\n",
+ " refractory_mon.probe(atrlif.r, num_samples)\n",
+ " threshold_mon = Monitor()\n",
+ " threshold_mon.probe(atrlif.theta, num_samples)\n",
+ " spike_mon = Monitor()\n",
+ " spike_mon.probe(atrlif.s_out, num_samples)\n",
+ " \n",
+ " # Run the simulation\n",
+ " atrlif.run(condition=RunSteps(num_steps=num_samples, blocking=True), run_cfg=run_config)\n",
+ " \n",
+ " # Retrieve process name\n",
+ " process_name = atrlif.v.process.name\n",
+ " \n",
+ " # Collect samples\n",
+ " data_v = voltage_mon.get_data()[process_name]['v']\n",
+ " data_r = refractory_mon.get_data()[process_name]['r']\n",
+ " data_theta = threshold_mon.get_data()[process_name]['theta']\n",
+ " data_s = spike_mon.get_data()[process_name]['s_out']\n",
+ " \n",
+ " # Stop the simulation\n",
+ " atrlif.stop()\n",
+ " \n",
+ " # Normalize data from fixed-point implementation (right shifting by `bias_exp`)\n",
+ " if bias_exp > 0:\n",
+ " data_v = data_v * 2**(-bias_exp)\n",
+ " data_r = data_r * 2**(-bias_exp)\n",
+ " data_theta = data_theta * 2**(-bias_exp)\n",
+ " \n",
+ " # Save voltage and spike data\n",
+ " header = \"t\"\n",
+ " for var in [\"v\", \"r\", \"theta\", \"s\"]:\n",
+ " for n in range(n_neurons):\n",
+ " header += f\"\\t{var}_{n}\"\n",
+ " times = np.arange(0, len(data_v))\n",
+ " os.makedirs(\"./results\", exist_ok=True)\n",
+ " np.savetxt(f\"./results/atrlif_v_{label}.txt\",\n",
+ " np.column_stack([times, data_v, data_r, data_theta, data_s]), \n",
+ " fmt=\"%.0f\"+n_neurons*\"\\t%.4f\\t%.4f\\t%.4f\"+n_neurons*\"\\t%.0f\", \n",
+ " header=header)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Plotting function"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def plot(data_stacked_1, data_stacked_2, framework_name_1, framework_name_2, X_cols, store_path = \"figure.svg\"):\n",
+ " '''\n",
+ " Function to plot the results from two different paradigms.\n",
+ " Based on https://github.com/jlubo/memory-consolidation-stc/blob/main/analysis/plotSimResultsComparisonMeanSEM.py.\n",
+ " \n",
+ " Parameters\n",
+ " ----------\n",
+ " data_stacked_1 : `numpy.ndarray`\n",
+ " Data array of first paradigm. First column contains the time, the other columns contain the data specified via `X_cols`.\n",
+ " data_stacked_2 : `numpy.ndarray`\n",
+ " Data array of second paradigm. First column contains the time, the other columns contain the data specified via `X_cols`.\n",
+ " framework_name_1 : `str`\n",
+ " Name of the first framework/paradigm.\n",
+ " framework_name_2 : `str`\n",
+ " Name of the second framework/paradigm.\n",
+ " X_cols : `dict` of `int`\n",
+ " Dictionary specifying the data columns to be plotted.\n",
+ " store_path : `str`, optional\n",
+ " Path to store the resulting graphics file.\n",
+ " '''\n",
+ " \n",
+ " # Figure setting\n",
+ " fig, axes = plt.subplots(nrows=2, ncols=1, sharex=True, figsize=(8, 8), height_ratios=[1.0, 0.4])\n",
+ " \n",
+ " # Plot membrane voltage, effective voltage, and threshold dynamics\n",
+ " axes[0].set_ylabel(f\"Membrane dynamics (mV)\")\n",
+ " axes[0].plot(data_stacked_1[:,0], data_stacked_1[:,X_cols[\"theta\"]], color=\"#aaeeaa\", label=f\"Threshold {framework_name_1}\", marker='None', zorder=9)\n",
+ " axes[0].plot(data_stacked_2[:,0], data_stacked_2[:,X_cols[\"theta\"]], color=\"#556655\", linestyle='dotted', label=f\"Threshold {framework_name_2}\", marker='None', zorder=10)\n",
+ " axes[0].legend()\n",
+ " axes[0].plot(data_stacked_1[:,0], (data_stacked_1[:,X_cols[\"voltage\"]]-data_stacked_1[:,X_cols[\"ref\"]]), color=\"#ff0000\", label=f\"Effective voltage {framework_name_1}\", marker='None', zorder=9)\n",
+ " axes[0].plot(data_stacked_2[:,0], (data_stacked_2[:,X_cols[\"voltage\"]]-data_stacked_2[:,X_cols[\"ref\"]]), color=\"#330000\", linestyle='dashed', label=f\"Effective voltage {framework_name_2}\", marker='None', zorder=10)\n",
+ " axes[0].legend()\n",
+ " # Set x-ticks (to integer values only)\n",
+ " axes[0].set_xticks(np.arange(min(data_stacked_1[:,0]), np.ceil(max(data_stacked_1[:,0])) + 1, step=2))\n",
+ " axes[0].set_xticks(np.arange(min(data_stacked_1[:,0]), np.ceil(max(data_stacked_1[:,0])) + 1, step=1), minor=True)\n",
+ "\n",
+ " # Plot spikes\n",
+ " axes[1].set_xlabel(\"Time (steps)\")\n",
+ " axes[1].set_ylabel(f\"Spikes\")\n",
+ " # Get logical masks\n",
+ " mask_1 = data_stacked_1[:,X_cols[\"spike\"]] > 0.5\n",
+ " mask_2 = data_stacked_2[:,X_cols[\"spike\"]] > 0.5\n",
+ " axes[1].plot(data_stacked_1[:,0][mask_1], data_stacked_1[:,X_cols[\"spike\"]][mask_1], color=\"#ff0000\", marker='o', \n",
+ " linestyle='none', label=framework_name_1, zorder=9)\n",
+ " axes[1].plot(data_stacked_2[:,0][mask_2], data_stacked_2[:,X_cols[\"spike\"]][mask_2], color=\"#330000\", marker='o', markerfacecolor='none', \n",
+ " linestyle='none', label=framework_name_2, zorder=10)\n",
+ " axes[1].tick_params(left = False, labelleft = False)\n",
+ " axes[1].legend()\n",
+ "\n",
+ " # Save figure as vector graphics\n",
+ " fig.savefig(store_path)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Running the simulations"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "PyATRLIFModelFloat initialized\n",
+ "PyATRLIFModelFixed initialized\n",
+ "PyATRLIFModelFloat initialized\n",
+ "PyATRLIFModelFixed initialized\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Simulate with default values in floating- and fixed-point implementation\n",
+ "simulation_test(Loihi2SimCfg(select_tag=\"floating_pt\"),\n",
+ " \"cpu-float\")\n",
+ "simulation_test(Loihi2SimCfg(select_tag=\"fixed_pt\"),\n",
+ " \"cpu-fixed\",\n",
+ " bias_exp=6)\n",
+ "\n",
+ "# Simulate with constant threshold dynamics in floating- and fixed-point implementation\n",
+ "simulation_test(Loihi2SimCfg(select_tag=\"floating_pt\"),\n",
+ " \"cpu-float_theta_const\",\n",
+ " delta_theta=0,\n",
+ " theta_step=0)\n",
+ "simulation_test(Loihi2SimCfg(select_tag=\"fixed_pt\"),\n",
+ " \"cpu-fixed_theta_const\",\n",
+ " delta_theta=0,\n",
+ " theta_step=0,\n",
+ " bias_exp=6)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Plotting the results from default setting\n",
+ "_The membrane voltage minus the value of the refractory state yields the effective voltage, which is compared against the threshold value to determine spiking._\n",
+ "\n",
+ "_The dynamics of the threshold hampers spiking if the last spike occurred not too long ago._"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAKpCAYAAACrX3TbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3RU1dfG8e+0THrPpIeEBEgoofeuSBGwd0TEXmlW7IiKFbGioiI2FAVsFJGigBTpvYeSPum9TLnvHwnxx2sjMJObSfZnrSyYSWbuQ0nuvueec7ZGURQFIYQQQgghXIhW7QBCCCGEEELUlxSxQgghhBDC5UgRK4QQQgghXI4UsUIIIYQQwuVIESuEEEIIIVyOFLFCCCGEEMLlSBErhBBCCCFcjhSxQgghhBDC5UgRK4QQQgghXI4UsUIIIYQQwuXo1Q5w2tq1a3nllVfYtm0bmZmZLF68mMsuu6zu84qi8PTTTzNnzhwKCwvp27cvs2fPplWrVmd9DLvdTkZGBj4+Pmg0Gif8KYQQQgghxPlQFIWSkhIiIiLQav95vLXRFLFlZWV07NiRW265hSuuuOIvn3/55Zd58803mTdvHnFxcTz55JMMGzaM/fv34+7uflbHyMjIIDo62tHRhRBCCCGEg6WmphIVFfWPn9coiqI0YJ6zotFozhiJVRSFiIgIHnjgAR588EEAioqKCA0N5ZNPPuG66647q/ctKirC39+f1NRUfH19nRVfCCGEEEKco+LiYqKjoyksLMTPz+8fv67RjMT+m+PHj5OVlcWQIUPqnvPz86Nnz55s3LjxH4vYqqoqqqqq6h6XlJQA4OvrK0WsEEIIIUQj9l9TP11iYVdWVhYAoaGhZzwfGhpa97m/M2PGDPz8/Oo+ZCqBEEIIIUTT4BJF7LmaOnUqRUVFdR+pqalqRxJCCCGEEA7gEkVsWFgYANnZ2Wc8n52dXfe5v2M0GuumDsgUAiGEEEKIpsMliti4uDjCwsJYtWpV3XPFxcVs3ryZ3r17q5hMCCGEEEKoodEs7CotLeXo0aN1j48fP87OnTsJDAwkJiaGSZMm8dxzz9GqVau6LbYiIiLO2EtWCCGEEEI0D42miN26dSuDBw+uezxlyhQAxo0bxyeffMLDDz9MWVkZd9xxB4WFhfTr14/ly5ef9R6xQgghhBCi6WiU+8Q6S3FxMX5+fhQVFcn8WCGEEEKIRuhs6zWXmBMrhBBCCCHE/5IiVgghhBBCuBwpYoUQQgghhMuRIlYIIYQQQrgcKWKFEEIIIYTLkSJWCCGEEEK4HClihRDChVkUC81op0QhhKjTaJodCCGEqJ8SWwkrilfgo/Oht1dvfHQ+akcSQjQAi2LBoDGoHUN1MhIrhBAu6mT1SezYKbIVsbJ4JanVqWpHEkI42cHKg3xX+B07yndgU2xqx1GVjMQKIYSLSq9OB8BWaOPXBb9ScEUBnSM7k+yRjE6jUzmdEMLRFEVh0+FN7Fm3h/z++eTF5tHbqzdeOi+1o6lCRmKFEMIFldhKKLYXo0FDypIUclJy2P7ddo5WHWVNyRrKbGVqRxRCOFiRrYjda3eTujuVTV9uIt+azy8lv9Rd0DY3UsQKIYQLOlxwmOWvLefo8qPcccMddE3uyl1j78KgMVBgK+CXkl/ItGSqHVMI4UBpljR6XNODoLAgJt82mSB9EBbFwoayDews34ldsasdsUHJdAIhhHBBG3dupCSnhOyj2QRfH8wj9z4CQJwtjk1lm9i7Zy9FEUV0CetCO/d2aDUyZiGEq0uvTkdn0PHoY4/SwtgCu2JnT8UeVv2xijz/PPJa5tHbuzeeWk+1ozYIKWKFEMLFlNvLCWwfSC9DL3r69Dzjc146L+IK4/jwyw/Ruemw32MnNyyXXl698NB6qJRYCHG+/ncKUbghHACtRktAQQDbvt2G1WaFu6CkRQk9PHsQ4RahcmLnk0tzIYRwMenV6RiMBjp36UzfLn3/8nlvT29iI2NJaJmAX6AfudZcfin+BbPFrEJaIYQjpJSksPLtlRxfdRyt/c/yLTgwmO4du9M+sT3xLeKxKBZ+L/ud3eW7m/z0AhmJFUIIF5NuqVnEEWmI/NvPm4JNPPvQs1isFmxuNjaWbaTQUsiKrBV0Ce5CknsSGo2mISMLIc7Tpt2bKEgrIKUqBd2Vf+4+4unhycTbJmKxWNAb9Oyq2MWRiiNsPr6Z3Ohcenn3arLTC2QkVgghXEilvZJ1q9ZxfOtxAiwB//h1BoMBTw9PfHQ+XOBzARm/ZfDzrJ9Zs28N60vXU2WvasDUQojzUW4vxzvem+5Xd+fKkVf+5SJUo9Hg5uaGVqOls2dnyn4vY+XbK9n420Z+Kf6FLEuWSsmdS4pYIYRwISfLTrJ/5X62fruVkvySs3uRDdL3pVNVWkVlUSVZ1ix+Kf6FPGuec8MKIRwiozoDN083uvboypDeQ/71axVFoSyvDMWu4O/lT7VSzbrSdeyp2NPkphfIdAIhhHAhqRWpJA5KpDq9mriYuLN6jV6v57lHnmPTtk107N6RjWUbKbWXsqZkDckeybQytpLpBUI0YmmWNAAi3f5+CtH/0mg03HvzvQzuM5jE1onsqtjFsapj7C/bT541j55ePZvMIk8pYoUQwkVYFAuFhkLaXtiWYb7D6lV4Gt2MDOw9EIAhvkPYVLiJb+d9S+6gXHITcunu1V16sQvRCFXZq9i0fhMGdwODegw6q9doNBratWkHQBfPLvgr/rw882Ui2kVQNKiIXj69CDWEOjF1w5DpBEII4SIyLZkoKPhoffDV+Z7z+xg0BtJ+SyPzQCYbv9jIqfJTrCxeSaG10HFhhRAOkVqZyt4Ve9n81Way07LP7T12p5Kfls/R9UcpLi1mbela9lXsQ1EUB6dtWDISK4QQLmJ36m7ySvJIbJV43u916bBLyc7NplvPbhQZiyi1l7KqZBWdPTsT5xYn0wuEaCROlZ+iZY+WlJ4oJSkh6ZzeY0CvAdjtdvz8/LAH2TlefZz9lfvJtebS06sn7lp3B6duGFLEinOWa83lRNUJEowJ+Ov91Y4jRJNmVaxs+G0DRzcfRXuBlg7Xdjiv9/P08GTSbZMAqLZX80f5H+w7vo9V2lV0jO1IF88u6DVyihBCTRbFQoGugA7DOzDUdyg6ne6/X/Q3NBoNg/sOrnscog9hxaEV7D+8n8ILCunt0xuTweSo2A1GfkKJc7b6xGoIhBPVJ0h0TyTRmIheK/+lhHCGbEs26MBgNNC9XXeHvreb1o1kJZl5X8yjpKSEqnFVFLQpoLd37/OatiCEOD9Zlizs2PHWeuOrddz3YpgmjB1f7SA3LxeNRkP1BdW0c2/ncntIy5xYcU5SslL49pVv+fn1n7HZbKw9sJYJz01g18ldakcToklKt6TT+ZLOTH5uMslJyQ5/f61WS3xUPEEBQYRHh1NsL2Zl8UpOVZ9y+LGEEGfnQPYBCjMKidBHOLS4NLoZuWb0NURHRnPBwAsA2Fe5j3Wl61xqD2kZNhPnZNfJXWh1Wnx9fOnj04cZS2eQm57Llyu/hOuhnUc7uRUphIPYFTsZlgwAYj1jz/mW4r/x9vLm4XsepqikCA8fDzaVbSLHmsNa81raBralo0dHdBrHH1cI8fdsio3f1//OgV8PUDWgio5jOjr0/Qf1HsSAngPQarWcqDrB9vLt7D6wm4KEAvr49CHEEOLQ4zmDjMSKcxLQNoBLnrqEa264hmhjNE/f+zTJvZLpeHFHDlcdZkXxCunTLoSDZFuyKS0txagxEqQLctpxtFotAX4BuGvdGeA9AN0xHUtfWsrqTatZU7KGMluZ044thDhTtiUbq8WKzqCjU6tOTjmGVltTBsYaYzGdMrH2o7WsmLOC1YWrOVh5sNHvXiBFrKi3ans1udZcDEYDHcJrFpeEBoTyxPgnGBw8GA+NB2X2MmZ9OYs3Fr1BhbVC5cRCuLYdx3fww3M/sHHexgY7plaj5cS2E1irrRSlFVFgK+CXkl/IqM5osAxCNGfplnQ6je7EpOmT6NG5h9OPp7PqMBqNREZEotVr2VOxp9G3qJb7vaLeMqozUFDw1frirfM+43PhhnCG+Q3jlyO/cHTDUY5yFJ+WPoxoN4JwQ7hKiYVwXYqisPfoXlDA2+DdoIsuJt0+iZXrVtKrdy+2VG4h35bP72W/08raivYe7WXKkBBO8r9TiOK843AzuDn9mL279iY2KpaggCDSlDR2lO8gvSKdn6t/po9fH4L1wU7PUF/yE0jU29zP5lJYVsjIESPB76+fN2gMjGg1Am6G7ae249PCh/Wl64lxi6GTRyeMWmODZxbCVeXZ8ojrE0dEUgQDjAMa9NharZahA4cCMNgwmF3lu1iwYAFp8Wmkd0ynk0cnIgyOXXAihKjZwrK8qhxPo2eDFo/hoTWDTS1pSYA2gJc/fpmigiKKri+iR2gPWhtbN6rvd5lOIOqlsrqSI7uPkHkg81/n5mk0Gi7ufTGPXvMorY2tAThaeJRH3niETSmbGv08GyEai7Tqmp7prUJbERMZo1oOrUZL1cEqjm06xuavNpNbkMuGsg38XvY7pbZS1XIJ0RTtz97P99O+Z9O8TaDS6dJSZCF9Xzp5J/MoySuhwFqgTpB/ISOxol4KKGDw3YPJO5JHp7hO//n1eo2ejp4diXaL5o0f3iDjYAYfFnyI9UErXb274qH1cH5oIVyUoiikW9IBiDJEqZwGunXqxmXDL0On19EutB0HKw+SackkqzqLth5taePeRnYwEOI8KYrCjv07sNvsUP3n4quGZgo28dLjL3Hw6EHi2sUR6RbZqEZhQYpYUU+Z1kz8w/3p0qJLvbb5CdQHMvGyibxZ/iZhvcPItGXyc/HPdPToSKxbbKP7xhCiMSi0FbJi7gq8fL0YcOkAcN7GBGdFr9Nzw+U31D2OcYthbfpafpz3I9kjsjnZ6iRdPLsQaghVMaUQrq3AVkBU9ygubnExfdz6qJolPDS8bopBYyRFrDhriqLUrUyOcIuo9+sD/QJ55u5nKLIVsaVsCwW2Ar7/43ss2RbuGH0Hfsa/mWArRDO237yfzAOZoAHjVY1vLrmvzpeTq09SkFbAgZUHCGkZwtrStUQbouno2VHutAhxDk5PIWoT2YbW3q1VTtO4SRErztq+1H1sXr+ZmPYxmDqce49lP50fF/hcwJ6iPfzw3Q9UlVZhNVq5+qKriTfGy6isELUKjYX0v6U/Pjk++Pv6qx3nb427ehxGNyMXDLiAYvdijlQd4VTVKdKr0ung1YEEYwJajSy/EOJsnDGFyE39KUSNnRSx4qz9uuVXDv12CFu+DV3y+c1702q0JPslM/7a8fzw6w/E9YpjR8UOTlWfortXd3x0Pg5KLYRrKrYVU64tJ7x1OJd0v0TtOP/I28ub2264re5xrFssn6z4hAPbDpB3WR4nWpygi2eXRrk9jxCNTbG9mF+//RWDm4G+w/tC42+apSq5PBZnzbOFJzGdYujVrZdD3k+j0XBBjwuY+eBMuvl0Q4+eXGsur3z1CquPrMau2B1yHCFcUXp1zWhMqD4UN63z94h0FG+NN4fWHqIgrYDi9GKKbEWsKVnDlrItjXrTdCEag2NFxzix7QSH1x9GsckuPv9FRmLFWSmzleET70PP+J4M8xvm0PfWarUkuCcQbghn/u/zObj2IEc2HqHs8TL6h/THX+/v0OMJ4Qo27t5IljmLhO4J4EI3JvQ6PTOmzmDFbysYPWQ0+6r2cbz6OIcLD5NenU6yZzJxbnEybUiIv2HGTO8beqNP1xMZFql2nEbPZUZibTYbTz75JHFxcXh4eBAfH8/06dNlv9EGcrpzSLA+2GnNCrx0Xlzd6WqSOyXTdlBbKt0rWVmykr0Ve7EpNqccU4jGqNxezs7fd7Lzp50c2XZE7Tj15u/nzzWXXIOH3oNuXt0Y6DWQDXM38MsHv7A2bS2rS1Y3yj0nhVBTma2MEk0Jke0iuf3q29WO4xJcZiT2pZdeYvbs2cybN4927dqxdetWxo8fj5+fHxMmTFA7XpO3cc9GtOFaIoLrvytBffj5+vHE3U9Qbi1nZ+VO0i3pbMvaxo/bfmT8yPGEeYQ59fhCNAbp1emEJ4ajqdbQp4u6W+w4QllWGYVZhWh1Wtz0buTb8llZspIEYwLtPdpj0BjUjiiE6k4v6ArRh0hny7PkMkXshg0buPTSSxk5ciQAsbGxzJ8/nz/++EPlZE1fQWkBSz5egqIo9H+uP7g7/5ieek/6ePchtSqV1z5+jYzDGRTkF3DDjTfQzqOdnPREk5ZmSSOhdwJXXXAVUe6uv0I5LiaO1595ndSMVNpGt2VX+S5SLalsT91OWmhaTUMUQ7RMMRDN2rYj2ziVfoqELq41hUhNLjOdoE+fPqxatYrDhw8DsGvXLtavX8+IESP+8TVVVVUUFxef8SHq73DuYfxC/fA3+dMiuEWDHjvaGM1VA6/CJ8CHNgPbcKTqCEuLlnK48rBMMRBNUqW9klxrLgCRbk1nTpwp2ETX5Joufb28exFfFM+KWStYNW8VG4o2sLZ0LcU2+RktmqdKeyU7Nu5g2+JtbF29Ve04LsNlRmIfffRRiouLSUxMRKfTYbPZeP755xkzZsw/vmbGjBlMmzatAVM2TUqwwkUTL6KlpqUqx+/XrR+9Ovcix57DzvKdlNpLWbB8AUqlwhXDriDJP0n2oRRNxomyE2QdzqJ1q9Z4aj3VjuM0+an5aNHip/fDoDdgtppZUbyCNu5tSHJPQq9xmdOTEOct3ZJOQFQAZeYy+nbpq3Ycl+EyPyUWLFjAF198wZdffkm7du3YuXMnkyZNIiIignHjxv3ta6ZOncqUKVPqHhcXFxMdHd1QkZsEu2In05IJQKx3rGo59Do94bpwQn1DOVBwgO9Wf4elyoJXuBcnO52knXs7Ytxi5HakcHmb9m5i3SfrOBJ5hGFPOXYnkMZkSP8htIlvg5eHF0ZfIzsqdpBalsr6E+s51fIUnT06n1NnQCFcUXp1Ogm9E7j8gstJdE9UO47LcJki9qGHHuLRRx/luuuuA6BDhw6cPHmSGTNm/GMRazQaMRplcvT5SCtLw2K34K5zJ1AXqHYctBotbQPacv/4+1m1ZRXxHeIps5fxR/kfbMnYQo+wHkS7y9w64Zqq7dXklOZg9DbSoU0HteM4XXTEn4MKfb36Mmf5HNb8soY2A9tQPqKc8OpwOnt0xkvnpWJKIZyr2l6N2WoGINLQdKYQNQSXKWLLy8vRas+8ZazT6bDbZUN8Z5q/eD77du3jwtEXohnYOApDjUZDr8696NW5F1bFypHKIxyoOMDSuUtZal3K0LFDGZwwGJPeJMWscCmZlkxiu8XSvlt7BnkMUjtOg9JoNBhsBjQaDcnxyWjQkGnJxGwxk+ieSCv3VrKgUzRJ6VXp5JzIITY2VrpV1pPLFLGjR4/m+eefJyYmhnbt2rFjxw5mzpzJLbfcona0JktRFI4dPUZlSSXh3uFqx/lbeo2eJI8kPAo8+KHsB6w2KzY/G2tL1xKiD6G9R3tpdylcxuktdqLdo/Fw91A5TcMbf+14hg4cSkRoBCX2EraXb+fA0QPk6HM4En2EVsZWJBgTXKqDmRD/ZXvKdta8t4aA4ACGTR/2lwE78c9cpoh96623ePLJJ7nnnnswm81ERERw55138tRTT6kdrckqshVxwX0XkJeSR7/2/dSO869iI2KZ/fxsjqYexeZv41jVMXKsOcz+cTZtEtpwUdJFBOgD1I4pxD+yKlZOlZxC565r1rcUT3cp8tX50tvYmwULF5Cbk0vvMb2p7lDNocpDtHJvRStjK9lLU7g8q2IlNScVg7uBhBYJUsDWk8sUsT4+PsyaNYtZs2apHaXZyLBkoNPr6NSuE57Gxr9K2sPdgw6tauYRtnZvzZqja9izfA97NHsoe7CMxLBE2nu0l9s1olHKrMpk6WtL8fT1ZMDdAyBE7UTqs1gsJMYlsrtyN6M6jyLFnkKxvZi9JXs5XHmYBGMCrd1b465tgM2rhXCCLEsWkR0jiU+OZ4B+gNpxXI7LFLGi4Z2+tRlhcL0Vwp5aT3qbepPSJ4Xcyly8g7xJs6SRZkkjkkg6+naUxSKiUdmVuovK0koUi0JQQJDacRoFby9vJtw6gfKKcjw9PElQEki3pDNr9iyqLFUUjCrgaOhRWhpb0sa9DR7a5jcFQ7i20+fZGPcY/Dz9VE7jeqSIFX8rNTeV7z76jsh2kYwaMUrtOOck0D+Q+8fdj91up0QpYW/FXk4Un2D2a7OJ7hDNpZdeSke/jjKKI1RnV+xYQ6yMfnw0LUtaotfLj+b/5elRcydIo9HgUeZB+sF07Iodf4M/NmwcqTrCsapjxLrFkuieKBeowiXYFTtpFWmga1qNTRqS/KQUf+u3Hb+Rk5KD1qbFY5Rrj25otVr88KOvd1/ytudRVVqFOcXMSftJ0ovSSTAmkOieKItFhGrMVjMWxYKfjx99ovqoHadRCwoI4o3pb7D34F4GtxyM2Wpmf+V+tmzcQoZfBimtUog1xpLknoS3zlvtuEL8I7PVzM/v/IzBzUDPm3qC1LH1JkWs+FsBiQF0HNWRNsFt1I7iUJcMuISWppYU2YuoMlSRZ8vjYMVBVqxfwUU9L6Ktb1vZxkc0uPTqmluKkYZI2RbuLJiCTVzQ7wIAQg2heFV78fFPH1NVVcWA2wZAApyoPkGMWwxJ7kn46nxVTizEXx0wH6AwoxCNVkOAnyw8PhdSxIq/sCgWKrwraN2vNcN8m17HoPaJ7YGaLcQyLZn8sPkH/lj4BwfWHWDU5FG082xHvDEenUanclLRHCiKwopfVpCXmUfUBVHQtK4bG4SiKAzpN4SjJ45yXafrOFB5gCxrFgdzDnLS5yTRxmiS3JPw1/urHVUIoOb/bIlXCSOnjiTUHIqPtyw4PhdSxIq/yLJkoaDgrfVu0iv5NRoNEW4RdPHuwo6AHbRIboFVY2VXxS4OVx4mySOJOLc4tBrZ8kQ4T641l2PbjlFsLsbS2aJ2HJfk4+3DuGvGYbfb0Wq19Df0J686j8deewyb1kavG3qRFppGhCGCJPckAvXqdx8UzVueLY8qpQo/fz+GthiqdhyXJUWs+IsVv6+g3LOcfkmNe29YR+nRuQed23fGareSRRb7K/eTlZXFT9/8RNdhXbkw+UJi3GLQa+TbRTheWnUaXa/sSsmBEromd1U7jkv73z02y3PLqSypRKPV0Cq4FWbMZFgyyLBkEKYPI8kjSRqhCNWkVacBEG4Il4GS8yBnZXGGams1q79fjaXCQvfJ3aGZTCUzGAwYMBBHHDFuMbz49Yvkp+azb8M+/BP82V2xm1i3WOKN8U16dFo0LEVRyLBmENwimEvaXoKXm6yqd5ToiGjenfEuJ9NO0ja4LcW2Yg5WHuT7hd/jF+ZHRucMQt1DaevelhB9iMxFFg1GURTW/bGOtKNphPcLh0S1E7kuKWLFGdJL04nuEE1+aj7dW3VXO44qdBod919/Pwv9FpLQPYFSbSml9lL25u1l0fpF9Ojbg85hneUKWpy3Qlsh5fZydOgINYSqHafJ8fL0om3rtkBNB7CwwjCO/H4ENBDcIpgcUw6/lf5GkC6Ith5tCdWHSjErnK7QVsjhrYfJPpKNOcosRex5kCJWnKHIrYiuV3Ql1i0Wna75Lmzy9fFl/LXjgZqr5mxrNl+t/YqDvx7EnGKm4p4KPDQexBvjiTPGyV6z4pzsM+9j/4b9dOnUBX2A/Dh2NlOwiZuuvglzjpnrWl3HwcqDHK86zuGUw2SHZxPiEUJb97aEG8KlmBVOk25JJ3FQIqEhofTpIlvqnQ/5qSnqKIpChiUDcM0uXc6i0WgIM4QxuNVgCtoU0KprK9w0blQoFewu280Pa3+gT7c+JPklEaQLkpOfOGubd2xm3y/7qDheweiHRqsdp8lzN7ozasifzVu6eHYhxhbD5LmTQQ8X3HUBBcEF+On8iDfGE+MWI1vuCYdLr07HFG9iVIdRhBnD1I7j0qSIFXXSitLIKcjB299bbm3+jY5tO9KxbUcURcGOnbTqNFZsWcG2Rds4+NtBRjw4ggB9QN3JTxaCiX9TbCvGEGQgPDGcgZ0Hqh2n2SrOL8bXyxej0UiX8C6kWFIoshWxtWQru3S7iHaLJs4YJxeowiFKbCUU24vRoCHcEK52HJcnZ1lRZ8lvS1i9dDUd+3XkyrFXqh2n0dJoNOjQ0cLYgo7eHdlt2k1cchw6jY5CWyHbyrfxy75f6N66O608WslCMPG30qvTCW8TTud2nenv01/tOM1WyxYteWP6G+QX5GPyNpFkTyKlMoXXXngNnzAfOo3qxAm/E/hofYgzxtHCrYVMHxLn7HjZcQ6tPUTHjh1xC5AukedLilhRJzM/EzQQHxWvdhSX0aNTD7old8NqtYIejlcfZ+uJrax6fxWbgjYxbPIwItwjSDAmyDw7cYZ0S22XLumZrjq9To8p2ASAm9YNTaaGopwiqkurSfBLIIssSuwl7CrbxZ6KPUQYImhpbCkLwUS9bd6zmd1Ld5O6KZVRL4yS/z/nSYpYAUCFvYL2l7Wn1ZBWDAtqel26nEmr1eLmVnNF3ca9DUUVRXh5eREeFY5OryPbmk22NRt7kZ3k0GRaGlti1BpVTi3UVGYr4/CRwwREBhDhJ/PPG5s28W14+YmXycjOoE9AHyyKhdTqVN559x2sGivJw5NJD03HQ+NBnDGOWLdYvHSyPZr4d+X2cqoMVZgSTHRv2V0KWAeQIlYA1C3oCvcLJ8BTejifjx6de9CpfSfKyssweBtIqUrhYOFBvnv1O9aErWHAzQOID4gnwZhAoC5QfpA1Q8eKj/HbR7+h1WgZ9vww3P3l9nRjExsdS2x0LAAGjQH/Cn/SDqWhKAqXXXkZxZpiKpQK9pXvY3/lfkL1ocQZ44gwREjLavG30qvTCW0VSrukdgzyHqR2nCZBilgBQHplza1N2ZXAMdwMbrj51YzOJnsmU3W0CuygsWrQe+o5VX2KU9Wn8LZ7k+idSLRbtCwEa0YOZR/C098TL4MXgf7SAtUVBPoHMvOZmew7tI/B0YOxKTbSLenM+2oeZrOZdkPakd0iGzeNGy3cWhBnjMNP56d2bNGI1E0hMkTK4IWDyFlTUFpRyofTP8QUb2LQuEFqx2mSuid3570X3yO/MB8/Xz+OVh3lZOVJvnntG/zC/Oh+WXfaBbcj3hiPt85b7bjCiSrtlRAKIx4cwUC97ErgSiLDIokMq5nDrNPoiNBGkLIjhbLyMoYMGYJWo6VSqeRw5WGOVB0hSBdEnDFOLlIFVfYqjqYdxTvYm0iDzIN3FPmuEqzdu5bKkkoKUgsIcg9SO06T5efrh59vzchMD30P3NPd+SbvGywVFrTuWg5XHeZw1WGCdcHEGGOINETKKugm6PTUnUB9IKG+spWdK9Pr9bz0+Ets2LqB0cmjQQPZ1mwW/rKQ/bv2kzg4kbw2eews31m3VZdMIWqe0qrS+O3D37Bb7PR6qBde0TKH2hGkiBUEJgYy+O7BhFhC0GqljWpDSW6dzGtPv0ZGVgYxATEcrTxKljWLhe8vxGA00GF4B+LD44lyiyLKECWLwZqI46XHUTQKUW5RakcRDmAKNnHZ8MvqHocbwjm57SS5abn4l/jjrfWm1F5KSlUKx6uP46v1rduqS76nm49DOYdqzq8aiAqX731HkSK2mbMrdrJt2QS3CGagt9zabGjREdFER0QDNSe/tLw0vjn6DWig8yWdMVvNmK1mNpRsIMI7glivWCloXVi1vZrl3ywnLzWPiKsjoJPaiYQzTL1vKr9u/JVhfYfh6eFJrjWXVTtX8evyX2nVrxXFnYrZU7GHSEMkccY4THqTjM42YRbFQoVPBSMfHUkXaxf0eim9HEX+Jpu5PGse1Uo1bho3gvQylUBtkYGRvPzEyxxOOUyf6D6kWdJqOoMtX8GyvcvoPLozcd3iCNGHEO0WTaQhUgpaF5JelU720WwqSyoJ9g5WO45wksCAQK64+Iq6xyGGENK2pZGflo8+U49/V38KbYWkWlJJtaTiqfUk2hBNhFuEdAZrgjItmdix46P3IT5Q9mF3JClim7nvV39Pekk6vXv0RusvUwnUptFoztjaJ1GXSBtjG5ZlL8NaZSU0OBQFBbPVzMn8kxRlFtEusR2xHrFS0LqATFsmwx8cjv64ntYtW6sdRzSg22+4ndYtW9M1uSuRvpEUWAvYlraNBZ8sIL5XPOU9yzlUdQijxkiEIYJIt0hMepNs19UEpFamAhDlFiUXKA4mRWwzZrfb2fjbRkrySugW0w1i1E4k/o5Go+GVx1/h6ImjJMQmUK6Uk2ZJ48e1P7Jl6RaOtT1G35v6sp3tMkLbiFkVK1mWLAxGAxd1v0jmnzczfr5+XDL0krrHAfoAsrZlUZhZSNWxKqL7RZNpyaRKqWJ/7n6O+x5Hj54wQxgRhgjCDeG4aaVNqauxKTZWLl9J2r40/C72o0PPDmpHalKkiG3Gim3FtBnUhswDmfTvIL3bGzOtVls3cueNN4m6RA57HOaQzyG6deiGv67m9mRmRSY/L/qZqPZRtE1oS4x7jBS0jUSWJQsbNry0XrJ/qADgsuGXERwYjCnYRBfvLtgVO6dKTvHoS4/iE+TDoLsGkeaZRpolDQ0aQvQhRBoiiXCLwFPrqXZ8cRayLdmk70+nKKsIN7tchDiaFLHNWJYti7jucfTu3RtfD1+144h6umToJYy8cCR2ux2DwUCprZQVW1dwdMNR0velE/xIMDnlOWxnOya9iSi3KCloVbTlyBbW/7KeXt17oekrtxQFeHt5M3zw8LrHWo2W0sxSNIoGL40XI0JHkG5JJ6M6g/279pNpzCSrZRY79DsI0AXUTTvw1frKbepGKt2SzoDbBmA7aqNbcje14zQ5UsQ2Y+nVtV263KRLl6vS6XTodDVz5rx13nQO70xW7yz8g/xJ9komtTqVQlsh3875Fl+TL4kDE4nxj5GCtoHZFTvbt28n80Am6T7p0FftRKKxat+mPR++9iE5eTkE6gMJ1AfS3r093y//nty8XIbdNAzftr4U2AoosBWwr3IfXlovIg2RRLpFysKwRsSu2MmwZGD0MjKw70C8DdLIxtGkiG2mcopz2L1zN6GtQ4nwkyK2qYiLieOem++pe5zonsihtEN8c+gbzEfNJA1OItuaTbY1m81Vm4nwjCDKGEWoPlQ6hTmR2Womtkcs7h7uDGs/TO04opHz8vTCy/PPzfCrLdV0atuJ3Qd2M6bbGDDUNM1YtWEVe3fspWXPlpS1LeNw1eG6hWERhghCDaGyMExFudbcut1/gvWyG4kzSBHbTK3atoqNX20ktEUoNzx2g9pxhBPFhcbx4F0PkmnO5MKwC0mtTiXNksbSb5ZSlFVEtyu6EdIyBC+tF6H6UEwGEya9SUZpHSitOg1fky+dRnSig5cs7BD1Y3QzcseNd6AoSt0oa0tjS77e+zWZhzLp3KozMW4xZFoyqbRVstu8m+Mhx9GhI8wQRqQhUhaGqeBA7gE2LtpI506d0faVhZzOIEVsM1WsFOMV5EXbdm3VjiKczM3gRo/OPeoeJ3kk0crQii9SvqC8vJxgr2A0aCizl7H95HZyUnIIax1GTFgMJr2JUEMowfpgGdE5R4qi1LWalS5d4nz8/2kCY68cS5v4NvTu2ptwr3Dsip2NBzfyxqw3CGkRwsC7BpJuSSfdko4GDcH64JqFYYYIvHTS9tSZFEVhy84tpO1OQ1+ilylETiJFbDNkVawEdQ5iRKcRXOB1gdpxhAr0ej2zZ8xm+57t9G7dG7vGTo41h6/3fc3OlTuJ6RSDz3U+FNgKOFR1CGuFlQifmtuTofpQ/HX+Mu/uLOVac9m1ZhfhLcMJai8NRYTjREVEERXx54WRVqOlzFyGTqsjMSyRi3wvqlkYZsngjzV/4B/uT3bLbHbqduKj9SFEH4LJYCJEH4K71l3FP0nTk2/LJyAugKRBSQxsId0wnUWK2GYo25KNHTteOi+C3OSk2lx5uHvQt3vN8IAWLeGGcLq16EZpUil9u/SlpWdLsq3ZnCw8yeLpiwmICGDwXYPRGXS4adzqRmlD9aEyqvMvdqXtYs/yPezT7eOG125A7yE/doXzDB04lL7d+1JRWUGAPoAAfQDRlmg+WvYRiqIw9omxVHpXUmIvobCskGP6Y2g0GilqHSy9Oh3fUF9GjB5BL+9easdpsuSnaTN0JP8IiptCpCFSRtPEGfr16Ee/Hv3qHrcwtkB3TAcKGBUjUZ5R5FhyqFaqWb1mNSgQnRxNcEAwofpQQg2hmPQmmXtXS1EUsqqziO4YTZA2CE8P2dtTON//XxhmsVq4sN+F5BfmMzp6NNX2anKsOXz0yUccP3ac5JHJRHWIoqS6hJTqFIC6ojbEEEKIPgQPrYdafxyXoygK6Zaa3X8i3SJVTtO0SRHbzNhsNj56+SMM7gba3dcO5Jwq/kPX5K588PIH5Bfl09K7JXbFTp41j+XrllNSVIJ/mD8efh6kVKdwsPAgdpudcP/wulHaIH1Qs51PW2ArwGgy0vf6vlzqf6nacUQzFRwYzB033lH32E3rRqRbJDmncigrLGNg0EBCvULJseZw8NRB/lj1B+Gtw4ntFitF7Tkothezb9s+/EP9CU0KVTtOkyZFbDOzP2M/lkoLdrudVqZWascRLsLfzx9/P3+gZt5dgDaAyy+6nL2H9nJzp5spogiz1czK9Sv546c/iO8VT5fLunCQg+jQEawPritq/XR+zeYOwOnRmHBDeLMt5EXj9cqTr3A45TBt4ttgdDMS6RZJWloaabvT8LX50qpvK3KsORTaCtm3Yx8+wT74h/uj0WqkqP0XKSUpbF24FbvVztCnhhITKT3dnUWK2GZGCVK45KlL8Mz3xE0vt3zFudHr9Iy6aBSjLhoFgBdeRLhFsK10GwBJYUm0cGtBtiWbsuoyvp37LaZ4E636tMLd4E6grmYT9yB9EAG6gCa5nZeiKOxN3YvN00akSW4pisbH3ehOclLyGc8lJyVzzSXXEBkWSSfPTgCUVpZy+ze3Y7PauOaRa1ACFErsJeQV5XHU7ShanRZvrTcmvUmKWuB40XHCWodhL7ATHRGtdpwmTYrYZibDkoHBaKBrQle1o4gm6Nbrb+WqkVeh0+nw9vJGURQ279/MokOLKMksoW3/tlQr1WRZs9ixdwdavZag6CD8PfxruhPVFrf+On+XH7kssZewbtE68k7kEXtbLDHdZDRGNH4xkTF/GTmsqqgiOTEZc66ZK+OuxKJYyLXm8sWSL9ixeQfth7WnVd9WlFaX1k0/aK5FbamtFJuvjX439WOkz8hmc9dJLVLENiMlthJK7CVo0BBmCFM7jmii/Hz96n6v0WhoHdGacVePA2BEwAgKbYXkW/NZ8/MacjNz6TO2D/p2ekqrSzlSdoTKkkp8Tb4EGmpGak8Xtt5ab5c6IZwoP4Gt2oaiKCS2TFQ7jhDnLCggiKn3T61rtuCmcSPCLYLSrFKs1Vb6hfYjwSuBHGsOKeYUVn61ElOCibYXtq0raj21ngToAmo+9AFN9g7M6SlEIfoQPPTNo3BXk0sVsenp6TzyyCMsW7aM8vJyEhISmDt3Lt26dVM7mktYtGoR2/dtp1u/bhi6G9SOI5qJwIBARg4Z+edjfSD+Wn8SoxM5VH2I69tdj+KtkG/NZ+22taz+ZjVhbcLoP74/BbYCACyVFjw9PAnU1Ra2taO2jfkkmK1kM+T+IbSqbkVwoLScFK7v/19EPj3ladIy0wgODMbTzZMItwgKMgvIOZ6DF160vrg1OdYcCmwF7N24F4O7gdBWobh51kxla4qF7eGcw1j0FiIDZApRQ3CZIragoIC+ffsyePBgli1bRkhICEeOHCEgIEDtaC5j27ZtZJ3IgvZqJxHNnVarZcKtE854LswQxlH7UYxGI11adKGnV0/yrfnkVufy8YyPcfN0Y/Bdg8n2y657jZfW64z5tY1lGkKZrYxCWyEASSFJ6oYRwkm0Wu1fph50SOzAHWPuwNPDk46eHQGotldzx893UF5ezphJY3DzdqPUXkpWVhaHzYcJig7Cw69m1NKVC9sKewXrf17Pye0n8b7Km4QLEtSO1OS5TBH70ksvER0dzdy5c+uei4uLUzGRa6myV9Hh0g4E7Q9icJfBascR4m9dMvQSRg0ZRXV1Ne5u7sS4xZBRkoGt2oYNG71NvSlUaqYjbPp5E1mHs2jVrxUxHWtOpBo0+OvOnF/ro/Vp8GkIpypPodgVTG4mlzkBC+EIQQFBDBkw5IznFKtCv+79OJF6gpGtRqLX67EoFr5Y+wUbl26kbbe29LymJ6X2Usrt5aQcTMEvzA8PX9cqbDMsGZTklmC32YkNj1U7TrPgMkXsDz/8wLBhw7j66qv57bffiIyM5J577uH222//x9dUVVVRVVVV97i4uLghojZKGZYM/MP9iY2KJcpX+reLxkur1eLu/me3oIjQCOa+PpfM7EziPePrnt+Uuon81HxMdhPhhnDyrfkUFRexbtE6glsE02ZgGzQaDQaNAV+tL346P/x0fvjqan7vzJPg2q1r+f3H3xkwcACDRg9y2nGEcAVGNyO33XDbGc8ZNAbCfMOIi46jT+s+DPUbikWxkFaUxiMfPwLADdNuwGK0UG4vJzc/F51eh9G75vvWQ+NRV9Ce/lXtLmPp1ekMvnMwYUVhtI1uq2qW5sJlitiUlBRmz57NlClTeOyxx9iyZQsTJkzAzc2NcePG/e1rZsyYwbRp0xo4aeOUYckAIMIQoXISIerP08OT+Nj4M567Z9w9HE45TGJCIsHewSiKwvqU9fx44EeshVb6XtiXAlsBFsXChjUbUOwK0cnReAXWdDIyaoxnFLWnfzVozm++eKW9ksP7DlNZUonR1vhGi4RoLIYPHs7wwcPrHhs0BvTleqIjorHZbFwWdhkWxUKhtZAPvv2AXVt30WNUD1r0a0GFUkFZZRknqk/g5lEzx/Z/C1t/nT++Ol+8tF4Nciem2l6N2WoGoFN0J/Q6lymvXJpGURRF7RBnw83NjW7durFhw4a65yZMmMCWLVvYuHHj377m70Zio6OjKSoqwtfX1+mZG4uKqgpeXPQiYUlhXNvuWgINgWpHEsIpzLlmtuzcgtHNyJABQ7ArdoptxTzy5CMU5Bdw5T1X4hPrQ5m9jPy0fE5sPUFIXAjRHf/cy9FD43FGUeun88NH54Nec3YnpWNVx9hSvIWK4xVcHHcxoSHSsUeI+rLarGcUgjPemsGOvTuYev9U2rdrT6G1kD0pe3hv5nuExIQw6J5BdV9rt9nR6rQAaNHio/PBV+tb86vOFx+tDz46H4fOnz9eeZwt5Vvw0/kxzG+Yw963uSouLsbPz+8/6zWXuVQIDw+nbdszh+eTkpJYuHDhP77GaDRiNMpIyPp96znw6wFO7jjJnS/eqXYcIZzGFGw6YycErUaLn86PEQNHcDLtJCMTRuLt5Y1VsbJoyyJWbVqFvlxPt67dKLYVU6FUsH7Retw83Ejok1A3Jw9qFpH9/ykJPloftBrtGRnSq9PR6XX0Tu5NqLsUsEKci/8/kjn1/qmUV5Sj1+sxaAyEGELQ5td870X6RHKZ/2UUWgspsBXw7qx3KSsto9vV3QiMCaTIVkReRV7N+7r9+b5eWi98db5nFLi+Ot9zuhuz88ROln6ylK7duzLsSiliG4rLFLF9+/bl0KFDZzx3+PBhWrRooVIi11HpXkl0x2iiQqLQarX//QIhmhCNRsNlwy874zm9Rk+n+E5YhlloEdWCfj79ACirKmPhloXY7XYuHHghil6hyFZEyu4U0velE9kukqgOf84p11DTfvN0Ueut8667pRhpkC12hHAkTw/PMx4P6j2IbsndKC0vrStsA7WB5KTlYLFYGGUahZ+vH8W2YtbtXcfCzxcS3zGenjf0xKJYKLOXkZGRgae/Jwb3PwtXd417zYjt/xvBdde4/+3UBKtiZdeuXZQXlFNmLnP634P4k8sUsZMnT6ZPnz688MILXHPNNfzxxx988MEHfPDBB2pHa9QURUGJUOh1fS8GeA9QO44QjUbr+Na0jm99xnN6jZ7x144nIzuDAeED6k5Y76e+z6mdp2gR1IKWXVtSZCuiwFLAmo/W4BPiQ/KIZPRGPXarnd8/+53YNrG4D3UH9Xf7EqJJ8/byxtvLu+6xTqfjnRfeITU9lTBTWE33QJ032sKaAZx4/3gu9buUKqWKImsRD73/EJUVlVz34HW4hbhRoVSQm5NLanEqvqG+GL3+vJtr0BjqLlpPF7i+Ol8KbAW0GdSG0KhQBpkGNfRfQbPmMkVs9+7dWbx4MVOnTuXZZ58lLi6OWbNmMWbMGLWjNWr5tnyqlCr06AnRh6gdR4hGzehmZNigv94KHNRrEKZAE0mtkkj0qum+lZ6ZztfHvqYwtZCbrr2JEqWE49nHqSyqZO+avehGSAUrhBr8ff3x9/U/47mrR1/NsEHDsNltaDQa3DXu2Kw2PI2eVFVWMSp2FG4GNyyKhS9/+5Jfl/1Kp56dGHjNQIptxZTaSzm06RBeQV6ExIag1Z95V1PvpqdP5z4kecq+0A3JZYpYgFGjRjFq1Ci1Y7iUbce3UeVRRbR/9F/m7gkhzk6b+Da0iW9zxnN+vn7cf8v9lJaV1p24eiT24GjgUVokt5CpO0I0Mr4+Zy4Q8vL04r2X3qOisgI3Q80OBwaNAV+jLyFBISTHJNPXuy8AhSWF3LH4DgCmvjSVKn0VJfYSDu07RFFOEXHd4ojxObPxg3A+lypiRf19+9m3FJoLuf3u26Gj2mmEaDq8vbzp37P/X54ff914TMEmFRIJIc6Fh7vHGY8vH3E5l4+4nP/dvMlqsdKtYzcqKiro7N+57vn9+/Zz6sgpOvl1whhglKqqgclfdxOWU5oD2pqFLd3iu6kdR4hmISJU9mIWoin430VcwYHBPHzPw3/5mnat22Gz2zh29BgX9rywIeMJzmGf2OPHj7Nu3TpOnjxJeXk5ISEhdO7cmd69e5/RZacxOtt9x5qKw5WH2VWxC+8Kb0ZEjFA7jhBCCCHEf3L4PrFffPEFb7zxBlu3biU0NJSIiAg8PDzIz8/n2LFjuLu7M2bMGB555BHZ9qqRON2lKyEwQeUkQgghhBCOdVZFbOfOnXFzc+Pmm29m4cKFREdHn/H5qqoqNm7cyFdffUW3bt149913ufrqq50SWJydMksZ5mozGq1GWs0KIYQQosk5q+kEP//8M8OGnV0Hiry8PE6cOEHXrl3PO5yjNafpBAvXLeT777+nfb/2PHzZX+fxCCGEEEI0Rmdbr53VHjDDhg0jPz//rA4cFBTUKAvY5mbnvp1UllTiYfP47y8WQjhESWEhy+fPp+gsf14KIYQ4d2e9kWFERATXXXcdv/zyizPzCAewKTaSr0ym/y39Gdp3qNpxhGgWlnz2GaOionjihhuYfe+9ascRQjSAyooKvnn3Xd585BEs1dVqx2l2zrqInTNnDjk5OQwfPpzY2FieeeYZTpw44cRo4lyZrWbQQ2ybWFqHtv7vFwghzs/69US8/TZlZTV900/++qu6eYQQTmWprmbujBlcEhnJS/fey6cvv8yWxYvVjtXsnHURO3bsWFatWsXRo0cZN24c8+bNIyEhgYsuuoivv/6aarkCaTQyqmt2JYgwRJyxz50QwjFyMjJ4bdIk3rvxRhg0CPr3p/Mff3B/7efNRUVqxhNCOJOioFuzhmXPP09+QUHd01lr1qgYqnmqd1/EuLg4pk2bxvHjx1m+fDkmk4lbbrmF8PBwJkyY4IyMoh5sNhvz587n8PrDBCvBascRoknJOnWKl+65h0tjY5n/xht8/sUXFP72G7i5wR13MPillwAwV1ZSzy24hRCNWNapU7z58MNUfvkldO+OdvhwJpSVMU2r5TKjEQCz3J1ucOfV3HvIkCF88cUXfPrppwC88847Dgklzt2uE7s4tecU+1bsI9QtVO04QjQJaSkpPH/77VzWsiXfzJ5NtcVCJ+BVNzf8Jk6ElBR4/31Mo0YBUKEolMlorBAu78ShQ0y7+WYubdmST195he/HjIFt28DDg34TJjDy+HHCu3QBIDsjQ+W0zc85t509efIkc+fOZd68eaSmpjJ48GBuvfVWR2YT56Dap5qOozriafHE3a1xd1ATwhUsmzePZ265BZvdDkA34DYPD7pOnIhm8mQwmeq+1j0+Hl+gGMjeuxfvfv1UySyEOD8Ht29n7vTprP7++7q7Kt2BNt7eMGkSTJgAISEARMbGErtxI4E2m3qBm6l6FbFVVVUsXLiQjz/+mF9//ZXIyEhuvvlmxo8fT2xsrJMiivoodi+mdb/W9PDsoXYUIVyW1WpFb7XC3Ll0ef55tHY7PYBbfXzo9NBDcN99EBDw1xcajTzr64tXcTER+nMeIxBCqMRqsTDl4ovZsHJl3XMDgfGBgbR/9FG48074f/uWDh81iuHz59cVtaLhnPVP2XvuuYevvvqK8vJyLr30UpYuXcpFF10kC4cakTJbGUW2IjRoCDeEqx1HCJdzaOdOPnrmGaxHjzIzPx8yMwkFFgcHE/bII3DXXeDt/a/v0S8uDnbtAtkrVgjXkp6OfuZMDGvWoAOGAuOiokh48km46SZw/4e7m1FRda8XDeusi9j169fz9NNPc+ONNxIUFOTMTOIcrd+/nqzyLNq2boub1k3tOEK4jH1btvDhU0+xbvlyADRAOhAZEwMPP0zYLbeAx1k2DomMrCli5YQmRKNms9lY+c03fPH887zUrh3hixdDdTUTgcmJiUQ9/TRcdRX8112VyMiaX9PSQFFABvcazFkXsbt373Zmjian2l7Nz/k/8/3r3wNw6aRL0bvV/HXvXbuXQ5sOkdA1gY4Xdqx7zcKXFwIw8t6RuHvVXPEd3HiQfev2EZscS9fhf3ZC++7177BZbAy/Yzhe/l4ALFm6BHOKGZ/LfWB4g/wxhXBpuzZs4KMnn2TD6tVATfF6EXBLdDSRzzwDN95Ys/NAPZzw9mYLELJqFYNuv93RkYUQ56m6qoqln33GvGefJTU1FYAv9+7lAYD+/YmZOhWGDz/7YjQigjuA45WVzNm8mdhevZwVXfw/9Z60pSgK3377LWvWrMFsNmOvXexw2qJFixwWzpUpKJTaSinOLQag1F6K3l7z111SVkJxbjElpSWU2kvrXlP3tbZSrHZrzdeW135tyV+/1maxUWotRbHXTDoPbxtO7qlcBncZ3CB/RiFc2eo5c3j4jjsA0FFz3Te+VStin30Wrr4adLpzet8dFRW8BPTbsIFBjgorhDhvFWVlLHr/fb6YMQNzbi4AfsB1wDUXXQRPPw19+9b/jT08KNTpKLDZyN6zR4rYBlTvInbSpEm8//77DB48mNDQUJkT+w8MGgMXBlxI3OQ4AFoGtESrrdnRLHlwMgWdCvD39yfY58+9XKMnRwMQGxKLvvb2Rcf+Hclvm4+vry8mnz9XQcdMiEGxK7SIaIHBYACgc+/O3NT7JqKDoxvkzyiEK1EUhYKcHALLyuCll+j78ceEAz2Bm9u3J+q552D0aNCe186DmFq2BMBcWHjemYUQjmGzWLguPp707GwAQoAbNRouv+oqPJ94ApKTz+v9TR4epJSWknPwoAPSirNV7yL2s88+Y9GiRVx88cXOyNNkaDVaTG4mTImmv3wuODQY/mYL1+DEvzYnCA4Jrvlu+//Pt/6brw2W5gZC/H+KovD7smV8OHUqxSdO8E1pKTq7HSPwbd++GJ96Ci66yGHz2Ext2gBgLi93yPsJIc5NYW4ufn5+aL7+Gt1LL3FhdjargXF6PSPHj8ft0Ueh9qLzfIX4+0NpKdkpKQ55P3F26l3E+vn50dJB/+hCCOFMf6xaxVv338+BAwcAMAJHgMRhw+DxxzH27+/wY4Z06ABAoc1GVWUlxn9a0SyEcIqMEyf49IUX+GHuXN4KDqZrVhYAt3t7c89dd6GfMgXCHbuDT2hICKSlYa6dYysaRr3vmz3zzDNMmzaNiooKZ+QR50pRUO64A/r1A/m3Ec1cbmYmj19xBfcMGcKBAwfwAMYCPwwfTuIff8Dy5eCEAhbAr21bjLW/z5FRGSEaTHlpKe88+ihXJiTw7Zw5VFutrM3Kqtm/9fnn8UhNRf/KKw4vYAFMtTsUmM1mh7+3+Gf1Hom95pprmD9/PiaTidjY2Lr5mKdt377dYeHE2ft18mQ+mzOHJ4C4P/6AgQPVjiSEKk4dPMjYzp0pq6xEC1wN3H7FFfg/8wzUjpI6kyYggBCNhjRFIWfXLqLatnX6MYVozhRF4ef583ljwgRy8vKAmu5at5tMdH7iCbj1VvD0dGqG03Phs2UufIOqdxE7btw4tm3bxo033igLuxqJ0mPHeOnNN8kBlgL3Hj8uRaxonrZuJfrOO2lbWUk5MDUpicTPPoOuXf/zpQ6j0WAyGkmrrMRcO41BCOE8j40ezS9LlgAQCUz282Pga6+huekm+H8Dbc4SlpRELBBzngtDRf3Uu4hdsmQJP//8M/2kJ3ij8daIEeQoCjHArYDt2DHObXMgIVxPUX4+c59+mlsrK/H56CM0isIMHx98XngB3d13n/NWWefj/qQkbDt20DJadgoRwmnKy2HGDAb+/DPrgFu0Wsbcdx/G6dP/0hrW2RL69eNbUOXnTXNW7yI2Ojoa3wb+zyH+2Y5XX2XhkSMAtI+OZmRqKgPmz+fp6dNVTiaEcymKwpJ583hj4kQKioupAh4BGDMG/1dfhbAw1bJ1aNsWduwAubUohENZLRa+eecdAk+cYNiiRZCayjCgW//+BL//PiQlqRPsdNeu/PyadSln2+FPnJd6j3u/9tprPPzww5w4ccIJcUR9VOXm8tzUqQBc3r49vS+5hCIgPSdH3WBCONmxffu4o0cPnhk/noLiYloCQ6KjYdUq+PxzVQtY4Mw2lEIIh9i8ciU3JCXx2uTJzHzjDUpTU6FFCzQLFxL822/qFbAA/v5/zruVltMNpt4jsTfeeCPl5eXEx8fj6en5l4Vd+fn5Dgsn/t3Ho0Zx0molSKtlwrJlpCxbBkBGWZnKyYRwjvLSUuY89RRfvvEGNrsdd+B2vZ4xTz6J/pFHwGj8z/doCDne3vwKaNat4yq1wwjh4tKPH2fWhAms+eknoKbL1p16PR5Tp8Kjjzp90dZZ0WiYrtfzG/DgvHkMl7uhDaLeReysWbOcEEPUl3XjRjZt3gzAI1On4hMVRWRtqzuzzYa1tBS9t7eaEYVwuNljxzL/u+8AGAw8MGgQYR995LANyx0lW6/nJSB03z4pYoU4RxVlZXwyYwafvfQS1VYrOmp2G7lj5Eh8334bYmNVTnimand3CouLMR89qnaUZuOcdicQKrNY0N91Fx8Bv/XrxwXPPQdAULt2GIEqIGvTJqKGDFEzpRAOoSgKmvR0mDSJ8d99xw7gzsBA+n/wAVxxhcM6bTlSSLt2AORWV2Oz2dDJYg8h6u3o11/z0fPPA9ADmBIXR8L779d02GuETCEhYDZLw4MGdFZzYsvqeXu6vl8v6unVV2H3bvRBQVy4aFHd0xqtlnA3NwDSt2xRK50QDlFdVcWHzz7LY1261Mx1W7iQQJ2OzyZPpv+JE3DllY2ygAUISk5GC9iAgsxMteMI4TIKc3PBbIbbbqPDbbdxM/CyuzvvvPwyCQcPNtoCFiCktomCubZDmHC+sypiExISePHFF8n8lx/GiqLwyy+/MGLECN58802HBRRnylyzhg+efJJqgJkzazqR/I8IPz8AMvbta/hwQjjIH6tWcV3r1rz39NP8snMn20tLoXdv2L4dzcyZ4OOjdsR/pY+KIrj299l79qiaRQhXUJiby4w772RUZCTpCQnw0UegKNw3diwXpKSgeeghqB2kaaxCa6c3mGVtUIM5q+kEv/76K4899hjPPPMMHTt2pFu3bkRERODu7k5BQQH79+9n48aN6PV6pk6dyp133uns3M2SYrMx46qr2GCzkRkRwdNjx/7la5JbtsSWk0NAebkKCYU4P7mZmbx+//38vHAhAEHAZC8vOr/+ek3XHVfZSFyvJ8RgwGyxkLNvH4wYoXYiIRolq9XKwvfe472pUykpLQXgt+pqbujcGd5+G/r0UTnh2TO1agWAufbPIZzvrIrYNm3asHDhQk6dOsU333zDunXr2LBhAxUVFQQHB9O5c2fmzJnDiBEjZO6XE/18111syM/HAIybN+9vb6Xedu21sHkz6Os93VkI1VitVr59911mP/ooZRUVde1i7x4zBu/XX//LHQdXYPLyYl9hIebafZyFEGfasno1r95zD8cOHQKgNfCgry9dXn4ZbrvN5RoHhLZvD0CexYLVakUv52Gnq9ffcExMDA888AAPPPCAs/KIf1C4dy+vfvQRALcNH07sPy3aiour+fX48QZKJsT5s+7cyfyHH6asqoq2wNSWLUn65BPo31/taOfMFBgIhYWYZU9tIc6gKApPjRnDsvnzgZots+7WaLj8zjvRPf88BAaqG/AcBXToQDw1d5AqCgvxCQ7+r5eI8ySXCS5i5siRFCoKCR4e3FR7q/Vv1RaxFSkpSL8Q0ZgVFxTgpdOhe/553GfOZKrVSprBwOXTp6ObMqXBep47y9W9enFRSgrRiYlqRxGiUdEsWULUsmVogSuBu3r2xO/996FjR7WjnRddRARf63Rgs0FVldpxmgUpYl3AxmeeYempU2iAJ95/H8O/bOxcHhLCJUBhfj7rsrLwULtzkRD/j6IoLPn0U96YOJHbtVquKSgAoNdll8Ebb0BMjLoBHSS29taitJ4VzZ2iKKz69lvCNBraz50LS5cyDrgwJISEWbPg+usb7U4j9aLTQXh4Tae+9PQ/O/cJp5EitpFTCgt5vXafvOu6dqX93yzm+l+eERFYNRpQFDI2bCD+iisaIqYQZ+XEwYM8P24cO/74A4DlwNUxMWjefhtGj1Y3nKOdPoFJC0rRjGWdOsUzY8eyde1akjQaPlEUdAYD7lOmkPD4441+p5F6i4yEtDSU1FQ0PXqonabJc5Glvn/14osvotFomDRpktpRnErz2GPMtFoZ6e3N3bVtZf9LhLs7ABnbtzszmhD18svXXzO2Y0d2/PEH7sD9Wi0fPPQQmv37m14BC1QGBbEAmL1zJ4qiqB1HiAa3ZvFibmjfnq1r12IE+isK9mHDYO9eePHFplfAAp+VlzMEeHP2bLWjNAsuORK7ZcsW3n//fZKTk9WO4ly//w6zZxMFTPv++7NeoR0ZEMDhigrS9+93bj4hzoLVauXtKVP4/K23gJrOO0/16EHY3LnQtq264ZwpKoqXAfLyuLGoCB9/f5UDCdEwqiormTVlCt/UFnLtgOejooh6910YNappTB34Bxo/PwoBc0aG2lGahXqPxC5fvpz169fXPX7nnXfo1KkTN9xwAwW1c9ucqbS0lDFjxjBnzhwCAgKcfjy1WEtL2TNmTM2DW26BCy4469dGRkQAkCE7FIhG4PAPPzC/toAdp9Hw1uuvE7ZpU9MuYAH3+Hj8an+fffCgqlmEaCi5WVnc3KVLXQE7Fvhw7FiiDh6suePShAtYAFPtnP6cvDyVkzQP9S5iH3roIYqLiwHYs2cPDzzwABdffDHHjx9nypQpDg/4/917772MHDmSIf+0xdT/qKqqori4+IwPV/HZpZcy/uRJ3vH0hFdeqddrI+LjAciQ1ndCbT/8QNvx43kAeMnfn/vXrUM3aVKTP5EB4O1NSG1zhhzp2iWaiYCtW/E5coQA4C2jkYmffYbh00/By0vtaA3ClJAAQLYL1RuurN7TCY4fP07b2hGUhQsXMmrUKF544QW2b9/OxRdf7PCA/+urr75i+/btbNmy5ay+fsaMGUybNs2pmZzh5JIlzFm9GoDY8ePrvWdeRO2/T4asihYqUBSF7+fModP27cS+/z4A1/TrBwsW1KzcbUZMHh4cLSuTkVjRpJUWF2MAjM8+i+6113ge0LRrR/CiRdC6tdrxGpQpKQmAnKoqFEVB0xwu2FVU75FYNzc3ymtbmq5cuZKhQ4cCEBgY6NSRztTUVCZOnMgXX3yBe+3Cpf8ydepUioqK6j5SU1Odls9R7FYrz99wA9VAr5AQLn7zzXq/R2zv3vQAulmtIAtKRAOqqqxk+tixPHfnnTz4/vtUAEycCKtXN7sCFsDkVzOhIEem9ogmav/WrdzYoQNvtGoFr70GQMh99xG8dWuzK2ABQmr3uq1WFIpyc1VO0/TVeyS2X79+TJkyhb59+/LHH3/w9ddfA3D48GGioqIcHvC0bdu2YTab6dKlS91zNpuNtWvX8vbbb1NVVfWXlrdGoxGj0ei0TM7w/U03sb24GHdg6uLFaM6hV3xU//68C2C1Qm6uS7bsFK4n69QpHh4xgv3796MFRun1uH/yCZye290MhYSEQEYGZhe4gBaiPux2O1/OmsXbDz+M1WZjHXCPnx/ec+fC5ZerHU81hthYgoA8IHv/fvwHDlQ7UpNW7wrp7bffRq/X8+233zJ79mwia/dCXLZsGcOHD3d4wNMuvPBC9uzZw86dO+s+unXrxpgxY9i5c+dfClhXlLt1K2/UtuG7+4oriOzb99zeyN0dahd3SftZ0RD+WLWKG9u1Y//+/fgBb4aHc/O2bWiacQELEFr789FsNqucRAjHKcjJYfLFFzPrgQew2mxcAHzRowfeu3Y16wIWAA8POhkM9AQ0OTlqp2ny6j0SGxMTw08//fSX519//XWHBPonPj4+tD/dAaeWl5cXQUFBf3neJSkKL48eTSnQ1suL67766vzeLy6OiowM7Pv34yUbLgsnURSFT2fM4J0nnsCuKCQCr1xwAeELF4JsKUW//v35cOlSItq0UTuKEA6xdc0anrj2WnJzcnADpgBXPvoommefdflW0Y7yUlIS7N4N3t5qR2ny6j0Su3TpUn7++ee/PL9ixQqWneVm/OKvlAULGJSVRRDwxLx56M7zh8ELZjP9gYULFjgknxB/x3biBOtffBG7ojAa+PCJJwj/5RcpYGsFt21LJ8CUn692FCHOW1lxMY+MHk1uTg5xwKeBgVy1YgWaGTOkgP1fp7v1paWpm6MZqHcR++ijj2Kz2f7yvN1u59FHH3VIqLP166+/MmvWrAY9plPk56OZMIGLgR8ff5zWV1553m/pHxoKQMbJk+f9XkL8rV9/Rd+rFzNKSnjSw4OnlizBffp0OId53E3W6XUC0npWuLqSErzuvpvHysq4FPh08GAS9u2Diy5SO1njU/t9b5O58E5X77PNkSNH6rbY+l+JiYkcPXrUIaGam6rJk8FshqQk3J580iHvGVG7V11GdrZD3k+I03797jtmDxkCQ4aA2Uxwx45cuncvGidvseeSIiP5DngnK4tcOaEJF/Tr99+z8e23oUsX+PJLLtTpePL55/FYuRLCwtSO1yitLS1lCDDho4/UjtLk1XtOrJ+fHykpKcTGxp7x/NGjR/FqJpsZO9L2WbN47NNPeQi4cM4ccNBuCpEdOgCQLhsuCwex2Wy8/+ijfPzqqwB0BPqMHQvvvQeenuqGa6xCQpgHpAK9Nm4kODpa7URCnJWqykreePBBFrzzDv7AV1Dz/3f+fDjXRcfNhEdERE3rWdmr3enqPRJ76aWXMmnSJI4dO1b33NGjR3nggQe45JJLHBquqasqKOC5hx8mF9jUtq1DfzCEd+8OQKbFgt1icdj7iuapMC+PSYMG1RWw12s09HjjDZg3TwrYf6PVYqq9MM05cEDlMEKcnRMHDzK+e3cWvPMOAKMBv9GjYedOKWDPgikxEQBzRYXKSZq+ehexL7/8Ml5eXiQmJhIXF0dcXBxJSUkEBQXxau0JTpydj0aO5JTFQrBWy4SlSx363mHdu6MFqoG8nTsd+t6ieTm4Ywc3tW3LxvXrMQLP+fvzwPr16CdMaB7tY8+TyccHALNMtxKNnKIo/PjJJ9zYuTOH9+4lAHhTr2fim29i+P77enePbK5MtXdCy+x2SuVuqFOd03SCDRs28Msvv7Br1y48PDxITk5mwIABzsjXZB1dsIB5GzcC8MjDD+PTooVD31/v7k6oXk+m1Ur6H38QUjsyK0R9LP/8c6aPH0+V1Uok8GqXLrRaskTmwtWDKSgIcnMxnzqldhQh/pHVamXauHEs+/JLAHoAz8bGErxwYc18WHHWPFq3xgcoAXKOHcO7c2e1IzVZ9S5iATQaDUOHDq1rOSvqx1ZVxfTx47EBgyMiGDxjhlOOc2FEBKWnTuEt83LEucjNxe2VV6iyWukLTL/rLnzffFO20qmnkPBwOHQIc1aW2lGE+Ef63FwMa9agA+4Cbrr+enTvvw+1dxJEPfj7E6LRUKIoZO/aRZwUsU5zVkXsm2++yR133IG7uztvvvnmv37thAkTHBKsKVtw7bXsKy/HC3h4yRKnHWfS0KHw4Ycgc2JFPSiKgmb7drjiCi44dYp3jEa6f/QR2mbefetchcbEAGDOy1M5iRBnUhSFirIyPDdsgLFjechs5gqjkfazZ8PNN8t0oXOl0RDq4UFKeTnmgwfVTtOknVUR+/rrrzNmzBjc3d3/tTOXRqORIva/pKRwsrbj2cSxYwnp1Ml5x4qLq/lVWs+Ks7Rj3TpeGTOG17OzCa2uhoQEei5aBLVzvET9hdRud5dTUqJyEiH+VJCTw7Sbb8Z24ABvHD+OFvDo0IH2X38NSUlqx3N57UNCsJ88ib8MIjnVWRWxx/+nCDouBdG5UxS46y4etdm4uHNn2s+d69zjxcVRCRQcOEC4c48kXJyiKHw9axavP/AANkVhNvDM6NHw6afSfes8xffsyYdAqMwjFo3E1l9/5cnrriMnOxs34AjQ5q67YOZM8PBQO16TcGe/fnDyJNQ2HhLOIa11GtJnn8Evv4DRSPLXX6PV6Zx6uL3l5fQD7ti+3anHEa6tsrycp668klenTMGmKAwFHnnySfjuOylgHcAjIYFOQLjZXHMhK4SKvnn3Xe6+4AJysrOJBeZ5edFmwQKYPVsKWEeSbn0Not4LuxRF4dtvv2XNmjWYzWbsdvsZn1+0aJHDwjUlBfv3M/P227kPCH36aWjVyunHDK3dkSDbZsNaWore29vpxxSuJS0lhYeHDuXwsWPogIkeHly/cCGaESPUjtZ0RETU/FpZCfn5EBSkbh7RLCmKwgdPP82c6dMBGAU80rUrHt988+fUM+E4kZEAWE6dQpbCOk+9R2InTZrE2LFjOX78ON7e3vj5+Z3xIf7ezJEjWVZdzWOenvDggw1yzKB27TACdiBr8+YGOaZwHccPHGB8x44cPnaMQODdhARu2LdPClhHc3dnpbc3bwH7V6xQO41opt6ZOrWugL0DeHrSJDw2bJAC1klOabVcCIyoXQMjnKPeI7GfffYZixYt4mLpk37WNkyfzrITJ9AAk995p8G2KNLqdIS7uXGiupqMrVuJuvDCBjmucA0Bn3+OqbSUUOC1q64i9NNP5Xaik6zQ6VgNmNato+3116sdRzQ3FgsX7t3Lt8B9wFWvvw6TJqkcqmnzb9OGIgCrlarKSozu7mpHapLqPRLr5+dHy5YtnZGlSSrPymLGtGkAXNe5M+1vvrlBjx9ROzqesXdvgx5XNHIvvoj/Cy8wG3jn8ccJXbBAClgnMgUEAGCWhbGiASmKAhUVcOWVJC1ZwndaLVd9+qkUsA3AJykJY+3vc6TRidPUu4h95plnmDZtGhXSE/iszB4xgkybjXCdjruXLWvw40fWrohOP3aswY8tGp/Uo0f58dprYepUAHyfew6/556T/SCdzGQyAWDOyFA5iWgucrOyuK1PH/b27g0//gju7vh/9x2MHat2tGZBExbG6X0JsvfsUTVLU1bv6QTXXHMN8+fPx2QyERsbi+H/3RrfLivh6+z9+GO+2rkTgKnTpuGpwlYbEbGxsGcPGbJCstlLP36cu7p3J7uwEC0wcto0ePxxtWM1C6aoKPjjD8w5OWpHEc1A2rFj3HvhhaSfPMmzwHwfH3Q//QTSHr7h6HSEuLlxqroa8759cOWVaidqkupdxI4bN45t27Zx4403EhoaikZGcP6excLcyZNRgBFxcfRRqVho36sXl/74I52dvJ2XaNwyT57krq5dyS4sJBboNWUKPPWU2rGaDVN8PADmoiKVk4im7uCOHUy46CLy8/KIBF4LDES3ahU4s7GO+FsmHx/Iy8N89KjaUZqsehexS5Ys4eeff6Zfv37OyNN0bNrE8+XlfOLhwbVLl6oWo/PIkXR+/HGQbkHNVlZqKnd17UpmQQExwHsTJhD06qtqx2pWTImJAJgrKmra+srFv3CCrWvW8MDo0ZSVldEaeDMqiuA1a6C2a5xoWKFBQTVF7MmTakdpsuo9JzY6OhpfX19nZGla+vfHffdu7lq8mIDaE5gqTm+fkpsrhWwzZE5P5+6uXUmvHZWZfc89BM+aJXNgG1hIcjIAVYpCcUGBymlEU7Ty22+5f9gwysrK6AJ8kJRE8ObNUsCqqFXLlvQEYtzc1I7SZNW7iH3ttdd4+OGHOXHihBPiNDFJSTBsmLoZfH2pDAjgOFAqk8ublfLSUu7q2pXUnBwigPfvvJPQt9+WAlYFxpYt+QT4CfCRrXaEgymKws+zZmGxWBgMvNWzJ97r1//ZaEOoYtjgwbwDXCutZ52m3tMJbrzxRsrLy4mPj8fT0/MvC7vy8/MdFk44xq2VlRwCXl+6lP59+qgdRzQQz6++YkR2Nt8D7916K2GzZ0sBq5aAANq7u9d07crMhNo5skI4gubrr5m+eTPfAtcPG4Zu4ULw8lI7lqjt2iWtZ52n3kXsrFmznBBDOFNEQACHKipI379f7SiiocydC3fcwe3AdXfdhc+770oBqyaNpuaEduxYzQlNilhxnmw2G798/TXDCgvR3Hcf7orCjdddB/Pmgdy+bhyiogCoTE3FzW5Hq633zW/xH85pdwLhWiIiIiAjgwzZaL3JK8rPZ/bVVzNh9Wo8Ae6/H5833pACthHY6uXFRqD9d98xWLY6EuehuqqKp8aOZeU333AMuBfgnnvgzTdBdqJpNJSICIYDeceO8VNaGmExMWpHanLO67KgsrKS4uLiMz5E4xNR22EtIytL5STCmYoLCri3a1e+Xb2aZ6DmpCYFbKOxQ1GYB/z+++9qRxEurLS4mIkXX8zKb75BD7SGmu3y3n5bCthGRhMVxekJl+YDB1TN0lTVu4gtKyvjvvvuw2Qy4eXlRUBAwBkfovGJbNcOgIzCQnWDCKcpLSrivm7dOHjiBAHAXddcA2+9JQVsI2KqnR9nzs5WOYlwVXnZ2dw1aBBbau+0vAFc9MYbMG2afK83Rh4emPQ1N7zN0vrdKepdxD788MOsXr2a2bNnYzQa+fDDD5k2bRoRERF8+umnzsgozlNE164ApFdWotjtKqcRjlZaXMz93buzPyUFP2D2FVfQcv58kPlXjYqpRQsAzHIxKc5B+vHj3Na3Lwd37CAAeF+rpefnn8OECWpHE/8itHaBnfnwYZWTNE31nhP7448/8umnnzJo0CDGjx9P//79SUhIoEWLFnzxxReMGTPGGTnFeYjo3RuAMqDk2DF8W7VSN5BwmPLSUib26MGeI0fwBd699FISvvlGCthGKKR1awDMpaUqJxGuprKigjv69yc7PZ0I4G03N2IWLYKRI9WOJv6DKSAAioowy7akTlHvM11+fj4ta+dY+vr61m2p1a9fP9auXevYdMIh3AMDuc7Li7sApHNIk/L0kCHsOnQIH+DdUaNos2iRFLCNVGiHDgAU22xUlpernEa4EveiIu7VamkNfOzjQ8yqVVLAughT7R6x5owMlZM0TfU+27Vs2ZLjtavcExMTWbBgAVAzQuvv7+/QcMJxHuzUidsA37w8taMIR/nuO27fupUo4O0RI0j87jspYBsx7zZtON3mwJyaqmoW4RqqKishJQX69ePi1FQ+NZkIXrcOpO27yzBFRwNgzslROUnTVO8z3vjx49m1axcAjz76KO+88w7u7u5MnjyZhx56yOEBhYOcbj8r22w1DT/+CNdcQ2ubjW+vu452P/4oK5MbOU14OKba35v37VM1i2j8Fs+Zw3Vt2pDbq1fN/sJxceg3bICOHdWOJuohJimJXkBHaT7hFPWeEzt58uS63w8ZMoSDBw+ybds2EhISSK7tDy4an6roaDIB+/bttFQ7jDhn1VVVPH3RRVy7YQOdbDa47jr0n30mBawrMBh4JSgIr7w8gk938hHi/1EUhY+ef573nnwSgO+BWzt0gJ9/hvBwdcOJemvTpw9vA3h7qx2lSap3Efv/tWjRgha1q25F47UsM5PngD6rV/Om2mHEObFUV/PIwIGs27yZrcAPl1+Ox2efgf68v41FA4mPjYW8PJBttsTfsNvtvDpxIgvefhuAW4BbeveGJUtAtrB0TacvWNPS1M3RRJ3T2W/VqlWsWrUKs9mM/f9t2fTxxx87JJhwrPD27QHIkIYULslqsfDY4MGs27wZI/B8//54fP21FLCuJioKtm2TXuriLyzV1Tw9bhwrvvoKgAeB60aMgG+/BU9PdcOJc1dbxFbm56MtLMRN1g45VL3nxE6bNo2hQ4eyatUqcnNzKSgoOONDNE6R3bsDkGmxoFitKqcR9WG1WnliyBDWbNiAG/Banz70WLUKDIb/fK1oXI4YjbwJfLl4sdpRRCNSVlLCpFGjWPHVV+iB54DrbrgBvv9eClhXFxDA3Vot/YCNX3+tdpomp97DOO+99x6ffPIJY8eOdUYe4SRhPXqgBaqAvJ07Ce7WTe1I4izYbDaeHjaMlWvXYgBe7tmTXmvWSAHrotINBj4F2u3YwQ1qhxGNhqWqiuwdO/AAXgF63XdfTcto2W3E9Wk0eHl4QFkZOYcOqZ2myan3d0h1dTV9+vRxRhbhRHp397r2d+l//KFyGnG2vp44kZ9Xr0YHvNStG/1++w3c3NSOJc5RSHw8AOaSEpWTiEbDbsd/2jTezs3lPaDXM8/Am29KAduEhPj5AZCdkqJykqan3t8lt912G19++aUzsggni6hdHZlRu0WaaOTWruWqjz9mMPBi584MWL8ejEa1U4nzENquHQB5VVVYZVpPs2az2dizcWNN29i33yYMaPfWW/D006DRqB1POFCoqWZzPdkf2vHqPZ2gsrKSDz74gJUrV5KcnIzh/93WnDlzpsPCCceKDAlhe2Eh6UeOqB1F/Au73Y7m99/RXHwxbhUVvDx0KJrvv5cCtgkIaNcOHWAD8rKyCI2KUjuSUIGiKLw6cSIL332XRxSFKzUa+PRTuPFGtaMJJzBFRcHOneRIwwOHq3cRu3v3bjp16gTA3r17z/icxolXjzNmzGDRokUcPHgQDw8P+vTpw0svvUSbNm2cdsymZnDPnkQeOUIPd/f//mKhCkVRePmqqzD89BNTLBY0F12E5rvvQP7NmgRdTAzBQDaQc/iwFLHN1OevvcY377yDBvADePVVKWCbMFNsLADZsvjd4epdxK5Zs8YZOf7Tb7/9xr333kv37t2xWq089thjDB06lP379+MlnTDOyoCLL2bA559DaanaUcTfUBSFmdddx7eLF6MBhnbtSofvvgMPD7WjCUfx8SFUqyXbbse8dy9ccIHaiUQD+2XBAt6o7W45CRhy773wP02ERNNjqh1sM5eXoyiKUwf8mpt6F7Fz587luuuuw6OBT6zLly8/4/Enn3yCyWRi27ZtDBgwoEGzuCxpPduoLXz2WeYvWADAE23a0GHtWtlepwkK8fKCkhLMhw+rHUU0sB3r1vFU7YjrdcANI0fCrFkyB7aJMyUn0xswubtjs1rRy+4yDlPvhV2PPvoooaGh3HrrrWzYsMEZmc5KUVERAIGBgf/4NVVVVRQXF5/x0ZwpsbGcAH5PS8NaVqZ2HPE/Dvz+O69NmwbA/S1acOm2bVLANlGTkpP5CbiqSxe1o4gGdOLgQR645BIsFguDgcmdOqH56itpWNIMuMfH8xbwZFUVetl1wqHq/beZnp7OvHnzyM3NZdCgQSQmJvLSSy+RlZXljHx/y263M2nSJPr27Uv72k5Uf2fGjBn4+fnVfURHRzdYxsZICQnhBmAikL15s9pxRK2SwkIeHT4ci6Iw0Gjkpg0bQKbINFnhCQmEAXppPdus/PLllxQXFtIBmB4ZiW7JEqjdMUY0cWFhoNOBzSYtpx2s3kWsXq/n8ssv5/vvvyc1NZXbb7+dL774gpiYGC655BK+//77v7SidbR7772XvXv38lVte75/MnXqVIqKiuo+Upv59hZanY7w2j1GM7ZuVTmNgJp5sNMuuID00lIigKcXLEATEaF2LOFM0ku9+VEUbjt6lKnATG9v3JctA/k+bz50OggLoxIok2lEDnVe49qhoaH069eP3r17o9Vq2bNnD+PGjSM+Pp5ff/3VQRHPdN999/HTTz+xZs0aov5jZa/RaMTX1/eMj+YusnbT5fT/t7OEUIdmzx4u2rsXP+DFu+/G95JL1I4knCzX25s3gZk//6x2FOFkVqsVq8UCTz2FZv58rtTrCVi8GDp0UDuaaGCvWq30A758/321ozQp51TEZmdn8+qrr9KuXTsGDRpEcXExP/30E8ePHyc9PZ1rrrmGcePGOTSooijcd999LF68mNWrVxN3epGSqJeI0FAAMo4eVTmJoLgYrr6aYRYLPw4ZQtu331Y7kWgAlYGBfAosTElBURS14wgnURSFV+6/n0mdO1P63HM1T77/PgwZom4woQrf2vU75lOnVE7StNS7iB09ejTR0dF88skn3H777aSnpzN//nyG1H5jenl58cADDzj81v29997L559/zpdffomPjw9ZWVlkZWVRUVHh0OM0dRG1+9VlpKerG6SZK8zJIXfsWDh8GKKi8Jw/X9pMNhMhtaNwVYpCUX6+ymmEs8x7+WUWvvcem/ftYw/AE0/ALbeoHUuoxBQeDkB2A64fag7qvSzSZDLx22+/0bt373/8mpCQEI47eBun2bNnAzBo0KAznp87dy4333yzQ4/VlEUkJsJPP5GRl6d2lGbLbrfz1KBBHNq/n5d0OjotWADBwWrHEg3E2LIl/kAhkHPiBP5BQeoGEg63/MsvefvRRwF4AOh9ww3w7LPqhhKqCq0dQMqRC1eHqncR+9FHH/3n12g0Glq0aHFOgf6J3HZzjMjOnQFILy9XOUnz9cl997Fh/36MgPfkyfAvF4SiCTKZMFFTxGbv3Uurrl1VDiQcadtvvzFt/HgAbgCuGzAAPv5Y9oJt5kJatQLALM2GHOqsitg333zzrN9wwoQJ5xxGOF90//7cCUQqCkpJCRofH7UjNStbf/iB92rvKjzSpQsJL7+sciLR4LRaTO7uHK6sJOfgQbXTCAdK2b+fBy+7DEt1NRcAk1q3hsWLwWhUO5pQWWjtdqBFViuVFRW4SydGhzirIvb1118/43FOTg7l5eX4+/sDUFhYiKenJyaTSYrYRs47OprbAwKgoABOnJBVsg0oNyODx6+5Bjsw2tubS1atktGZZirE1xcqKzEfO6Z2FOEgdrudx669lpLCQpKBZ4OD0S5bBv/SkEc0H95t2uABVAA5aWlE147MivNzVitJjh8/Xvfx/PPP06lTJw4cOEB+fj75+fkcOHCALl26MH36dGfnFY4g7WcbnM1m4/H+/cmrqiJeo+GR5cuh9iJQND+htXOgzc187+qmRKvR8GxSEt2AmUYj7j/+CC1bqh1LNBKaqCguAi4FdDKdz2HqvRz6ySef5K233qJNmzZ1z7Vp04bXX3+dJ554wqHhhHNkh4ayETiqYtvg5mb+xIlsS0nBE3jp6adx79tX7UhCRVf27ctPwFT5f9B0zJxJ62++4T2NBv8vvoBevdROJBoTDw+eCgzkSSBCp1M7TZNR7yI2MzMTq9X6l+dtNhvZ0k7NJXxhNnM/8NMvv6gdpXkwm7l84UKGAY/17UvsU0+pnUioLKBVq5rWs5mZakcR50FRFN546CF2PvccPPhgzZOvvgpXXqluMNE4Sbc+h6t3EXvhhRdy5513sn379rrntm3bxt133123V6xo3CJqb3GlywnU+Ww2GDMGr6wsnk9KYvjy5TIPVvx5MpP9ml3a3Bkz+OzVV7nvySfJA7j3Xpg8We1YorGKiqICKJQFnQ5T7yL2448/JiwsjG7dumE0GjEajfTo0YPQ0FA+/PBDZ2QUDhbZti0AGQUFKidp2qwWC8uuvhpl5Urw9IRvvwVvb7VjiUbAGhbGG8AT27ZRUVamdhxxDpZ+/jnvPv44ABOAoFGjYNYsuUgV/2hxSQn9geek9azD1Huf2JCQEJYuXcqRI0c4cOAAAImJibRu3drh4YRzRNTuS5lRWQmKIj90neSt66/ni8WL+QN4+v33ofbiQQh9ixYsBMpLS7k9LY0W/7PGQDR+W1av5tna7ltjgWu6dIH580Ff71OqaEYCo6IAMOfmqpyk6Tjn77hWrVrRSraIcEkRffoAUAKUpKTgEx+vbqAmaM2HH/LFwoUADLzoIrjxRpUTiUYlIoIQ4CSQc/CgFLEu5OjevTx4+eVYLRYuAu6PioKffpK7LOI/hSYkAGAuKVE5SdMhzdqbIY+gIAK1Nf/06Rs3qpym6Uk7dIhpd90FwI0hIQz64QeVE4lGx8OD0NpRO/P+/SqHEWcrNzOTiSNGUFZcTCfgGR+fmr1gw8PVjiZcQEhSEgB5VVVYLRaV0zQNUsQ2UxGengBk7NihcpKmpaqykkcHDqTUZiNZp+O+334Dd3e1Y4lGKKR25M585IjKScTZ8vb3p523Ny2A13Q6jIsWQW0nJiH+S0C7dugBhZoLInH+pIhtpsZ27swzQFs3N7WjNCmvX3EFB7Oz8QNeePdd9LVX3kL8f6agIADMJ0+qnEScLfcvv+TFgweZA/h98AHIjjyiHrTR0Zhqf58t3focQorYZurCgQMZBYTJDgUOc2r1ahYvW4YGmH7ZZYTdcYfakUQjZgoNBcCckaFyEvFvFEVh9aJF2JcvhzvvRAsEPvEE1C7sEuKsBQQQUjuVz7xnj8phmoZzKmLXrVvHjTfeSO/evUmv3efws88+Y/369Q4NJ5xIWs86VlUVMY88wofApBYt6PP112onEo1cSHQ0ADl5eSonEf/mo+ee4+Err2Ta6NEoNhvccAM8+6zasYQr0mjoHxDApVA3J16cn3oXsQsXLmTYsGF4eHiwY8cOqqqqACgqKuKFF15weEDhHBVhYWwEft69W+0oTcMDD8DWrXQIDGTM2rUg0zTEf+jZrx9LgI9qt7wTjc9P8+bxXm2HvQ5WK5oBA+Djj2VbQnHObm7fnieBZH9/taM0CfUuYp977jnee+895syZg8FgqHu+b9++Z3TxEo1bnpcX9wPPZmXVjC6Ic6IoCu9deSVH33mn5onPP4eYGHVDCZfgER9PKNJ6trHavHIl02+7DYCbgavatIHFi8FoVDWXcHG1e8VKtz7HqHcRe+jQIQYMGPCX5/38/CgsLHREJtEAwnr0QAtUAXm7dqkdx2X9MGMGHy5axC1A4aRJMGKE2pGEq5DWs43Wkd27efiKK7BZrQwD7gkOhqVLITBQ7WjC1UVGUgFk1TaLEuen3kVsWFgYR48e/cvz69evp2XLlg4JJZxP7+GBSacDIGPzZpXTuKYjmzfz8hNPAHBzXBz+r7yiciLhUiIj+QR4PDeXY3IXq9HITktj4sUXU1ZSQhfgaaMR7U8/gZzfhAPstVrpD9wu6yYcot5F7O23387EiRPZvHkzGo2GjIwMvvjiCx588EHuvvtuZ2QUThLh4wNAuozE1ltpcTGPDB1KlaLQx82Nm9etk5aTon4CA1mr0fAzcGLTJrXTiFo71q4lPyuLOOBVwO3LL6FnT7VjiSYiuLY7n7miArvdrnIa11fvs+6jjz6K3W7nwgsvpLy8nAEDBmA0GnnwwQe5//77nZFROElkSAjbCwtJP3xY7SguRVEUnh8yhFPFxYQCzy5YgPb0rWEhzpZGg8nTE8rKMB88qHYaUWu4uzuxNhu+gO9rr8EVV6gdSTQhwe3aoQVsikK+2UxwWJjakVxavUdiNRoNjz/+OPn5+ezdu5dNmzaRk5PD9OnTnZFPOFFE7RY/GampKidxLd88/ji/bNmCDphx5534X3qp2pGEizLVrlA2y1Z3jUNqKtxyC4lAxL33wuTJaicSTYw+NpbTM6tzTp1SNUtTcM7NDtzc3Gjbti09evTAu7Z9onAtEa1bA5CRk6NyEtehFBWx/o03AJiQmEjyu++qnEi4MlNICABmWdylqvLSUiaPHs3BK6+EoiLo0QNmzZKttITjhYb+2bVr3z5VozQF9Z5OUFZWxosvvsiqVaswm81/mdORkpLisHDCubpcdBHPvPcecbJlzNlRFDR33MHr5eX8EhjIsHXrQCtN78S5M0VFwc6d5JjNakdp1l6fMoV1P/3EceBbd3f0n30mc9yFc+j1hLq7s7+yErPsUHDe6v1detttt/Hbb78xduxYwsPD0ciVqssK79OHUQA5OVBdLRv0/wtFUdC88w4sWIBOr2f4Tz9BcLDasYSLM9V2zsuW7QlV89sPP7B4zhw0wBOAfuZMqL1LJYQzmPz8oLKSnGPH1I7i8updxC5btowlS5bQt29fZ+QRDSk0FDw8oKICTp2ChAS1EzVan0+aRPrbbzMZML7yCvTurXYk0QSYalcq51VU1FwoyaBAg8rLzua52oYGNwLdhg+Hu+5SN5Ro8jrHxlKVnU1b2Xf4vNX7XmhAQACB8hffNGg07DKZWASkrl+vdppGa+fSpbz95pt8a7fza/fuMHGi2pFEExHasSNLgF+joqSAbWCKojD91lspyMmhFXB3QAB89JHMgxVON6RHD54ABsvdvPNW7yJ2+vTpPPXUU5SXlzsjj2hgH5aV8QKwbfVqtaM0SgXZ2Uy94gpswHBvb4auWCEnOeEwupiYP1vPyp6RDWrh+++zfskS3IDpgNv770NEhNqxRHNwekvGtDR1czQB9Z5O8Nprr3Hs2DFCQ0OJjY3FYDCc8fnt0nnGpUSEhkJuLhkyN+cvbDYbT/bvT05VFbEaDY8tX46mdkskIRwiPLzmoshiqZmbHhqqdqJmQVEUNvz0EwD3AgljxsDVV6sbSjQfUVFUANlHjtBCphGdl3oXsZdddpkTYgi1RMTGwr59ZMgV4V8smjqVTUeOYARefPJJPGUeuHA0g4EffXzYWFzM8PnzGTBpktqJmgWNRsOrUVGsBIZERsLbb6sdSTQjVSEh9AfYvJnVhYX4BgSoHcll1buIffrpp52RQ6gkMjERliwhIz9f7SiNSlFuLu/NnAnA/V26kPDMM+oGEk3WXjc3VgAxmzYxQO0wzcXSpWjff5+hAPPmgdxhEQ3I2LIlfkARYE5NlSL2PMgml81cROfOAKTLHOczHH3tNew2Gy21Wq76/nuZByucxlS7uMMsnfOcbvfGjcwYP56K8eNrnpg0CS68UNVMohmKjOT0xCGztH0/L/UeibXZbLz++ussWLCAU6dOUV1dfcbn82VEz6VE1G4VlWe3U5mTg3ttB6FmraSErp98wmIgd+JE9FFRaicSTZgpPBwOHsSclaV2lCatrKSEJ2+8kfSUFDyBiUlJ8MILascSzZGHByF6PYetVsz79sFVV6mdyGXVeyR22rRpzJw5k2uvvZaioiKmTJnCFVdcgVar5Rm55epy/OLi8Kr9fdbGjapmaTReeAGysvCPjydhxgy104gmLqRFCwDMMgDgVK9NmkR6SgrhwK06HXz+ec0+2UKowOTrC9Qs7hLnrt5F7BdffMGcOXN44IEH0Ov1XH/99Xz44Yc89dRTbNq0yRkZhRNpNBqmxcXxPhD2/0bVm6Otn3/O2ldfRQGYOROkJa9wstBWrQAwl5aqnKTpWrN4MT98/DEaYBrgPW0adOmidizRjIXW7refc+qUyklcW72L2KysLDp06ACAt7c3RUVFAIwaNYolS5Y4Np1oEIM6d6Yr4J6RoXYUVVmqq3nh7ruZYrWyuG1bGD1a7UiiGQhp1w6AUquVcilkHS43M5Pnbr8dgJuALr16wSOPqBtKNHsh4eEAmDMzVU7i2updxEZFRZFZ+5ceHx/PihUrANiyZQtGGbVyTbX92zl+XN0cKlswcSKnSksJBIbOnSuLuUSD8G7dGi9qfhjnybxYh1IUhWdvvZWivDxaA3d5eMBnn4G+3stBhHCoNklJXA4MDAtTO4pLq3cRe/nll7Nq1SoA7r//fp588klatWrFTTfdxC233OLwgML5svz8WAQsW7tW7SiqKcjMZM4HHwBwz4UX4t2jh8qJRLMRGckiYAMQLSc0h0o/fpx9GzdiBJ4DDK+/DgkJascSgsTu3XkcuLJ2bqw4N/W+HH3xxRfrfn/ttdfSokULNmzYQKtWrRgtt19d0mGrlReAxAMHGKF2GJXMvvpqSu122uh0jP7qK7XjiObE15cgb28oLYX0dGjTRu1ETUZUVBRfR0ayr7CQlhdfDHfcoXYkIWqcbj2bnq5uDhdXr5FYi8XCLbfcwvH/ue3cq1cvpkyZ0mAF7DvvvENsbCzu7u707NmTP/74o0GO25RFdO0KQHpFBSiKymka3pG1a/nu998BeHDiRHS1+3YK0WDkhOYczzxD8L59DAwKgo8+kilCovGIjKQcOHHyJBVlZWqncVn1KmINBgMLFy50Vpb/9PXXXzNlyhSefvpptm/fTseOHRk2bBhms1m1TE3B6b1iS4CSZjYvVlEUXrvhBuzAED8/Or/0ktqRRDO0wcODx4AvP/pI7ShNwryXX2bNjBlw+vv5gw9ApmqIxiQqipuAqwoL2btundppXFa958RedtllfPfdd06I8t9mzpzJ7bffzvjx42nbti3vvfcenp6efPzxx6rkaSo8Q0II0Nb8V0hvbnvF7t3LjZmZtAYmvPuuLPgQqsgwGlkBbNu5U+0oLm/n+vW8M3UqDz32GPvsdrjpJrjiCrVjCXGmgABMtedd8969KodxXfU+Y7dq1Ypnn32W33//na5du+Ll5XXG5ydMmOCwcP+rurqabdu2MXXq1LrntFotQ4YMYeM/FF5VVVVUVVXVPS4uLnZKtqYgwtOTgtJSMnbsIHHMGLXjNAxFQTN5Mv3sdvpefjmaG25QO5FopkKio2HzZsw5OWpHcWmlxcU8NXYsdrudUUC7mBh48021YwnxVxoNJi8vKCmR1rPnod5F7EcffYS/vz/btm1j27ZtZ3xOo9E4rYjNzc3FZrMRGhp6xvOhoaEcPHjwb18zY8YMpk2b5pQ8TU1EYCD7SkvJ+Ie/y6bIumgR+lWrwGhE8+qrascRzVhofDwAZrnQPi+vTphAxokTRAAPAsybB35+KqcS4u+ZAgJqitgTJ9SO4rLqXcQed6E5k1OnTmXKlCl1j4uLi4mOjlYxUeMVGRUFp06R3ky+mXJPnGDctdcyBrhm8mT0LVuqHUk0YyFJSQDkV1VhtVjQGwwqJ3I9K7/9lp/mzUNLbVeuKVNg0CCVUwnxz0yhoXDqFOZm3mjofNR7Tuz/UhQFpYFWswcHB6PT6cjOzj7j+ezsbML+YcK+0WjE19f3jA/x90ZdfDHvAbc2k5X571x1Fdk2Gz8bDGj/Z4qKEGoISEpCDyjUdJgS9ZOTkcGMO+8EYBzQuV07eP55dUMJ8R9MtYNqMo3o3J1TEfvRRx/Rvn173N3dcXd3p3379nz44YeOznYGNzc3unbtWtdoAcBut7Nq1Sp6166uF+cutndvugHBzeCKcP+yZfxUOxXmwalT0crFjVCZNjoaU+3vzSdPqprFFa1ZvJii/HwSgTv0evj8c3B3VzuWEP/KdHoaUVGRyklcV72nEzz11FPMnDmT+++/v6543LhxI5MnT+bUqVM8++yzDg952pQpUxg3bhzdunWjR48ezJo1i7KyMsaPH++0YzYbp1vPnjwJdjtoz2uQvtFSFIXXbr4ZBRgRFESHp59WO5IQYDIRAmQDBUeOQP/+aidyKdeMHEnYQw8RXVGBYfp06NRJ7UhC/KeI9u25HAgNCUFRFDSyj3G91buInT17NnPmzOH666+ve+6SSy4hOTmZ+++/36lF7LXXXktOTg5PPfUUWVlZdOrUieXLl/9lsZc4B9HR/KDRkFpdzY379uHXoYPaiZxixfPPs8tsxh24f+7cJlusCxej0zErIgLPjAx07dqpnca12GwwbhwDKiqgb1946CG1EwlxVnzbtOFxqGnCIQXsOal3EWuxWOjWrdtfnu/atStWq9Uhof7Nfffdx3333ef04zQ7ej3va7Vk22z0X7+e5CZYxFaWlvLm9OkA3NypEyZpkywaEZ+YGMjIkK5dZ8lSXc3MKVO42d+f0LVrwdsbPv0UdDq1owlxdqKian7NyKi5GJP/u/VW72GosWPHMnv27L88/8EHHzCmuewv2kRFensDkLF7t8pJnGPrM8+QW11NuEbDjd9+q3YcIc4krWfr5b2nnuKbd97h7uefxwbw+usgu4wIVxIaSrlGwwmbjbx9+9RO45LOaiT2f7ep0mg0fPjhh6xYsYJevXoBsHnzZk6dOsVNN93knJSiQUSEhLC9qIj0prjxcmkp/ebP5wug8NZbca+dUC9EY3HYzY25gP/cuTxy//1qx2nUtv32G5++/DIA9wO60aPh1lvVDSVEfen1PO/uzs8VFUz6+GNunDVL7UQu56yK2B07dpzxuGvXrgAcO3YMqNn+Kjg4mH1yJeHSIqKj4ehRMlJT1Y7ieC++CBkZJLRsCW+9pXYaIf6iwt+fX4DII0fUjtKolRYV8fRNN6EoCpcAg0NCYM4cmVMoXJLJzw8qKjCnpKgdxSWdVRG7Zs0aZ+cQjUBE69awZg0ZTWzPusNLl6J7+WXiAV57TbbeEY2SqU0bAMxlZbJS+V+8dN99ZJ06RSTwAMAHH4As7hUuyhQSAllZmNPS1I7ikmRptqgTmZwMQEZJicpJHMdut/PcjTdyg8XC8nbt4NJL1Y4kxN8KbtcODWBRFApzc9WO0yit+Pprln3+OVpgOuA1fjxcdpnKqYQ4d6baxV1ms1nlJK6p3rsTVFZW8tZbb7FmzRrMZjN2u/2Mz2/fvt1h4UTDiujZE4Asmw1reTl6T0+VE52/pY89xv6CAryAbm+/LbccRaNliI0lEMgD/o+9+w5r6mwfOP4NYYOAMmUoqAi49x511VVbR92tYq2te6++vlartdaqdbRW7XL0VWtbR21dbV11D9yK4MIJ4gIE2Tm/P4D8jICCBELg/lxXLsk5zznnfmLGnSfPuHfrFiWdnQ0dUqGiKAo/L14MwHtANW9vkD6Ewsi5pM/Rfu/xYwNHYpxyncQOHDiQv/76i7fffpt69erJT15FiHONGiw1M8M9ORn1nTvg62vokPLkaVQUX8+fD8B7DRviJOuoi8LMwwMX0pLY+6Gh+NeqZeiIChWVSsU3o0ax/tAh+gKsWgWy2p4wchndiB7Ex5OamopaptnKlVwnsX/++Sfbtm2jcePG+RGPMCATtZq65cvDpUsQFmb0SeyK3r15kJKCp4kJvWVKLVHYWVnhbGZGcHIy9y5eNHQ0hU9kJJbDh9Mf0hY0aNbM0BEJkWeOlStjAqQqCo8jI3EqXdrQIRmVXCexHh4elChRIj9iEYWBj09aEnv9uqEjyZM7p0+zZscOAEa/9x7m7u4GjkiIl3MtUQL1o0fEylyxWlfOn+fQtm30PXAA9f37ULUqpC9aIoSxMy1Thr6AtZkZpqa5TsmKvVwP7Jo/fz6TJk3ixo0b+RGPMLDTlpZ8A/yzfbuhQ8mTxd27kwTUtbGh+TffGDocIXJkVO3aHAIC5ZcuAFJTU5nevz+LJ03i2z/+AHNz+N//wMLC0KEJoR8eHowCBiUn42BmZuhojE6uk9g6deqQkJBAuXLlKFGiBKVKldK5CeN2OjGRH4F9z80NbEyUCxeodvUq9sC4BQtQyRuDMBKWZcqgBlm1K92fq1Zx6eRJSgA9AD79FNJnURGiSLC2hpIl0/6W132u5brtunfv3ty5c4fPPvsMV1dXGdhVxHj4+8O2bdx5+NDQobwaRUE1Zgx9FYVuHTtiOWiQoSMSIucylp6VOSN5GhvLN1OmADAQcGzaFJ5ZPVKIoiLe3Z2Ix48xPXYMr8qVDR2OUcl1Envo0CEOHz5M9erV8yMeYWDuNWoAcPfpU8MG8qr+/BP+/hvMzbGU6XeEkYmyt2cO8GTjRr5evtzQ4RjU6i++4GFEBJ5AD0vLtNkIZOS2KIJ+TUlhMdD+22+ZOWCAocMxKrnuTuDv7098fHx+xCIKAY+GDQF4oNGQaGQTrsdGRjKoRw8OAMro0VChgqFDEiJXzMqU4W/gyIMHxBWhRUdyK+LWLX6aNw+AkYD5hAlpg06FKIJc0mckiIyIMHAkxifXSeznn3/OuHHj2Lt3Lw8fPiQmJkbnJoybffnyZCxxEH74sEFjya3vu3fnVEICC9RqUidPNnQ4QuSaja8vNul/3y/G/eO+mTKFxPh4agItXFzSptQSoohy8fYGIPLRI8MGYoRyncS2a9eOw4cP06pVK1xcXChZsiQlS5bEwcGBkhmdk4XRUqlUuFtaAnA3KMjA0eTczUOH+PnffwEYO3IkpvJcFMbIwwPX9D8jjXyau7zoM3AgdUxNGQ2oZswAmdZRFGEu6XOyR8bGoiiKgaMxLrnuE7tnz578iEMUIh4lS3IlPJy7RjTh+oJevUgBGtnZ0Tj9Z0ghjI6jI84qFdcUhcgLF6B9e0NHZBD+27axLCUFAgJg4EBDhyNEvnJOH8yVqNEQ8/gx9jLTU47lOolt3rx5fsQhCpHR7dsz9scfcXVzM3QoOXLk66/Zf+sWamDssmVgkusfGIQoHFQqXGxsIDaWyNBQQ0dT4FKSkzG9cwcWLUrbMHcuyATwooiz8PGhJPAYiLx9W5LYXHilT/v9+/fzzjvv0KhRI+6k99v66aefOHDggF6DE4bhVasWHoDpzZuGDuWlUpKT+XLiRAB6+Pnh3bu3gSMSIm9c0rvCRIaFGTaQApaclESfGjX4sl07YhMToWVL6NDB0GEJkf88PHBO//PetWsGDcXY5DqJ3bBhA23btsXKyoqTJ0+SmJgIQHR0NJ999pneAxQGkDEK2Aj65O2bOJFr8fHYA4N++83Q4QiRZ86urqiBxKgoQ4dSoH5ZsoRrFy+yMyQk7YNp3jyQechFcVCqFG+ZmjIY8LS1NXQ0RiXXSeynn37KsmXL+O677zB7ZiWkxo0bc/LkSb0GJwzjiaMjS4FZwcFQmDuZx8XR8tdfmQ9M6tEDuypVDB2REHn2VpMmHAKmNWli6FAKTNTDh3w/YwYAQwDrd9+FmjUNG5QQBUWlomfZsrwPeJubGzoao5LrJDYkJIRmzZpl2m5vb09UMWs5KKrU5crxA7ApOZnYwvyT5hdfoLpzh+be3ry+cqWhoxFCL8yK4dKz38+YwZOoKHyBThYWacvLClGceHqm/VuMXvf6kOsk1s3NjStXrmTafuDAAcqVK6eXoIRhWTs745D+M96dQ4cMHE3WIg4dImrOnLQ78+aBlZVhAxJCX4rZh9mN0FB+/eYbAEYD6rFjoUwZg8YkREFLdHPjOnDp6FFDh2JUcp3EDho0iFGjRnH06FFUKhV3795lzZo1jB8/niFDhuRHjMIA3K3Tljy4e/q0YQPJgqIofNq1K10TEzlQtSp07WrokITQHw8PPgYGnjjBvdu3DR1Nvls8cSKpKSk0Aeo7O4MsVCKKoVOKQnfg459+MnQoRiXXc5dMnjwZjUZDq1atePr0Kc2aNcPCwoLx48czYsSI/IhRGICHoyMX4+K4Exxs6FAyOfD55xy5dw8zwPuzz2TwhyhaPDw4A9xJTCQiLAzXjJbZIuje7dsc37ULNTAKYPp0sLMzbFBCGIBr+fIARBbj5aZfRa5bYlUqFVOmTOHRo0ecP3+eI0eOcP/+fWbOnJkf8QkDcffwAODujRsGjkRXcnw8C6ZPB6B3jRp4vvGGYQMSQt9Kl9ZOtxNZCL9E6pOrpycbBwzgE8DHzw8GDTJ0SEIYhEulSgDEJicTJ4lsjr3yrPDm5uZUqlSJevXqYStTQhQ57hUqAHD33j0DR6Jrfb9+3ExKwlGl4r0NGwwdjhD6Z26Oi4UFAJGXLhk4mHx26xZO331HO4A5c+CZGW+EKE5sfH2xSf/7fjHpD68POe5O8N577+Wo3I8//vjKwYjCwyN9uqrw6GgDR/L/Hl2+zHfpievQnj2xlYGEoohysbeHyEgii+jE5/FxcVw4dow6K1dCQgI0awZvvmnosIQwHA8PXIDrQOTNm3j7+xs6IqOQ45bYlStXsmfPHqKionj8+HG2N1E0VO/Ykc3AGkUBjcbQ4QCw8p13iFMU/C0s6CRTaokizMU5rUNBZBEd2PXTvHkMbtmSOatXp22QhQ1Ecefmhkv6n0W9G5E+5bgldsiQIaxbt47r168zYMAA3nnnHUrJ+r5FlpWfH55qNSQnQ3g4pPeRNZj4eBLOnEENDBk3DpP0n1uFKIpc3N3hwgUiC1l3Hn2IvHOH1V98AUBtgD59oG5dg8YkhMGZmuJiZQXx8dwLCTF0NEYjxy2xS5YsITw8nIkTJ/LHH3/g5eVFjx492LlzJ0phXtVJvBpTU/DySvu7MCw/u2YN/0lM5E9PTxqmD+wSoqhy8fZGDSjpy3oXJUv/+18Snj6lOtDK3BxmzTJ0SEIUCq95eDAYqCPzJOdYrgZ2WVhY0Lt3b/7++28uXrxI5cqVGTp0KN7e3sTGxuZXjMJAtlhaMhU4+scfhg1EUWDRIgCcR4/GRAZ/iCKucoMGHAJ+rFHD0KHo1aWTJ/lz1SoAxgCqUaPA29ugMQlRWDSvWpX3geolShg6FKPxyrMTmJiYoFKpUBSF1NRUfcYkComglBS2AxeCggwax+Xvvyfs/HmwsYGBAw0aixAFQe3lVeSWnlUUhQXjxqEoCu2AKqVKwX/+Y+iwhCg8MrrtFdG+8PkhV0lsYmIi69ato02bNlSsWJFz587x9ddfc/PmTZlmqwhyT+9OcPfmTYPGsWjKFN4GNtSpAw4OBo1FiAKR8WFWhJLYfVu2ELR3LxbAcIBp0+T1LMQzUkqX5jpwwsANR8Ykx0ns0KFDKV26NJ9//jlvvPEGt27d4tdff6VDhw6YmLxyg64oxDx8fQG4e/++wWK4vnMnR+7fxwRoMHWqweIQokB5eLAEeC8qimN//mnoaPTCzNwcdwcH+gBuFSrA4MGGDkmIQiW2ZEm6A4P//pukItgfPj/keHaCZcuWUaZMGcqVK8e+ffvYt29fluU2btyot+CEYblXrw7AHQP2d/55wgQAmrm64tGqlcHiEKJA2dlxTa3mbGoqN0+coF4RWJmucbVq/JqQgAJpCxuYmxs6JCEKFXt/f8yBJOD+3bt4+PgYOqRCL8dJbL9+/VDJPH7Finu9egBEpKSQmpCA2tKyQK8fc+MGW8+dA6DX2LEFem0hDEqlwqVECYiKIvLKFUNHox9Tp2KRkACNG0OXLoaORohCR+XpiQtwG4i8dUuS2BzIcRK7UiaXL3aca9TAFEgBIo8do3SzZgV6/d9HjiQB8LWwoPb48QV6bSEMzaVUqbQk9sYNQ4eSJ99/+iklExN5a8WKtA8cWdhAiKylr9p1G4i8fDltJTvxQkbRmTUsLIyBAwfi4+ODlZUV5cuXZ9q0aSQlJRk6tCJNbWpKaTMzTIDIU6cK9NopiYn8sm0bAD3ffhuV9LsWxYyzmxsAkRERBo7k1d28fJnvZ8xg9qefchqgRw9o0MDAUQlRSFlb45LezUZW7cqZHLfEGtKlS5fQaDQsX76cChUqcP78eQYNGkRcXBzz5s0zdHhF2ndNmmC/Zw9m1tYFet1bP/zA05QU7FUq2i1cWKDXFqIwcC1TBg4dIvLhQ0OH8sq+mjSJlORkGgF1zMxg9mxDhyREoeZiZwcPHhB59aqhQzEKRpHEtmvXjnbt2mnvlytXjpCQEJYuXSpJbD5zCgiAPXsKfNUun40b2Qpcf+cdLJ2cCvTaQhQGzhUqAHD/yRMDR/JqgvbtY8+mTaiB0QAjRkC5coYNSohCzsXZOS2JvXXL0KEYBaNIYrMSHR1NqVKlXlgmMTGRxGemqYiJicnvsIqejI7lBZnEnj8Pu3ZhaWJCwMyZBXddIQoRl0qVUAMlTExIePoUywL+NSQvNBoNC9IHY3YBypUsCVOmGDYoIYxAjYoVGRwcjL+/v6FDMQpG2dHwypUrfPXVV3z44YcvLDd79mzs7e21N6/0yftFzl01NeVjYM7u3QV2zSvTpqGBtBHMZcsW2HWFKEysK1TgMPCns7NRJbAA29es4dLJk9ioVHwA8N//wksaHYQQ4F+9Ou8DTWxsDB2KUTBoEjt58mRUKtULb5cuXdI55s6dO7Rr147u3bszaNCgF57/o48+Ijo6Wnu7Jc3zuZbg6Mg2YO+DBwVyvceXLtFv40beBqICAwvkmkIUSh4eaW/QERGQkmLoaHIsJTmZb9JbXQcoCqV8fGDYMANHJYSR8PRM+7cIrdaXnwzanWDcuHEEviRRKfdMH6q7d+/SokULGjVqxLfffvvS81tYWGBhYZHXMIs1j4YNAbiv0ZD48CEWjo75er0NI0aQBNhaW2PfoUO+XkuIQs3VFdRqSE2Fe/f+fynaQs7UzIx5333Hmo4d6Z2aCp9/DvI+LETOeHhwHbgXHEy12FisbW0NHVGhZtAk1tnZGWdn5xyVvXPnDi1atKB27dqsWLFClrotIPbly2MNPAXCDx/GOx9XDkqOi+O39G4Lvd99V6bVEsWbWs1vJUqwLSqKdgsX0mPuXENHlGMBGzbwaWoq1K8P3bsbOhwhjIenJ8OBe9eusfLiRaqkLzoksmYUWcKdO3d47bXXKFOmDPPmzeP+/ftEREQQYcTzJxoLlUqFe/pKXXeDgvL1WrsmT+aBRoOTiQmtjegDW4j88sDGhrPA1fSV6wq7qIcP0wZm/vBD2ob582VhAyFyI33BA4DIa9cMGooxMIrZCf7++2+uXLnClStX8MzoL5JOURQDRVV8lHZw4EpEBHcvXMjX66xbsQKAt5s1w6xEiXy9lhDGwNnZGe7cIdII+seFnjnDgAYNeNvNjVEaDSZdu6YtMSuEyLlSpXAxMQGNRhY8yAGjaIkNDAxEUZQsbyL/eZQuDcCdfPxWeO6HH7gQF4cZ0PWrr/LtOkIYE9f0L+2R9+8bOJIXUxSFBWPHkpiQQGRYGCampml9YYUQuaNS4ZLeiBN5+bKBgyn8jKIltqClpqaSnJxs6DAKDdcyZVCdOkXM/fskJCTkyzV2pS9a8Xq5clhXqJBv1xHCEMzMzFCr1bk+zjl9YOv96Gh9h6RXB7Zu5fju3ZirVIxQFBg6FHx9DR2WEEbJpVQpiI4m8sYNQ4dS6EkS+wxFUYiIiCAqKsrQoRQqDVu2pOfvv6OxsuJ6Pix6YBoZycjLl2kCJIwalS/XEMLQHBwccHNzQ5WLPqKuAQEAPEpIICkxEfNCOMo/JTmZhePHA9BbUXC3t4epUw0clRDGy6V0abh+nUgZ9/NSksQ+IyOBdXFxwdraOlcfNkWZqmlTzAElPBwfb2+9D9QwXb0ak9RUajVqRNIHH+j13EIYmqIoPH36lMjISABKp3fPyQl7Pz/MgSTgQXg47t7e+RJjXmxYvpwbISGUNDFhgEaTtjKXLBUtxCtzKVsWDh3i3sOHhg6l0JMkNl1qaqo2gXXM57lQjY6fHwCqmBgs4+P1uvJOUnQ0Sd99hylgMmYMlukzIQhRlFhZWQEQGRmJi4tLjrsWqDw9KQ0kqlTEFsJfiGIeP+bb6dMB+FCjwbZsWRgxwrBBCWHkylauzGDAI/2zV2TPKAZ2FYSMPrDWRra8Y4GwtmaelRWDgGu7dun11NtHj6bDw4escnCAzp31em4hCpOM95Zc9bf38OA34E9FoWIhbIUNDgoiKT6eciYmdAb47DOQL6JC5Ekpf3/eB9q/Qj/64kaS2OdIF4KsnTUx4RRw8/hxvZ1T0Wj4+eefiQVUjRqBqfwwIIquV3pvsbZG5eCQ9nchnGarfuvWbOrWjZkaDaZ16kCvXoYOSQjjl7E63+3bho3DCEgSK3LEPb0LwR09zlsXtHgxlxMSsADekmm1hMhaYV5LPTgYp7Vr8QOYNw9klT0h8s7Tk9vAkTt3iAgLM3Q0hZq84xRxe/fuRaVS5XnGBff0b4Z3czjlx8qVK3HIaEHKxs9ffAFAx0qVsE+fSuhZYWFhqFQqTp8+ne059FW//LZ582YqVKiAWq1m9OjROXp89MXb25uFCxcWyLWE/h0wN+c9YM6cOYYOReviiRMc370bJk2C1FR46y1o3tzQYQlRNLi5MR8YrtFw6NdfDR1NoSZJrBFTqVQvvE1PH3ChD+7lywNwV09TftzZt4994eEA9CqASdFPnTpF9+7dcXV1xdLSEl9fXwYNGkRoaCjw/wlzxs3R0ZHXX3+dU6dOac+RXTI4ffp0atSo8cLrf/jhh7z99tvcunWLmTNn6rNqWtklxsePH+eDQjLrQ2BgIJ2l73OuJNjbcxYIuXLF0KEAoNFo+HzoUIa0asUvf/wBajUUogRbCKNnaopreh/6yJAQAwdTuEkSa8TCw8O1t4ULF2JnZ6ezbXz63I25lZSUlGmbR5UqANzR06Trv4wdiwLUd3SkXKdOejlndv78808aNGhAYmIia9asITg4mP/973/Y29sz9bn5LP/55x/Cw8PZuXMnsbGxtG/fPs+tvLGxsURGRtK2bVvc3d0pUcBL6jo7O8uARSPmmj6gK/LRI8MGkm7nunVcPH4cGxMTWgF8+KF2BhMhhH64lCwJwL1C0J3g/NGj3L561dBhZEmSWCPm5uamvdnb26NSqXS22draassGBQVRp04drK2tadSoESHPfLvLaEn8/vvv8fHx0U5zFRUVxfvvv4+zszMfzpgBwN2kJJTUVADOnDlDixYtKFGiBHZ2dtSuXZsTJ07oxLhz504CAgKwtbWlXbt2hIeHk/zwIX+mt3CWrloVT09PLCwsqFGjBjt27Hhhnbdt20bFihWxsrKiRYsWhL3kBf706VMGDBhAhw4d2LJlC61bt8bHx4f69eszb948li9frlPe0dERNzc36tSpw7x587h37x5Hjx594TVeZO/evdqktWXLlqhUKvbu3Ztl2aVLl1K+fHnMzc3x8/Pjp59+0tn/5ZdfUrVqVWxsbPDy8mLo0KHExsZqrzNgwACio6MztcQ/34KsUqn4/vvv6dKlC9bW1vj6+rJlyxada23ZsgVfX18sLS1p0aIFq1atemm3jYzn0fLly/Hy8sLa2poePXoQnf7FZ/r06axatYrff/9dG2N2j4X4f84VKwJwPy4OjUZj0FiSEhP5+qOPAAjUaHAsUQKmTTNoTEIURS6urgBEGrgvvKIofPbhh3Tx9eWfQti1QZLYbCiKQoqSYpCboih6r8+UKVOYP38+J06cwNTUlPfee09n/5UrV9iwYQMbN27U9kHt3r07kZGRbN++nZ8PHUIN2AO3jx0DoG/fvnh6enL8+HGCgoKYPHkyZmZm2nM+ffqUefPm8dNPP/Hvv/9y8+ZNxo8fj9m6daxSFPpZWzPvxAnmzZvH2bNnadu2LW+++SaXs1kv+tatW3Tt2pVOnTpx+vRp3n//fSZPnvzCeu/cuZMHDx4wceLELPe/qF9qxtyeWbVM59SzXxg2bNhAeHg4jRo1ylRu06ZNjBo1inHjxnH+/Hk+/PBDBgwYwJ49e7RlTExMWLx4MRcuXGDVqlXs3r1bW69GjRplao1/UUv8J598Qo8ePTh79iwdOnSgb9++PEpv6bt+/Tpvv/02nTt35syZM3z44YdMmTIlR/W9cuUKv/zyC3/88Qc7duzg1KlTDB06FIDx48fTo0cP7ZeZ7B4LocspIAATIFVReJS+YIKh7Fy3jnu3buGiVtMb4KOPwMXFoDEJURS5eHkBEHn/vkHjOPnvv4SeOYOFpSV1W7UyaCxZkTmNspFKKpuiNhnk2l0cumCq5/+aWbNm0Tx94MXkyZPp2LEjCQkJ2lbXpKQkVq9ejbOzMwAHDhzg2LFjREZGYpG+1OWBMmUwu3mT3zdtwqthQ27evMmECRPw9/cHwPe5tdKTk5NZtmwZ5dP70w4fPpyZn3wCx4/jCUSYmTFx4kR6pU/LM2fOHPbs2cPChQtZsmRJpjpktFTOnz8fAD8/P86dO/fCAS8ZCXFGjDkVFRXFzJkzsbW1pV69erk69lnm5ua4pH/IlypVCjc3tyzLzZs3j8DAQG3CN3bsWI4cOcK8efNo0aIFAKNHj9aW9/b25tNPP2Xw4MF88803mJub67TGv0xgYCC9e/cG4LPPPmPx4sUcO3aMdu3asXz5cvz8/Jg7dy6Q9jifP3+eWbNmvfS8CQkJrF69Go/0gYBfffUVHTt2ZP78+bi5uWFlZUViYmKOYhRpTMuWxRG4D9y/cwcnAz12iqKw5ssvAeiVmoqlpyc885wUQuiPS/rnZmRMjEHjqNGkCZ+PH8/9efOwHzYM1q0zaDzPk5bYYqJatWravzOWvYx8plWnbNmy2gQW0roKxMbG4ujoiK2tLba2thxOn7Mu/uJFIC3Rev/992ndujWff/45V5/rM2Ntba1NYDOuWysyEi5fRrG3Z3F0NI0bN9Y5pnHjxgRnM41XcHAw9evX19nWsGHDF9Y7t63ajRo1wtbWlpIlS3LmzBnWr1+Pa/rPOvkpODj4pY/FP//8Q6tWrfDw8KBEiRK8++67PHz4kKdPn+b6es8+H2xsbLCzs9M+H0JCQqhbt65O+ecT+YznhK2tLYMHD9ZuL1OmjDaBhbT/H41Go9N9ReSShwcZr8x7168bLIxju3Zx5dw5rIAukLawQfqvFUII/XIJCAAgLjmZWAMmsmq1mtZHjqT98pLFLEKGJi2x2VCjpotDF4NdW9+e/Zk/Y9L1Z/vX2djY6JSPjY2ldOnSOn0WXSZPhg0b6FS1KpDWx7FPnz5s3bqV7du3M23aNH7++We6dOmS6ZoZ13UAxgMfvPEGcWvW6K+C2aiY3p/w0qVLL014AdavX0+lSpVwdHTM1NXAzs5O27/zWVFRUdjb2+sl3uyEhYXxxhtvMGTIEGbNmkWpUqU4cOAAAwcOJCkpKdcDt7L6v8lNf8tnpz2zs7PL1bVFLjk54WFiwmONhlQD/rSYnJiIl5MTjR88oETlytC3r8FiEaKosy5fnhGAo5sbpgZaCEhRFFTHj8OBA2BmBsOGGSSOF5GW2GyoVCpMVaYGuRWGVcNq1apFREQEpqamVKhQgQoVKnDS3JwPgJXbtmnLVaxYkTFjxvDXX3/RtWtXVqxYke0540+cIATYB1h/8AHu7u4cPHhQp8zBgwepVKlSlscHBARwLL0/boYjR468sB6vv/46Tk5OfJE+J+3znh+o5OXlRfny5bPsK+vn50dQUFCm7SdPntQmy68qICDghY9FUFAQGo2G+fPn06BBAypWrMjdu3d1ypubm5OaPuguL/z8/DIN0Dv+3EptGc+JChUqaLtLANy8eVMnriNHjmBiYoJf+uh1fcVYrKhUzC5blj+AVs+0oBe0Jm3b8pulJUMBxoyRhQ2EyE+envQH3njyBEsD/OLx8N49OleowMpBg0gB6N0b3N0LPI6XkXchkaXWrVvTsGFDOnfuzF9//UVYWBiX4+I4CZy9fp34+HiGDx/O3r17uXHjBgcPHuT48eMEpP8EkpXzq1cD0NTNDc9mzZgwYQJz5sxh/fr1hISEMHnyZE6fPs2oUaOyPH7w4MFcvnyZCRMmEBISwtq1a1m5cuUL62FjY8P333/P1q1befPNN/nnn38ICwvjxIkTTJw4Ueen8JcZM2YMW7duZdasWQQHB3P+/HmmTJnC4cOHs405pyZMmMDKlStZunQply9f5ssvv2Tjxo3awVkVKlQgOTmZr776imvXrvHTTz+xbNkynXN4e3sTGxvLrl27ePDgwSt1M4C0OW0vXbrEpEmTCA0N5ZdfftE+zi/7gmVpaUn//v05c+YM+/fvZ+TIkfTo0UPbB9bb25uzZ88SEhLCgwcPSE5OBqBVq1Z8/fXXrxRvsZDRRcOQI5U3bEB9+zbWzs7SCitEfst4zcfFgQG6E/z2zTfcuXaNPWfPpv02PGZMgceQE5LEiiypVCq2bdtGs2bNGDBgABUrVmTTv/8CcO/pU9RqNQ8fPqRfv35UrFiRHj160L59ez755JMsz/fk+nX+vXULgN7pI+pHjhzJ2LFjGTduHFWrVmXHjh3aqZ2yUqZMGTZs2MDmzZupXr06y5Yt47PPPntpXd566y0OHTqEmZkZffr0wd/fn969exMdHc2nn36a48ekUaNGbN++ne3bt9O4cWNee+01Dh06xK5du6iSPo/uq+rcuTOLFi1i3rx5VK5cmeXLl7NixQpee+01AKpXr86XX37JnDlzqFKlCmvWrGH27NmZ4hs8eDA9e/bE2dk529bnl/Hx8eG3335j48aNVKtWjaVLl2pnJ8gY5JedChUq0LVrVzp06MDrr79OtWrV+Oabb7T7Bw0ahJ+fH3Xq1MHZ2Vnb+nz16lUePHjwSvEWCwZMYh9FRvL7Dz+QOG9e2oahQyF9QKgQIp9YW3PPzo7DQMg//xTopRPi4/k1/X37HUDVsiW8ZEEfg1GKkejoaAVQoqOjM+2Lj49XLl68qMTHxxsgMuMQfuyYUhuU+qCk5PJx+qljR6U2KD0sLRVNamo+RSjyy6effqp4enq+sMy0adOU6tWrF0xARigv7zFX+vVTBoDyoZdXPkT2YsumTVNqgzISFMXcXFEiIgo8BiGKo2XOzkptUGZ16FCg1/1t2TKlNihvqFRKMijKn38W6PUV5cX52rOkJVbkmHONGpgCKcD95/pMvkhqYiK/pC9i0KtXL1TSl67Q++abbzh+/Li268LcuXPp37+/ocMqtszc3TkLXAgPz5d5pLOTEB/Pb+ktMm8AvPMOFMBsHUIItDMGRabPDFQQNBqNdiq93oqCqZ8ftG9fYNfPLckmRI6pzcxwSx/Vfue5AVYvsn/qVO6mpmKvUtE+fY5XUbhdvnyZt956i0qVKjFz5kzGjRunXQFMFDyX9AF+8SkpxBVg/7gda9bw+P593IAWIPPCClGAXDw9Ad3pMPPbga1buRkaiq1KxVtQ6AdxFt7IRKHknj6d0t1z53J8TN1//2UCMOj117EsVSqfIhP6tGDBAu7evUtCQgKhoaFMnTr1pdO8TJ8+XWfqLaE/luXKkTGR2b0CapV5tkWmF2DaujWkT68nhMh/rj4+AES+YLlvfct4zXdRFGwcHeHddwvs2q9CkliRK56urrgAqffu5eyAEyewOXqUnmZm9HrB9FtCiBd4ZsGD+wWUxB7euZPrwcHYAJ0Bxo4tkOsKIdK4pE9NGJWQQGJCQoFcc8yXX9LByYleAEOGQC7nIC9oksSKXPmof3+2AZ1zOrn/okVp//bsCekrhQkhcsndnYzZeO9dulQgl8xokekM2Pr7Q9u2BXJdIUQau4oVyZgP5v5z84LnF/+EBGY8eICruXmhXNzgeZLEilxRZSw7l4PlL6POnydwzRp+BzQjRuRvYEIUZebmuKRPa3W/AJbwTUxIQG1igpq0rgSMHl2o+8UJURSpPD21X14LbHDXggVp//bpA+nzexdmsuysyJ30Pjo5SWI3jhzJeUUh1caGN+vWzefAhCja3EuWpHR4OKbx8fl+LQtLS7764APu/fUXrkbQL06IIsnTk/cBBShTtmy+Xmrp1Kk8CA2l/2+/UQYK7eIGz5MkVuRKvIsLo4CIyEh+e/QI82wGaqXExvLbvn0A9AoMLBRL6QphzAbWrs3AP/+Ehg0L5oILFuAKMHhwoe8XJ0SRVKoUHS0sIDERNJp8u0xsTAw/L15MXEwMLYAyrVuDAZe4zg35fUjkiqWHB8HAXSD88OFsy+2eOJFIjQZHExPazJlTYPEJUWQV0KpdR/7+m/tbt8LBg2BmZhT94oQoklQqSJ9mi3zsTvD7Dz8QFxODt4kJjcCoBnFKElvE7d27F5VKRZSepuhQmZhQOr1v3t2goKwLKQo//fADAN1atsTcxuaVrhUWFoZKpXrhtE36rl9+2bx5MxUqVECtVjN69GhWrlyJg4NDvl4zJ4+fMCIZSWw+fpjFx8UxpVcvOr35JhcBeveWAZlCGFCUiwuHgWM7d+bL+VNSUvg5fQB2X40Gk4AAoxrEKUmsEVOpVC+85dfk9B7pMxPcuXAhy/0Xvv2W4KQkTIFuX32VLzHk1qlTp+jevTuurq5YWlri6+vLoEGDCA0NBf4/4cu4OTo68vrrr3Pq1CntOby9vVm4cGGmc0+fPp0aL1lX+sMPP+Ttt9/m1q1bzJw5k549e2qvXdjlpH4i/8U7OzMA6Lh2bb5Nt7N19WqiHz3CVaPBD4ymX5wQRdVpU1NGAEtWr86X8+/esIHwGzcoaWJCByj0ixs8z3giFZmEh4drbwsXLsTOzk5n2/jx41/pvElJSS/c757eMnP32rUs9/88axYA5U1McPT3f6UY9OnPP/+kQYMGJCYmsmbNGoKDg/nf//6Hvb09U6dO1Sn7zz//EB4ezs6dO4mNjaV9+/Z5buWNjY0lMjKStm3b4u7uTokSJbCyssLFxeXlBwuRztLHh1DgXkJCvky3o9FoWJs+Mrk3oG7RAuTLixAG5eLtDcD9x4/1fm5FUfhf+iqa3TUaLJyc0paWNiKSxL5EQmICCYkJOuuVp6SkkJCYQHJycpZlNc90wE5JTSublJyUo7K54ebmpr3Z29ujUql0ttna2mrLBgUFUadOHaytrWnUqBEhz0zTk9HS9v333+Pj44NleneBqKgo3n//fZydnbGzs6Nly5acOXMG9/QZCm7cuEGLFi0oUaIEdnZ21K5dm7NbttDh9m0aAFcsLNi5cycBAQHY2trSrl07wsPDtdfVaDTMmDEDT09PLCwsqFGjBjt27Hhhnbdt20bFihWxsrKiRYsWhIWFvbD806dPGTBgAB06dGDLli20bt0aHx8f6tevz7x581i+fLlOeUdHR9zc3KhTpw7z5s3j3r17HD16NCf/HVnau3cvJUqUAKBly5aoVCr27t2r051AURRat25N27Zttc+zR48e4enpyccff6w91/fff09AQACWlpb4+/vzTfqa9hmOHTtGzZo1sbS0pE6dOjqtyNnJiGPz5s34+vpiaWlJ27ZtuXXrlnb/J598wpkzZ7St1CtXrnzlx0O8OpWn5/8veJAP/WIPbN3KzcuXsQXeBGmFFaIQcKlQAYAHsbGkpOQuR3iZ0wcOcPH4ccxVKt4GGDoUrKz0eo38JknsS/Qb2Y9+I/vxJPaJdtuWv7bQb2Q/fvj5B52yg8YPot/Ifjx49EC7beeenfQb2Y9lq5fplB32n2H0G9mPOxH//2G099De/KkEMGXKFObPn8+JEycwNTXlvffe09l/5coVNmzYwMaNG7V9KLt3705kZCTbt28nKCiIWrVq0apVK0qlfzO8+eABnp6eHD9+nKCgICZPnozbhg00VBQ+qlyZUykpzJs3j59++ol///2Xmzdv6rQOL1q0iPnz5zNv3jzOnj1L27ZtefPNN7l8+XKWdbh16xZdu3alU6dOnD59mvfff5/Jkye/sN47d+7kwYMHTJw4Mcv9L+qXapX+Yn5Zy/SLPPuFYcOGDYSHh9OoUSOdMiqVilWrVnH8+HEWL14MwODBg/Hw8NAmsWvWrOHjjz9m1qxZBAcH89lnnzF16lRWrVoFpLX2vvHGG1SqVImgoCCmT5+e45b4p0+fMmvWLFavXs3BgweJioqiV69eAPTs2ZNx48ZRuXJlbQt/z549X/nxEHng4fH/Cx5cvar302csbtAVsPb1hY4d9X4NIUTulPT3Rw1ogIcREXo9t09AAB8MHEgfRaGUuXlaEmtkZIqtYmLWrFk0b94cgMmTJ9OxY0cSEhK0ra5JSUmsXr0aZ+e0tp4DBw5w7NgxIiMjsbBIWzNk3rx5bN68mWvx8TgBropC3Vat8E/vMuBbujQMGgRAcJs2JF+4wLJlyyhfvjwAw4cPZ8aMGdqY5s2bx6RJk7QJ05w5c9izZw8LFy5kyZIlmeqwdOlSypcvz/z0nz/8/Pw4d+4cc14w+0FGQuyfy24NUVFRzJw5E1tbW+rVq5erY59lbm6u7TZQqlQp3LKZPNrDw4Ply5fTr18/IiIi2LZtG6dOncLUNO0lOm3aNObPn0/Xrl0B8PHx4eLFiyxfvpz+/fuzdu1aNBoNP/zwA5aWllSuXJnbt28zZMiQl8aYnJzM119/Tf369QFYtWoVAQEBHDt2jHr16mFra4upqWm2sYsCYm+Pi1oNqanc1/OqXZdOniRo717UQE+QxQ2EKCTUZcrgDESQ9guMa8ZsBXrg4OTEBxnd5d55B1xd9XbugiJJ7EusXpzWmdrC3EK77c3X36RDqw6oTdQ6Zb+b9x0A5mbm2m1tW7SlVdNWmDz3gbDksyWZyr7W6DW9xv6sas/M+VY6vU9rZGQkZcqUAaBs2bLaBBbgzJkzxMbG4ujoqHOe+Ph4wi0tyfjR3+X99/npf/+jdevWVDx5kojoaLr7+HC7alWsra21CWzGdSMjIwGIiYnh7t27NG7cWOf8jRs35syZM1nWITg4WJtoZWj4kjkzn+0GkhONGjXCxMSEuLg4ypUrx/r163EtoBd29+7d2bRpE59//jlLly7F19cXgLi4OK5evcrAgQMZlP4lAdK6tdinD7ILDg6mWrVq2i8lkPmxqVy5Mjdu3ACgadOmbN++HQBTU1PqPrMYhb+/Pw4ODgQHB+cpgRd6plLhYmcHjx8TeeWKXk995fx5LC0seC0xEdeSJaF/f72eXwjxitJ/gYkA7t28SZXnPgPz5No12LQp7W8j7T4kSexLWFpYZtpmamqqbSF7aVm1KabqnJfNL2ZmZtq/MxYeeLY/rs1z02DFxsZSunRp9u7dm+lcDg4OsHYtREZy/Jdf2HjjBtu3buX4rl3cAKyrVAETE51rZlw3t0llXlWsWBGAS5cuvTThBVi/fj2VKlXC0dExU1cDOzs7oqOjMx0TFRWlTSbz4unTpwQFBaFWq3W6VMTGxgLw3XffZUri1WrdL1Ivsm3bNm0/bisj6/ck0rg4OaUlsel9lvXljX79aLp8OQmHDsEHH8ArTosnhNAzN7f/X3pWT7/ARD18yH/79KG7hQXNNBpUr78OVaro5dwFTX4vElmqVasWERERmJqaUqFCBZ2bk5OTdvnZshoNY8aM4fO2bbkBWACd0/t1voidnR3u7u4cPHhQZ/vBgwepVKlSlsdk/MT9rCNHjrzwOq+//jpOTk588cUXWe5/fuYBLy8vypcvn2VfWT8/P4KymBv35MmT2mQ5L8aNG4eJiQnbt29n8eLF7N69GwBXV1fc3d25du1apv8Ln/T/h4CAAM6ePUvCM1MvPf/YlC1bVnucR8aco6S16J44cUJ7PyQkhKioKAICAoC0LhGpqal5rp/Iu9Lu7rgDDvr+qf/kSewPHcLV1BSGD9fvuYUQr87MjC6lSjEdaFy5sl5OuWHZMo789RfLt25N22BEixs8T5JYkaXWrVvTsGFDOnfuzF9//UVYWBiHDh1iypQpnDhxgmVPntAJWLJwITdu3GD17NkA1HRywiF94NfLTJgwgTlz5rB+/XpCQkKYPHkyp0+fZtSoUVmWHzx4MJcvX2bChAmEhISwdu3al46Ut7Gx4fvvv2fr1q28+eab/PPPP4SFhXHixAkmTpzI4MGDc/yYjBkzhq1bt2oHV50/f54pU6Zw+PDhbGPOqa1bt/Ljjz+yZs0a2rRpw4QJE+jfvz+P06dV+eSTT5g9ezaLFy8mNDSUc+fOsWLFCr5MH4zTp08fVCoVgwYN4uLFi2zbto158+bl6NpmZmaMGDGCo0ePEhQURGBgIA0aNNB2JfD29ub69eucPn2aBw8ekJiYCEC/fv346KOP8lRvkTvNGzRgC/DRM90/8uJpbCznjx6F9Km16NHj/1cIEkIUCvXLl+cNoEwufnnLTlJiIr98/TUA72g0qCpVgtdfz/N5DcXoktjExERq1KghKxHlM5VKxbZt22jWrBkDBgygYsWK9OrVixs3buDq6kqCrS3hwMmjR+lUoQKH0pOtYT/88OITP2PkyJGMHTuWcePGUbVqVXbs2MGWLVu0fUGfV6ZMGTZs2MDmzZupXr06y5Yt47PPPnvpdd566y0OHTqEmZkZffr0wd/fn969exMdHc2nn36a43gbNWrE9u3b2b59O40bN+a1117j0KFD7Nq1iyp5+Cnm/v37DBw4kOnTp1OrVi0gLWl1dXXVJtnvv/8+33//PStWrKBq1ao0b96clStXaltibW1t+eOPPzh37hw1a9ZkypQpLxzw9ixra2smTZpEnz59aNy4Mba2tqxfv167v1u3brRr144WLVrg7OzMunXrALh586bOlGmiAGQkmHqaYuuPlSsJbNCAqWvWpG0w0n5xQhRpelxyesfatTyMiMBFreZ1SGuFTe9iaIxUSkF3UsyjUaNGcfnyZbZv386pU6dytZJQTEwM9vb2REdHY2dnp7MvISGB69ev68yTKrL3W9++fL52LU2dnfH28OCn06ep5+TEN/fvGzo0kQsrV65k9OjRhX7Z3qJAL+8xmzZB165Qvz68pCvNy6SmptLNz4/bV68yCejetCn8+2+ezimE0L/4wYM5tXw5T956i7abN7/yeRRFoVe1alw9f56RQD8XF7hxAwphzvOifO1ZRtUSu337dv76668c/0wq8o97esvjtUeP2JzeIt5r9GjDBSREceDhwTig44kTBGfRPzs3/t2yhdtXr2KnUvEGSCusEIVUlL09I4Hpf/yRp8HRR/76i6vnz2NtYkIXgGHDCmUCmxtGk8Teu3ePQYMG8dNPP2FtbZ2jYxITE4mJidG5Cf1wr1MHgDupqbwOVLS0pMlLFh4QQuSRhwcPgHupqdxLny7tVWUsbtBNUbAqVw7efFMPAQoh9M0pfZ7zZI2GqAcPXlI6exlLzL6l0VDCwgJyMI94YWcUSayiKAQGBjJ48GDqpCdPOTF79mzs7e21Ny8vr3yMsngp3aCB9u/BwP+++goTPXQ6FwUrMDBQuhIYE1dXvUy3c/7YMU4fOIAp0ANg1CiQ168QhZKZtzcZM7bfu337lc6hKAqdAgOpVLIkvQH69YNn5oY3VgZNYidPnqxdjz2726VLl/jqq6948uRJrkdCf/TRR0RHR2tvt/Q8t2JxZlGiBM7pH3p37O0xeecdA0ckRDFgaopL+hyukaGhr3yajFbYtoCznR0MGKCP6IQQ+eGZJadfdY5olUpFu/r1WR0VhTukrcpXBBh0sYNx48YRGBj4wjLlypVj9+7dHD58WLv8aYY6derQt29f7frxz7OwsMh0jNCfcvb2+D56hNnbbxt9vxohjIVzyZIQF0fkK3YnSExIIDh9XuA+kLZUdIkS+gtQCKFfHh44A8GQt9X6Fi0CRYH27SGb+diNjUGTWGdnZ52lTrOzePFinamQ7t69S9u2bVm/fn2mFYxEwekzdSp/LltG6Y8/NnQoQhQbrm5ucPs2kXfvvtLxFpaW/LZ+Pafq1MFPrYYRI/QcoRBCr2xscDU3h6QkIkNCcn342oUL0cTG0vmHH7AFo17c4HlGsexsmTJldO7b2toCUL58eTxlYm6DaTx6NI2LyE8SQhgLZ09POHGCyDwM8DD9+mvqAnTrBmXL6i02IUT+cHFwgMhIIq9fz9Vx8XFxfD9jBjGPH+MBtKhaFVq1ypcYDcEoklghhBBp3Hx98QDcX6GrVFhICB5WVpitXZu2QabVEsIoNK1QAefISCo0apSr47asWEHM48d4qtU0S001+sUNnmeUSay3t3ee5koTQghj5VmtGr8DBATk6riUlBRGtmtHysOHLExKomLDhvDMLCNCiMKrgr8/FQ4dytUsIqmpqaxNX1K6T2oqaldX6N07v0I0CKOYYkvkTUREBG3atMHGxgYHB4dst+WHlStX5uv59SUwMJDOnTsbOoxC7eDBg1StWhUzMzM6d+7M3r17UalUBTJF12uvvcZo6bqS5hWXoNy7aRN3w8JIio2lDEgrrBDG5BWWnN73++/cuXYNO7WaTgDDh0MRG+wuSayRCwwMzHJqsnbt2mnLLFiwgPDwcE6fPk1o+rQ8WW3LK29vbxYuXKizrWfPnno7f0EqjEnTlStXGDBgAJ6enlhYWODj40Pv3r05kT7SHNB5Dtjb29O4cWN2796t3Z9dvXLyZWPs2LHUqFGD69evs3LlSj3VSld2ifHGjRuZOXNmvlwzt6ZPn56r5a71LiOJvX07baRxDmVMq9VdUbAsWxa6dMmP6IQQ+UBxd+cgsPnwYRKePs3RMRmLG3RLTcXK0hIGD87HCA1DktgioF27doSHh+vc1q1bp91/9epVateuja+vLy4uLtluyw9WVlb5ev7i4sSJE9SuXZvQ0FCWL1/OxYsX2bRpE/7+/owbN06n7IoVKwgPD+fgwYM4OTnxxhtvcO3atTzHcPXqVVq2bImnp2eBt66XKlWKEjINVBoPD+YDHeLi+GPp0hwdcvbwYc4dOYKZSsXbACNHgqlR9iYTolhSeXkxFfj07FnuhoW9tPy5I0c4e+gQpioVPQH69wcnp3yOsuBJEpsdRYG4OMPcctnf18LCAjc3N51byZIlgbTW0Q0bNrB69WpUKhWBgYFZbgOIiori/fffx9nZGTs7O1q2bMmZM2d0rvXHH39Qt25dLC0tcXJyokt6a85rr73GjRs3GDNmjLYlEHRb+EJDQ7ULWDxrwYIFlC9fXnv//PnztG/fHltbW1xdXXn33Xd5kM1I7JiYGKysrNi+fbvO9k2bNlGiRAmepn9jPXfuHC1btsTKygpHR0c++OADYmNjszxnYGAg+/btY9GiRdq6hIWFkZqaysCBA/Hx8cHKygo/Pz8WLVqkc2xKSgojR47EwcEBR0dHJk2aRP/+/XW6Kmg0GmbPnq09T/Xq1fntt9+yjAX+f8U6X19f9u/fT8eOHSlfvjw1atRg2rRp/P777zrlHRwccHNzo0qVKixdupT4+Hj+/vvvbM//MmFhYahUKh4+fMh7772HSqXKtiV2w4YNVK5cGQsLC7y9vZmf3hKQ4aeffqJOnTqUKFECNzc3+vTpQ2RkpPY6LVq0AKBkyZI6z83nW5C9vb357LPPeO+99yhRogRlypTh22+/1bnWoUOHqFGjBpaWltSpU4fNmzejUqk4ffp0tnXNeL5u3rwZX19fLC0tadu2rXahlJUrV/LJJ59w5swZ7XMjv1qls2VjQ7y5OZFAxMWLOTokoxW2vaLgaGsLAwfmY4BCCL1LnysWIDIHq3bZ2tvTpn17OioKTlBkFjd4niSx2Xn6FGxtDXPL4U8FOXH8+HHatWtHjx49CA8PZ9GiRVluA+jevTuRkZFs376doKAgatWqRatWrXj06BEAW7dupUuXLnTo0IFTp06xa9cu6tWrB6T93Ovp6cmMGTO0rcHPq1ixInXq1GHNmjU629esWUOfPn2AtES6ZcuW1KxZkxMnTrBjxw7u3btHjx49sqyfnZ0db7zxBmszRls/c87OnTtjbW1NXFwcbdu2pWTJkhw/fpxff/2Vf/75h+HDh2d5zkWLFtGwYUMGDRqkrYuXlxcajQZPT09+/fVXLl68yMcff8x//vMffvnlF+2xc+bMYc2aNaxYsYKDBw8SExPD5s2bdc4/e/ZsVq9ezbJly7hw4QJjxozhnXfeYd++fVnGc/r0aS5cuMC4ceMwMcn8kn1Rq6iVlRUASUlJ2ZZ5GS8vL8LDw7Gzs2PhwoWEh4fTs2fPTOWCgoLo0aMHvXr14ty5c0yfPp2pU6fqJHnJycnMnDmTM2fOsHnzZsLCwrSJqpeXFxs2bAAgJCRE57mZlfnz51OnTh1OnTrF0KFDGTJkCCHpcyjGxMTQqVMnqlatysmTJ5k5cyaTJk3KUX2fPn3KrFmzWL16NQcPHiQqKopevXoBad1jxo0bR+XKlbXPjawei/zmbG8PQGQOWtjvXL/Ono0bgfTFDd5/H9KPF0IYCQ8PXNP/vJeDabZ8AgKYXa4cUwA6dgR///yMznCUYiQ6OloBlOjo6Ez74uPjlYsXLyrx8fFpG2JjFSWtTbTgb7GxOa5T//79FbVardjY2OjcZs2apS3z1ltvKf3799c57vlt+/fvV+zs7JSEhASdcuXLl1eWL1+uKIqiNGzYUOnbt2+2sZQtW1ZZsGCBzrYVK1Yo9vb22vsLFixQypcvr70fEhKiAEpwcLCiKIoyc+ZM5fXXX9c5x61btxRACQkJyfK6mzZtUmxtbZW4uDhFUdL+ny0tLZXt27criqIo3377rVKyZEkl9pnHdevWrYqJiYkSERGhKEra4/jWW29p9zdv3lwZNWpUtnXNMGzYMKVbt27a+66ursrcuXO191NSUpQyZcpoz52QkKBYW1srhw4d0jnPwIEDld69e2d5jfXr1yuAcvLkyZfGAyibNm1SFEVR4uLilKFDhypqtVo5c+bMC+v1/P9TVuzt7ZUVK1Zo7+/Zs0cBlMePHyuKoih9+vRR2rRpo3PMhAkTlEqVKmV7zuPHjyuA8uTJkyzPmeH5uMuWLau888472vsajUZxcXFRli5dqiiKoixdulRxdHT8/9ezoijfffedAiinTp3KNp4VK1YogHLkyBHttuDgYAVQjh49qiiKokybNk2pXr16tufITqb3mDzYVKmSUhuUkdWqvbTsusWLldqgDAdFMTFRlGvX8nx9IUQB02iUmSYmSm1Qvhsz5uXlHz5UFGvrtJxi1678j0/PXpSvPUs6RWXH2hqy+bm5QK6dCy1atGDpc33jSpUqlatznDlzhtjYWBwdHXW2x8fHc/XqVSCtRXDQoEG5Ou/zevXqxfjx4zly5AgNGjRgzZo11KpVC//0b4lnzpxhz5492gUtnnX16lUqVqyYaXuHDh0wMzNjy5Yt9OrViw0bNmBnZ0fr1q0BCA4Opnr16tikrzkP0LhxYzQaDSEhIbi6umY6Z3aWLFnCjz/+yM2bN4mPjycpKUk7yCc6Opp79+5pW6cB1Go1tWvXRqPRAGmDs54+fUqbNm10zpuUlETNmjWzvKaSy+4lvXv3Rq1WEx8fj7OzMz/88APVqlXL1TleRXBwMG+99ZbOtsaNG7Nw4UJSU1NRq9UEBQUxffp0zpw5w+PHj7WPy82bN6mUy2UQn62TSqXCzc1N2zUhJCSEatWqYfnMcsjP/r8AVK5cmRvpS7c2bdpU2yXF1NSUunXrasv5+/vj4OBAcHBwpnMYirOHB1y8yP30+r5IrxEjqLF7N6rNm6FzZ/Dxyff4hBB6plLhYm8Pjx9zL/0zOStPoqJY9vHH9DQ3p8zTp1C9OqR30yqKJInNjkoFzyQ9hZmNjQ0VKlTI0zliY2MpXbo0e/fuzbQv4+fqjJ+m88LNzY2WLVuydu1aGjRowNq1axkyZIhOHJ06dWLOnDmZji1dunSW5zQ3N+ftt99m7dq19OrVi7Vr19KzZ09M9Txw5eeff2b8+PHMnz+fhg0bUqJECebOncvRo0dzfI6Mfrhbt27FI2OUeTqLbKY+yUjcL126lG2i+6wFCxbQunVr7O3tMy3rbGdnR3R0dKZjoqKisM/nn5gzunW0bduWNWvW4OzszM2bN2nbtu0rdXcwMzPTua9SqbRJcU5s27aN5ORkQD/P7YLkmp6I3svJ9Gb37+Of0We8CC03KURx4+LkBI8fE3nzZrZlNn33Heu/+opTpqasAVRFbHGD50mfWAFArVq1iIiIwNTUlAoVKujcnNJHNFarVo1du3Zlew5zc3NSU1Nfeq2+ffuyfv16Dh8+zLVr17T9DTPiuHDhAt7e3pnisHnBl4q+ffuyY8cOLly4wO7du+nbt692X0BAAGfOnCEuLk677eDBg5iYmODn55fjuhw8eJBGjRoxdOhQatasSYUKFbSt1AD29va4urpy/Phx7bbU1FROnjypvV+pUiUsLCy4efNmpvp5eXllGUuNGjWoVKkS8+fPzzJJe346Kjc3NypUqJApgQXw8/PTiSfDyZMns2zlzo2AgAAOHjyos+3gwYNUrFgRtVrNpUuXePjwIZ9//jlNmzbF399f23KawdzcHCBHz6MX8fPz49y5cyQmJmq3Pfv/AlC2bFntY//sF4qUlBSdactCQkKIiooiIH1xgZw+z/OTc/rzNjohgcSEhCzLpCQn8ygyEpYuhcREqFsXcrnajxCi8HBxdwcg8t69LPenJCezfvFiAHqnpKAqXRqe+XwtiiSJLQISExOJiIjQuWU3mj87rVu3pmHDhnTu3Jm//vqLsLAwDh06xJQpU7Qf6NOmTWPdunVMmzaN4OBgzp07p9Ni6u3tzb///sudO3deeP2uXbvy5MkThgwZQosWLXBPf2ECDBs2jEePHtG7d2+OHz/O1atX2blzJwMGDHhh4tCsWTPc3Nzo27cvPj4+1K9fX7uvb9++WFpa0r9/f86fP8+ePXsYMWIE7777brZdCby9vTl69ChhYWE8ePAAjUaDr68vJ06cYOfOnYSGhjJ16tRMidGIESOYPXs2v//+OyEhIYwaNYrHjx9rZ2soUaIE48ePZ8yYMaxatYqrV69y8uRJvvrqK1atWpVlLCqVihUrVhAaGkrTpk3Ztm0b165d4+zZs8yaNSvTT/gvMmTIEEJDQxk5ciRnz54lJCSEL7/8knXr1mWaqiu3xo0bx65du5g5cyahoaGsWrWKr7/+mvHjxwNQpkwZzM3N+eqrr7h27RpbtmzJNPdr2bJlUalU/Pnnn9y/fz/bGSRepk+fPmg0Gj744AOCg4PZuXMn8+bNA9D+X2THzMyMESNGcPToUYKCgggMDKRBgwbargTe3t5cv36d06dP8+DBA22i3K9fPz766KNXije37Hx9KQfUtLUlLiYmyzL//PYbb5Qpw9cZr9ExY4p0i4wQRZ1fpUp8Akxq0iTL/X//8gv3bt/G0dSUtpC2uEF6w0CRVTBddAuHXA3sMhL9+/dXgEw3Pz8/bZmcDOxSFEWJiYlRRowYobi7uytmZmaKl5eX0rdvX+XmzZvaMhs2bFBq1KihmJubK05OTkrXrl21+w4fPqxUq1ZNsbCwUDKeWtkNGOrRo4cCKD/++GOmfaGhoUqXLl0UBwcHxcrKSvH391dGjx6taDSaFz4WEydOVADl448/zrTv7NmzSosWLRRLS0ulVKlSyqBBg7SDiTIex2cHdoWEhCgNGjRQrKysFEC5fv26kpCQoAQGBir29vaKg4ODMmTIEGXy5Mk6g3ySk5OV4cOHK3Z2dkrJkiWVSZMmKd27d1d69eqlLaPRaJSFCxcqfn5+ipmZmeLs7Ky0bdtW2bdv3wvrFxISovTr109xd3dXzM3NlbJlyyq9e/fWGfDFMwO7snPs2DGlTZs2irOzs2Jvb6/Ur1//pccoyssHdimKovz2229KpUqVFDMzM6VMmTI6g9wURVHWrl2reHt7KxYWFkrDhg2VLVu2ZBpsNWPGDMXNzU1RqVTa52hWA7ueH0RYvXp1Zdq0adr7Bw8eVKpVq6aYm5srtWvXVtauXasAyqVLl7KtY8bzdcOGDUq5cuUUCwsLpXXr1sqNGze0ZRISEpRu3bopDg4OCqB9TJo3b57pNfUsvb7HnDyZNmDD1TXL3RqNRnm3Tp20QSCgKJ6eipKUlPfrCiEMZ+HCtNd99+6Zdmk0GqVPzZpKbVC+B0WxslKUBw8MEKR+5HRgl0pRcjlqxIjFxMRgb29PdHQ0dnZ2OvsSEhK4fv06Pj4+OoNBhMgLjUZDQEAAPXr0KDQrThVXa9asYcCAAURHR2fbB3blypWMHj06X5bS1et7TGQkZPyKkJiYqbXl1P79DGrWDAuVij8VhZJz5sDEiXm7phDCsH77Dbp3h4YN4dAhnV0n9uxhcMuWWJiYsFWjwWHIEPjmGwMFmncvyteeJQO7hNCjGzdu8Ndff9G8eXMSExP5+uuvuX79unYeXFFwVq9eTbly5fDw8ODMmTNMmjSJHj16GN0griw5OaUlrklJEB4OZcvq7M5YbrKDolDS2hryOKuIEKIQ8PTkFHAjJIS616/j8cxMIxmv+Tc1GhygyC5u8DzpEyuEHpmYmLBy5Urq1q1L48aNOXfuHP/88492UJAoOBEREbzzzjsEBAQwZswYunfvnmlVL6NlYsIvtrZ0ABZMnqyz6+bly/y7ZQsAfQHeew/SV/ATQhgxDw+WA58+esSZ/fu1mxVFwa9mTRwsLdMWNOnUCfI4UNdYSEusEHrk5eWVaYS+MIyJEycyMZc/oQcGBmpXECvsNPb2RD56RPhzq/esW7QIRVFoAnirVDBqlGECFELol5sbLul/RoaGajerVCqGjB7N+/PmYQbFaio9aYkVQggj5Jo+b/L9iAjttqTERP5atw5Ib4Xt1AnyOIe0EKKQMDPDNX2qycjLl3X3LV+OWUIC1KwJzZsbIDjDkCRWCCGMkHN6P9jIhw+128wtLPj14EHGm5lRB4pVi4wQxYFL+qqakemrDe5Yu5bDf/6Jkj4/LEV8cYPnSXcCIYQwQq6+vgA8iIvTLusLUGrjRnolJ6e1yDRrZsgQhRB65ly6NNy8SWREBAnx8cwbNYqoBw/4Emjm7g49ehg6xAIlLbFCCGGESvn7owZSFYVH9+4R9+RJ2mwFX3+dVkAWNxCiyHEtUwZI+wVm208/EfXgAaXNzGgEMGJE0V/c4DmSxAohhBFSe3nhlP73vdu3GdSsGYNr1OBGeDiULg09exo0PiGE/rlk/AITG8vqL74AoFdyMqbW1vDBB4YMzSCkO4EQQhgjDw+qAO4qFUF79hB6+jSWJiZpc0QWh+UmhSiGSlasyHTgSpky/O/qVWxMTXkrJQUGDIBSpQwdXoGTlthiICIigjZt2mBjY4ODg0O22/LDypUr8/X8+hIYGEjnzp0NHUahdvDgQapWrYqZmRmdO3dm7969qFSqfFnd6lkqlYrNmzfn6zWMkrs7c4DvFIXTu3cD0Emjwd7KCj780LCxCSHyhYmXF28Alx48AKBrSgq2xXgqPUlijVxgYCAqlSrTrV27dtoyCxYsIDw8nNOnTxOaPrdcVtvyytvbm4ULF+ps69mzp97OX5Bee+01RheyFU+uXLnCgAED8PT0xMLCAh8fH3r37s2JEye0ZZ59Dtjb29O4cWN2pyc4kH29cvJlY+zYsdSoUYPr16+zcuVKGjVqRHh4OPb29vqqYr4xli9TuWJhAc7OhAH7//oLFdALoH9/SB/BLIQoYjw9uQScePoUtUpFT4A334T0bgbFjSSxRUC7du0IDw/Xua1LnysS4OrVq9SuXRtfX19cXFyy3ZYfrKys8vX8xcWJEyeoXbs2oaGhLF++nIsXL7Jp0yb8/f0ZN26cTtkVK1YQHh7OwYMHcXJy4o033uDatWt5juHq1au0bNkST09PHBwcMDc3x83NDZUMHjIcDw/Wpv/ZFCgLxWa5SSGKJQ8PbgPlgFYqFW5QrKfSkyT2JeLj4rK9JSYk5LhsQnx8jsq+CgsLC9zc3HRuJdOXmfT29mbDhg2sXr0alUpFYGBgltsAoqKieP/993F2dsbOzo6WLVty5swZnWv98ccf1K1bF0tLS5ycnOjSpQuQ1sJ348YNxowZo20JBN0WsNDQUFQqFZcuXdI554IFCyhfvrz2/vnz52nfvj22tra4urry7rvv8iD9p5PnxcTEYGVlxfbt23W2b9q0iRIlSvD06VMAzp07R8uWLbGyssLR0ZEPPviA2NjYLM8ZGBjIvn37WLRokbYuYWFhpKamMnDgQHx8fLCyssLPz49FixbpHJuSksLIkSNxcHDA0dGRSZMm0b9/f52uChqNhtmzZ2vPU716dX777bcsY4G0JQUDAwPx9fVl//79dOzYkfLly1OjRg2mTZvG77//rlPewcEBNzc3qlSpwtKlS4mPj+fvv//O9vwvExYWhkql4uHDh7z33nuoVCpWrlyZqTvBe++9R7Vq1UhMTAQgKSmJmjVr0q9fP+25fv/9d2rVqoWlpSXlypXjk08+ISUlRbv/8uXLNGvWDEtLSypVqpSjuDPi2Lp1K9WqVcPS0pIGDRpw/vx57f4BAwYQHR2t/f+cPn36Kz8ehcketZqN6X+/A9CxI/j5GTAiIUS+srHB09aWysAojQZq14amTQ0dlcFIEvsSTW1ts71N7NZNp2wbF5dsy45s316nbCdv7yzL6dvx48dp164dPXr0IDw8nEWLFmW5DaB79+5ERkayfft2goKCqFWrFq1ateLRo0cAbN26lS5dutChQwdOnTrFrl27qFevHgAbN27E09OTGTNmaFuDn1exYkXq1KnDmjVrdLavWbOGPn36AGmJdMuWLalZsyYnTpxgx44d3Lt3jx7ZzH1nZ2fHG2+8wdq1a3W2r1mzhs6dO2NtbU1cXBxt27alZMmSHD9+nF9//ZV//vmH4cOHZ3nORYsW0bBhQwYNGqSti5eXFxqNBk9PT3799VcuXrzIxx9/zH/+8x9++eUX7bFz5sxhzZo1rFixgoMHDxITE5OpP+fs2bNZvXo1y5Yt48KFC4wZM4Z33nmHffv2ZRnP6dOnuXDhAuPGjcPEJPNL9kU/k1tZWQFpCeWr8vLyIjw8HDs7OxYuXEh4eDg9sxj5vnjxYuLi4pg8eTIAU6ZMISoqiq/Tp3zav38//fr1Y9SoUVy8eJHly5ezcuVKZs2aBaQl9127dsXc3JyjR4+ybNkyJk2alOM4J0yYwPz58zl+/DjOzs506tSJ5ORkGjVqxMKFC7Gzs9P+f44fP/6VH4/CxKd8edSAH1AT0qbVEkIUaf5lyzINcIVit7hBJkoxEh0drQBKdHR0pn3x8fHKxYsXlfj4eJ3ttSHb28gOHXTKNra2zrbsoObNdcq2cnLKslxu9e/fX1Gr1YqNjY3ObdasWdoyb731ltK/f3+d457ftn//fsXOzk5JSEjQKVe+fHll+fLliqIoSsOGDZW+fftmG0vZsmWVBQsW6GxbsWKFYm9vr72/YMECpXz58tr7ISEhCqAEBwcriqIoM2fOVF5//XWdc9y6dUsBlJCQkCyvu2nTJsXW1laJi4tTFCXt/9nS0lLZvn27oiiK8u233yolS5ZUYmNjtcds3bpVMTExUSIiIhRFSXsc33rrLe3+5s2bK6NGjcq2rhmGDRumdOvWTXvf1dVVmTt3rvZ+SkqKUqZMGe25ExISFGtra+XQoUM65xk4cKDSu3fvLK+xfv16BVBOnjz50ngAZdOmTYqiKEpcXJwydOhQRa1WK2fOnHlhvZ7/f8qKvb29smLFCu39PXv2KIDy+PFj7bZDhw4pZmZmytSpUxVTU1Nl//792n2tWrVSPvvsM51z/vTTT0rp0qUVRVGUnTt3KqampsqdO3e0+7dv365Tp6xkxPHzzz9rtz18+FCxsrJS1q9fn+P65bfs3mPyZMYM5TYocaAo1aopikajv3MLIQqntm0VBRTFw0NRkpIMHU2+eFG+9iyZYusl9mfzkzOASfoKORn+jozMtqzquRa0P8LC8hTXs1q0aMHSpUt1tpXK5VQbZ86cITY2FsfnBoTEx8dz9epVIK1FcNCgQXmKtVevXowfP54jR47QoEED1qxZQ61atfD399fGsWfPHmyzaJW+evUqFStWzLS9Q4cOmJmZsWXLFnr16sWGDRuws7OjdevWAAQHB1O9enVs0tecBmjcuDEajYaQkBBcXV1zHP+SJUv48ccfuXnzJvHx8SQlJVGjRg0AoqOjuXfvnrZ1GkCtVlO7dm00Gg2QNjjr6dOntGnTRue8GT+9Z0VRlBzHB9C7d2/UajXx8fE4Ozvzww8/UK1atVyd41U1bNiQ8ePHM3PmTCZNmkSTJk20+86cOcPBgwe1La8AqampJCQk8PTpU4KDg/Hy8sLd3V3nfM9q3749+/fvB6Bs2bJcuHAhy7KlSpXCz8+P4OBgvdexUPHwwCPjb1ncQIjioVYt2LkTJkwAMzNDR2NQksS+hNUziY+hyr6MjY0NFSpUyNM5YmNjKV26NHv37s20L+Pn6oyfpvPCzc2Nli1bsnbtWho0aMDatWsZMmSIThydOnVizpw5mY4tXbp0luc0Nzfn7bffZu3atfTq1Yu1a9fSs2dPTE31+/T++eefGT9+PPPnz6dhw4aUKFGCuXPncvTo0RyfI6Mf7tatW/Hw8NDZZ2FhkeUxGYn7pUuXsk10n7VgwQJat26Nvb09zs7OOvvs7OyIjo7OdExUVJReZhnQaDQcPHgQtVrNlStXdPbFxsbyySef0LVr10zHWVpa5uj833//PfHp/cvNivmbNwAZfcldXaF3b8PGIoQoGFOnQufOULeuoSMxOEliBQC1atUiIiICU1NTvL29syxTrVo1du3axYABA7Lcb25uTmpq6kuv1bdvXyZOnEjv3r25du0avXr10oljw4YNeHt75yoJ7du3L23atOHChQvs3r2bTz/9VLsvICCAlStXEhcXp22NPXjwICYmJvhlMwgmq7ocPHiQRo0aMXToUO22jFZqAHt7e1xdXTl+/DjN0tesT01N5eTJk9rW2kqVKmFhYcHNmzdp3rx5jupWo0YNKlWqxPz58+nZs2emfrFRUVE6/WLd3Nyy/VLj5+fHX3/9lWn7yZMns2zlzq25c+dy6dIl9u3bR9u2bVmxYoX2+VKrVi1CQkKyjS0gIIBbt24RHh6u/cJy5MgRnTLPJ/7POnLkCGXSl2R8/PgxoaGhBAQEADl/bhqdZs1g8WJo0CBtyi0hRNFnZQXP/OJXnMnAriIgMTGRiIgInVt2o/mz07p1axo2bEjnzp3566+/CAsL49ChQ0yZMkU7D+m0adNYt24d06ZNIzg4mHPnzum0mHp7e/Pvv/9y586dF16/a9euPHnyhCFDhtCiRQudn4+HDRvGo0eP6N27N8ePH+fq1avs3LmTAQMGvDAJadasGW5ubvTt2xcfHx/q16+v3de3b18sLS3p378/58+fZ8+ePYwYMYJ33303264E3t7eHD16lLCwMB48eIBGo8HX15cTJ06wc+dOQkNDmTp1KsePH9c5bsSIEcyePZvff/+dkJAQRo0axePHj7WzNZQoUYLx48czZswYVq1axdWrVzl58iRfffUVq1atyjIWlUrFihUrCA0NpWnTpmzbto1r165x9uxZZs2axVtvvZXt4/K8IUOGEBoaysiRIzl79iwhISF8+eWXrFu3LtNUXbl16tQpPv74Y77//nsaN27Ml19+yahRo7TTe3388cesXr2aTz75hAsXLhAcHMzPP//Mf//7XyDtOVixYkX69+/PmTNn2L9/P1OmTMnx9WfMmMGuXbs4f/48gYGBODk5aWeF8Pb2JjY2ll27dvHgwQPtrBUfffSRzuwJRkelSlsvXVpkhBDFUcF00S0cXmVgV2HXv39/Bch08/Pz05bJycAuRVGUmJgYZcSIEYq7u7tiZmameHl5KX379lVu3rypLbNhwwalRo0airm5ueLk5KR07dpVu+/w4cNKtWrVFAsLCyXjqZXdgJoePXoogPLjjz9m2hcaGqp06dJFcXBwUKysrBR/f39l9OjRiuYlg1YmTpyoAMrHH3+cad/Zs2eVFi1aKJaWlkqpUqWUQYMGKU+ePNF5HJ8d2BUSEqI0aNBAsbKyUgDl+vXrSkJCghIYGKjY29srDg4OypAhQ5TJkycr1atX1x6XnJysDB8+XLGzs1NKliypTJo0SenevbvSq1cvbRmNRqMsXLhQ8fPzU8zMzBRnZ2elbdu2yr59+15Yv5CQEKVfv36Ku7u7Ym5urpQtW1bp3bu3zoAvXjIISlEU5dixY0qbNm0UZ2dnxd7eXqlfv/5Lj1GUFw/sio+PVypVqqR88MEHOse8+eabSqNGjZSUlBRFURRlx44dSqNGjRQrKyvFzs5OqVevnvLtt9/q1LFJkyaKubm5UrFiRWXHjh05Htj1xx9/KJUrV1bMzc2VevXqaQezZRg8eLDi6OioAMq0adMURUn7f2/+3KDL/GKs7zFCCFHQcjqwS6UouRw1YsRiYmKwt7cnOjoaOzs7nX0JCQlcv34dHx+fHPfPE+JlNBoNAQEB9OjRg5kzZxo6nCJp7969tGjRgsePHxfqVbnkPUYIIXLmRfnas6RPrBB6dOPGDf766y+aN29OYmIiX3/9NdevX9fOgyuEEEII/ZA+sULokYmJCStXrqRu3bo0btyYc+fO8c8//2gHGAkhhBBCP6QlVgg98vLy4uDBg4YOo1h57bXXcj2XrhBCCOMnLbFCCCGEEMLoSBL7HGnREULkB3lvEUII/TKqJHbr1q3Ur18fKysrSpYsqZ0DUh8yVv/JmD9SCCH0KeO9RVYaE0II/TCaPrEbNmxg0KBBfPbZZ7Rs2ZKUlBTOnz+vt/Or1WocHByIjIwEwNraWjtBvRBCvCpFUXj69CmRkZE4ODigVqsNHZIQQhQJRpHEpqSkMGrUKObOncvAgQO12ytVqqTX67i5uQFoE1khhNAXBwcH7XuMEEKIvDOKJPbkyZPcuXMHExMTatasSUREBDVq1GDu3LlUqVIl2+MSExNJTEzU3o+JiXnhdVQqFaVLl8bFxYXk5GS9xS+EKN7MzMykBVYIIfTMKJLYjLXXp0+fzpdffom3tzfz58/ntddeIzQ0lFKlSmV53OzZs/nkk09yfT21Wi0fOEIIIYQQhZhBB3ZNnjwZlUr1wtulS5fQaDQATJkyhW7dulG7dm1WrFiBSqXi119/zfb8H330EdHR0drbrVu3CqpqQgghhBAiHxm0JXbcuHEEBga+sEy5cuUIDw8HdPvAWlhYUK5cOW7evJntsRYWFlhYWOglViGEEEIIUXgYNIl1dnbG2dn5peVq166NhYUFISEhNGnSBIDk5GTCwsIoW7ZsfocphBBCCCEKGaPoE2tnZ8fgwYOZNm0aXl5elC1blrlz5wLQvXv3HJ8nY7Lxlw3wEkIIIYQQhpGRp71skRijSGIB5s6di6mpKe+++y7x8fHUr1+f3bt3U7JkyRyf48mTJ0Da+vZCCCGEEKLwevLkCfb29tnuVynFaC1EjUbD3bt3KVGiRIEsZBATE4OXlxe3bt3Czs4u368HULduXY4fP14g1zJE/aDo11Hqpz/yHM0fUj/9Kup1lPrpX1F/jiqKwpMnT3B3d8fEJPs5CIymJVYfTExM8PT0LPDr2tnZFdgTW61WF+iHNRRs/aDo11Hqp3/yHNUvqV/+KOp1lPrpT3F4jr6oBTaDQafYEvo3bNgwQ4eQ74p6HaV+xq+o11HqZ/yKeh2lfsVDsepOUNBiYmKwt7cnOjraIN+Y8ltRrx8U/TpK/YxfUa9jUa8fFP06Sv2MX2Gto7TE5iMLCwumTZtWZOeqLer1g6JfR6mf8SvqdSzq9YOiX0epn/ErrHWUllghhBBCCGF0pCVWCCGEEEIYHUlihRBCCCGE0ZEkVgghhBBCGB1JYoUQQgghhNGRJFYIIYQQQhgdSWKFEEIIIYTRkSRWCCGEEEIYHUlihRBCCCGE0ZEkVgghhBBCGB1JYoUQQgghhNGRJFYIIYQQQhgdSWKFEEIIIYTRkSRWCCGEEEIYHUlihRBCCCGE0ZEkVgghhBBCGB1JYoUQQgghhNGRJFYIIYQQQhgdSWKFEEIIIYTRkSRWCCGEEEIYHUlihRBCCCGE0ZEkVgghhBBCGB1JYoUQQgghhNGRJFYIIYQQQhgdSWKFEEIIIYTRkSRWCCGEEEIYHUlihRBCCCGE0ZEkVgghhBBCGB1JYoUQQgghhNGRJFYIIYQQQhgdSWKFEEIIIYTRkSRWCCGEEEIYHUlihRBCCCGE0ZEkVgghhBBCGB1JYoUQQgghhNGRJFYIIYQQQhgdSWKFEEIIIYTRkSRWCCGEEEIYHUlihRBCCCGE0ZEkVgghhBBCGB1JYoUQQgghhNGRJFYIIYQQQhgdSWKFEEIIIYTRkSRWCCGEEEIYHUlihRBCCCGE0ZEkVgghhBBCGB1JYoUQQgghhNGRJFYIIYQQQhgdSWKFEEIIIYTRMTV0AAVJo9Fw9+5dSpQogUqlMnQ4QgghhBDiOYqi8OTJE9zd3TExyb69tVglsXfv3sXLy8vQYQghhBBCiJe4desWnp6e2e4vVklsiRIlgLQHxc7OzsDRCCGEEEKI58XExODl5aXN27JTrJLYjC4EdnZ2ksQKIYQQQhRiL+v6KQO7hBBCCCGE0ZEkVgghhBBCGB1JYoUQQgghhNEpVn1ihRBCCJFZamoqycnJhg5DFBNqtRpTU9M8T3cqSawQQghRjMXGxnL79m0URTF0KKIYsba2pnTp0pibm7/yOSSJFUIIIYqp1NRUbt++jbW1Nc7OzrIQkMh3iqKQlJTE/fv3uX79Or6+vi9c0OBFJIkVQgghiqnk5GQURcHZ2RkrKytDhyOKCSsrK8zMzLhx4wZJSUlYWlq+0nlkYJcQQghRzEkLrChor9r6qnMOPcQhhBBCCCFEgZIkVgghhBBCGB1JYoUQQgiRN6mpsHcvrFuX9m9qqqEjyneXLl2iQYMGWFpaUqNGDcLCwlCpVJw+fTrfrx0YGEjnzp3z/TqFnSSxQgghhHh1GzeCtze0aAF9+qT96+2dtj0fRUREMGLECMqVK4eFhQVeXl506tSJXbt2act4e3ujUqlQqVTY2NhQq1Ytfv31V+3+7JLBvXv3olKpiIqKyvb606ZNw8bGhpCQEJ1r6lN2ifGiRYtYuXJlvlwzt1auXImDg4NBri1JrBBCCCFezcaN8PbbcPu27vY7d9K251MiGxYWRu3atdm9ezdz587l3Llz7NixgxYtWjBs2DCdsjNmzCA8PJxTp05Rt25devbsyaFDh/Icw9WrV2nSpAlly5bF0dExz+fLDXt7e4MljoWJJLFCCCGEyL3UVBg1CrJaJCFj2+jR+dK1YOjQoahUKo4dO0a3bt2oWLEilStXZuzYsRw5ckSnbIkSJXBzc6NixYosWbIEKysr/vjjjzxdX6VSERQUxIwZM1CpVEyfPj3Lcvv27aNevXpYWFhQunRpJk+eTEpKinb/jh07aNKkCQ4ODjg6OvLGG29w9epV7X4fHx8AatasiUql4rXXXgMytyC/9tprjBw5kokTJ1KqVCnc3NwyxXTp0iWaNGmCpaUllSpV4p9//kGlUrF58+Zs65nRIr1161aqVauGpaUlDRo04Pz589r9AwYMIDo6Wtvind1jkR8kiRVCCCFE7u3fn7kF9lmKArdupZXTo0ePHrFjxw6GDRuGjY1Npv0vaqE0NTXFzMyMpKSkPMUQHh5O5cqVGTduHOHh4YwfPz5TmTt37tChQwfq1q3LmTNnWLp0KT/88AOffvqptkxcXBxjx47lxIkT7Nq1CxMTE7p06YJGowHg2LFjAPzzzz+Eh4ez8QUt26tWrcLGxoajR4/yxRdfMGPGDP7++28gbVGLzp07Y21tzdGjR/n222+ZMmVKjus7YcIE5s+fz/Hjx3F2dqZTp04kJyfTqFEjFi5ciJ2dHeHh4dk+FvlFFjsQQgghRO6Fh+u3XA5duXIFRVHw9/fP1XFJSUnMnz+f6OhoWrZsmacY3NzcMDU1xdbWFjc3NwAePHigU+abb77By8uLr7/+GpVKhb+/P3fv3mXSpEl8/PHHmJiY0K1bN51jfvzxR5ydnbl48SJVqlTB2dkZAEdHR+11slOtWjWmTZsGgK+vL19//TW7du2iTZs2/P3331y9epW9e/dqzzNr1izatGmTo/pOmzZNW3bVqlV4enqyadMmevTogb29PSqV6qXx5QdpiRVCCCFE7pUurd9yOaRk1X3hBSZNmoStrS3W1tbMmTOHzz//nI4dO+o1pqwEBwfTsGFDnYUkGjduTGxsLLfTW7AvX75M7969KVeuHHZ2dnh7ewNw8+bNXF+vWrVqOvdLly5NZGQkACEhIXh5eekkmvXq1dMp3759e2xtbbG1taVy5co6+xo2bKj9u1SpUvj5+REcHJzrGPVNWmKFEEIIkXtNm4KnZ9ogrqwSS5UqbX/Tpnq9rK+vLyqVikuXLuWo/IQJEwgMDMTW1hZXV1edpNLOzo4bN25kOiYqKgq1Wp1ldwV96tSpE2XLluW7777D3d0djUZDlSpVXqm7g5mZmc59lUql7ZaQE99//z3x8fFZnquwkpZYIYQQQuSeWg2LFqX9/fyytRn3Fy5MK6dHpUqVom3btixZsoS4uLhM+5+fFsvJyYkKFSrg5uaWaXldPz8/Lly4QGJios72kydP4uPjk6dkLiAggMOHD+u0HB88eJASJUrg6enJw4cPCQkJ4b///S+tWrUiICCAx48f65zD3NwcSOvTmhd+fn7cunWLe/fuabcdP35cp4yHhwcVKlSgQoUKlC1bVmffs4PlHj9+TGhoKAEBAdoY8xrfq5IkVgghhBCvpmtX+O038PDQ3e7pmba9a9d8ueySJUtITU2lXr16bNiwgcuXLxMcHMzixYt1fvp+mb59+6JSqejXrx9BQUFcuXKFH3/8kYULFzJu3Lg8xTh06FBu3brFiBEjuHTpEr///jvTpk1j7NixmJiYULJkSRwdHfn222+5cuUKu3fvZuzYsTrncHFxwcrKih07dnDv3j2io6NfKZY2bdpQvnx5+vfvz9mzZzl48CD//e9/ATIl9lmZMWMGu3bt4vz58wQGBuLk5KSdHcHb25vY2Fh27drFgwcPePr0KQAfffQR/fr1e6V4c0qSWCGEEEK8uq5dISwM9uyBtWvT/r1+Pd8SWIBy5cpx8uRJWrRowbhx46hSpQpt2rRh165dLF26NMfncXBwYP/+/SQnJ/Pmm29So0YNFi9ezJdffsmHH36Ypxg9PDzYtm0bx44do3r16gwePJiBAwdqk0cTExN+/vlngoKCqFKlCmPGjGHu3Lk65zA1NWXx4sUsX74cd3d33nrrrVeKRa1Ws3nzZmJjY6lbty7vv/++dnYCS0vLlx7/+eefM2rUKGrXrk1ERAR//PGHtpW4UaNGDB48mJ49e+Ls7MwXX3wBpM3g8Cp9e3NDpeS2h7QRi4mJwd7enujoaOzs7AwdjhBCCGFQCQkJXL9+HR8fnxwlM6LoOHjwIE2aNOHKlSuUL18+yzJ79+6lRYsWPH78WO+LK7zouZfTfE0GdgkhhBBCFHGbNm3C1tYWX19frly5wqhRo2jcuHG2CawxkCRWCCGEEKKIe/LkCZMmTeLmzZs4OTnRunVr5s+fb+iw8kSSWCGEEEKIIq5fv365Hmj12muv5Xpe3oIkA7uEEEIIIYTRkSRWCCGEEEIYHUlihRBCCCGE0ZEkVgghhBBCGB1JYoUQQgghhNGRJFYIIYQQQhgdSWKFEEIIkSepqamc2LuXHevWcWLvXlJTUw0dUr67dOkSDRo0wNLSkho1ahAWFoZKpeL06dP5el1vb28WLlyYr9cwFpLECiGEEOKV7d64kS4VKjC4RQv+26cPg1u0oEuFCuzeuDFfrxsREcGIESMoV64cFhYWeHl50alTJ3bt2qUt4+3tjUqlQqVSYWNjQ61atfj111+1+wMDA+ncuXOmc+/duxeVSkVUVFS21582bRo2NjaEhISwa9cuvLy8CA8Pp0qVKvqsZr7ISf2MgSSxQgghhHgluzduZNLbb1O+alVWHD7Mv0+esOLwYcpXrcqkt9/Ot0Q2LCyM2rVrs3v3bubOncu5c+fYsWMHLVq0YNiwYTplZ8yYQXh4OKdOnaJu3br07NmTQ4cO5TmGq1ev0qRJE8qWLYujoyNqtRo3NzdMTWUdqYIiSawQQgghci01NZWF48bR5I03mL95M1UbNMDa1paqDRowf/NmmrzxBovGj8+XrgVDhw5FpVJx7NgxunXrRsWKFalcuTJjx47lyJEjOmVLlCiBm5sbFStWZMmSJVhZWfHHH3/k6foqlYqgoCBmzJiBSqVi+vTpmboTzJgxA3d3dx4+fKg9rmPHjrRo0QKNRgPAgQMHaNq0KVZWVnh5eTFy5Eji4uK05SMjI+nUqRNWVlb4+PiwZs2al8aWEcfPP/9Mo0aNsLS0pEqVKuzbt0+7v0WLFgCULFkSlUpFYGBgnh4PQ5EkVgghhBC5dmr/fu6GhfHef/6DiYluOmFiYsKAjz7izvXrnNq/X6/XffToETt27GDYsGHY2Nhk2u/g4JDtsaamppiZmZGUlJSnGMLDw6lcuTLjxo0jPDyc8ePHZyozZcoUvL29ef/99wFYsmQJhw4dYtWqVZiYmHD16lXatWtHt27dOHv2LOvXr+fAgQMMHz5ce47AwEBu3brFnj17+O233/jmm2+IjIzMUYwTJkxg3LhxnDp1ioYNG9KpUycePnyIl5cXGzZsACAkJITw8HAWLVqUp8fDUCSJFUIIIUSuPQgPB6B8Nn1AM7ZnlNOXK1euoCgK/v7+uTouKSmJ2bNnEx0dTcuWLfMUQ0a3AVtbW9zc3LC1tc1URq1W87///Y9du3YxefJkJkyYwJIlSyhTpgwAs2fPpm/fvowePRpfX18aNWrE4sWLWb16NQkJCYSGhrJ9+3a+++47GjRoQO3atfnhhx+Ij4/PUYzDhw+nW7duBAQEsHTpUuzt7fnhhx9Qq9WUKlUKABcXF9zc3LC3t8/T42EoksQKIYQQItecSpcG4Or581nuz9ieUU5fFEXJVflJkyZha2uLtbU1c+bM4fPPP6djx456jSk75cqVY968ecyZM4c333yTPn36aPedOXOGlStXYmtrq721bdsWjUbD9evXCQ4OxtTUlNq1a2uP8ff312lpHjx4sM7xz2rYsKH2b1NTU+rUqUNwcHD+VdYApPexEEIIIXKtZtOmuHt78+NnnzF/82adLgUajYYVs2fj4eNDzaZN9XpdX19fVCoVly5dylH5CRMmEBgYiK2tLa6urqhUKu0+Ozs7bty4kemYqKgo1Gp1lt0Vcuvff/9FrVYTFhZGSkqKduBXbGwsH374ISNHjsx0TJkyZQgNDX3puWfMmJFlV4biQlpihRBCCJFrarWa0fPnc+DPPxnXuTNnDx8m7skTzh4+zLjOnTnw55+MmjcPtVqt1+uWKlWKtm3bsmTJEp1BUBmenzbKycmJChUq4ObmppPAAvj5+XHhwgUSExN1tp88eRIfHx/MzMzyFOv69evZuHEje/fu5ebNm8ycOVO7r1atWly8eJEKFSpkupmbm+Pv709KSgpBQUHaY0JCQnTq5+LionPcs54d4JZxnoCAAADMzc0BjH4+X0lihRBCCPFKWnbtypzffuPquXO816gRze3seK9RI66dP8+c336jZdeu+XLdJUuWkJqaSr169diwYQOXL18mODiYxYsX6/yM/jJ9+/ZFpVLRr18/goKCuHLlCj/++CMLFy5k3LhxeYrx9u3bDBkyhDlz5tCkSRNWrFjBZ599pk0uJ02axKFDhxg+fDinT5/m8uXL/P7779qBXX5+frRr144PP/yQo0ePEhQUxPvvv4+VlVWOrr9kyRI2bdrEpUuXGDZsGI8fP+a9994DoGzZsqhUKv7880/u379PbGwsAF9//TWtWrXKU70LkiSxQgghhHhlLbt2ZdOVKyzbs4dP165l2Z49bLx8Od8SWEjra3ry5ElatGjBuHHjqFKlCm3atGHXrl0sXbo0x+dxcHBg//79JCcn8+abb1KjRg0WL17Ml19+yYcffvjK8SmKQmBgIPXq1dMmpW3btmXIkCG88847xMbGUq1aNfbt20doaChNmzalZs2afPzxx7i7u2vPs2LFCtzd3WnevDldu3blgw8+wMXFJUcxfP7553z++edUr16dAwcOsGXLFpycnADw8PDgk08+YfLkybi6umpjfPDgAVevXn3lehc0lZLbHtJGLCYmBnt7e6Kjo7GzszN0OEIIIYRBJSQkcP36dXx8fLC0tDR0OEIPwsLC8PHx4dSpU9SoUcPQ4WTrRc+9nOZr0hIrhBBCCCGMjiSxQgghhBDC6MgUW0IIIYQQRYS3t3eu59I1VtISK4QQQgghjI4ksUIIIUQxV1xa7kThoY/nnCSxQgghRDGVsRBBUlKSgSMRxc3Tp08B8rSghPSJFUIIIYopU1NTrK2tuX//PmZmZjpLxwqRHxRF4enTp0RGRuLg4JCnFd0kiRVCCCGKKZVKRenSpbl+/To3btwwdDiiGHFwcMDNzS1P55AkVgghhCjGzM3N8fX1lS4FosCYmZnlqQU2gySxQgghRDFnYmIiK3YJoyOdX4QQQgghhNGRJFYIIYQQQhgdSWKFEEIIIYTRkSRWCCGEEEIYHaNPYqOiogwdghBCCCGEKGBGlcTOmTOH9evXa+/36NEDR0dHPDw8OHPmjAEjE0IIIYQQBcmokthly5bh5eUFwN9//83ff//N9u3bad++PRMmTDBwdEIIIYQQoqAY1TyxERER2iT2zz//pEePHrz++ut4e3tTv359A0cnhBBCCCEKilG1xJYsWZJbt24BsGPHDlq3bg2krcObmppqyNCEEEIIIUQBMqqW2K5du9KnTx98fX15+PAh7du3B+DUqVNUqFDBwNEJIYQQQoiCYlRJ7IIFC/D29ubWrVt88cUX2NraAhAeHs7QoUMNHJ0QQgghhCgoKkVRFEMHUVBiYmKwt7cnOjoaOzs7Q4cjhBBCCCGek9N8zaj6xAL89NNPNGnSBHd3d27cuAHAwoUL+f333w0cmRBCCCGEKChGlcQuXbqUsWPH0r59e6KiorSDuRwcHFi4cKFhgxNCCCGEEAXGqJLYr776iu+++44pU6agVqu12+vUqcO5c+cMGJkQQgghhChIRpXEXr9+nZo1a2babmFhQVxcnAEiEkIIIYQQhmBUSayPjw+nT5/OtH3Hjh0EBAQUfEBCCCGEEMIgjGqKrbFjxzJs2DASEhJQFIVjx46xbt06Zs+ezffff2/o8IQQQgghRAExqiT2/fffx8rKiv/+9788ffqUPn364O7uzqJFi+jVq5ehwxNCCCGEEAXEqOaJjYmJ0c4X9vTpU2JjY3FxcQHgypUrL121S+aJ1Z/UpCROffMND65exal8eWoOHYra3NzQYQlRrMjrUIjipbi85nOarxlVEtu0aVP++ecfLCwsdLaHhITQqlUrbt++/cLjJYnVj90TJ7Lwyy+5mz7FGYC7Ws3osWNp+cUXBoxMiOJDXodCFC/F6TVfJBc7sLW1pUuXLqSkpGi3BQcH89prr9GtWzcDRlZ87J44kUlz51I+NZUVwL/ACqB8aiqT5s5l98SJBo5QiKJPXodCFC/yms+aUbXExsfH07p1azw9Pfn555+5cOECrVq1om/fvnz55ZcvPV5aYvMmNSmJLtbWlE9NZT6634A0wDjgmlrNxqdPi+TPG0IUBvI6FKJ4KY6v+SLZEmtlZcXWrVsJCQmhR48etGrVin79+uUogRV5d+qbb7ibmsp7ZH7imAADgDupqZz65puCD06IYkJeh0IUL/Kaz16hn50gJiZG576JiQnr16+nTZs2dOvWjalTp2rLSOtq/npw9SoA5bPZX/65ckII/ZPXoRDFi7zms1fok1gHBwdUKlWm7YqisGzZMpYvX46iKKhUKlKf6ews9M+pfNpL5SpQNYv9V58rJ4TQP3kdClG8yGs+e4W+T+y+fftyXLZ58+Yv3C99YvOmOPbLEaKwkdehEMVLcXzN5zRfK/QtsS9LTEXBUZubM3rsWCbNncs40vrhlCftW+AK4AAwZ+zYIvMiEqIwktehEMWLvOazV+hbYs+ePUuVKlUwMTHh7NmzLyxbrVq1F+6Xllj9yGquOg+1mlFFcK46IQoreR0KUbwUp9d8kVnswMTEhIiICFxcXDAxMUGlUpFVyDnpEytJrP4Ul1VDhCjM5HUoRPFSXF7zRSaJvXHjBmXKlEGlUnHjxo0Xli1btuwL90sSK4QQQghRuBWZPrHPJqYvS1KFEEIIIUTxUOiT2OeFhITw1VdfERwcDEBAQAAjRozAz8/PwJEJIYQQQoiCYlQrdm3YsIEqVaoQFBRE9erVqV69OidPnqRKlSps2LDB0OEJIYQQQogCUuj7xD6rfPny9O3blxkzZuhsnzZtGv/73/+4+pLVKqRPrBBCCCFE4ZbTfM2oWmLDw8Pp169fpu3vvPMO4eHhBohICCGEEEIYglElsa+99hr79+/PtP3AgQM0bdrUABEJIYQQQghDMKqBXW+++SaTJk0iKCiIBg0aAHDkyBF+/fVXPvnkE7Zs2aJTVgghhBBCFE1G1SfWxCRnDcfZLXwgfWKFEEIIIQq3IjNP7LM0Go2hQxBCCCGEEIWAUfSJPXz4MH/++afOttWrV+Pj44OLiwsffPABiYmJBopOCCGEEEIUNKNIYmfMmMGFCxe098+dO8fAgQNp3bo1kydP5o8//mD27NkGjFAIIYQQQhQko0hiT58+TatWrbT3f/75Z+rXr893333H2LFjWbx4Mb/88osBIxRCCCGEEAXJKJLYx48f4+rqqr2/b98+2rdvr71ft25dbt26ZYjQhBBCCCGEARhFEuvq6sr169cBSEpK4uTJk9optgCePHmCmZmZocITQgghhBAFzCiS2A4dOjB58mT279/PRx99hLW1tc7iBmfPnqV8+fIGjFAIIYQQQhQko5hia+bMmXTt2pXmzZtja2vLqlWrMDc31+7/8ccfef311w0YoRBCCCGEKEhGtdhBdHQ0tra2qNVqne2PHj3C1tZWJ7HNiix2IIQQQghRuBXJxQ7s7e2z3F6qVKkCjkQIIYQQQhiSUfSJFUIIIYQQ4lmSxAohhBBCCKMjSawQQgghhDA6ksQKIYQQQgijI0msEEIIIYQwOpLECiGEEEIIoyNJrBBCCCGEMDqSxAohhBBCCKMjSawQQgghhDA6ksQKIYQQQgijI0msEEIIIYQwOpLECiGEEEIIoyNJrBBCCCGEMDqSxAohhBBCCKMjSawQQgghhDA6ksQKIYQQQgijI0msEEIIIYQwOpLECiGEEEIIoyNJrBBCCCGEMDqSxAohhBBCCKMjSawQQgghhDA6ksQKIYQQQgijI0msEEIIIYQwOpLECiGEEEIIoyNJrBBCCCGEMDqSxAohhBBCCKMjSawQQgghhDA6ksQKIYQQQgijI0msEEIIIYQwOpLECiGEEEIIoyNJrBBCCCGEMDqSxAohhBBCCKMjSawQQgghhDA6ksQKIYQQQgijI0msEEIIIYQwOpLECiGEEEIIoyNJrBBCCCGEMDqSxAohhBBCCKMjSawQQgghhDA6ksQKIYQQQgijI0msEEIIIYQwOpLECiGEEEIIoyNJrBBCCCGEMDqSxAohhBBCCKMjSawQQgghhDA6ksQKIYQQQgijI0msEEIIIYQwOpLECiGEEEIIoyNJrBBCCCGEMDqSxAohhBBCCKMjSawQQgghhDA6ksQKIYQQQgijI0msEEIIIYQwOpLECiGEEEIIo2Nq6AAKkqIoAMTExBg4EiGEEEIIkZWMPC0jb8tOsUpinzx5AoCXl5eBIxFCCCGEEC/y5MkT7O3ts92vUl6W5hYhGo2Gu3fvUqJECVQqVb5fLyYmBi8vL27duoWdnV2+Xw+gbt26HD9+vECuZYj6QdGvo9RPf+Q5mj+kfvpV1Oso9dO/ov4cVRSFJ0+e4O7ujolJ9j1fi1VLrImJCZ6engV+XTs7uwJ7YqvV6gL9sIaCrR8U/TpK/fRPnqP6JfXLH0W9jlI//SkOz9EXtcBmkIFdRcywYcMMHUK+K+p1lPoZv6JeR6mf8SvqdZT6FQ/FqjtBQYuJicHe3p7o6GiDfGPKb0W9flD06yj1M35FvY5FvX5Q9Oso9TN+hbWO0hKbjywsLJg2bRoWFhaGDiVfFPX6QdGvo9TP+BX1Ohb1+kHRr6PUz/gV1jpKS6wQQgghhDA60hIrhBBCCCGMjiSxQgghhBDC6EgSK4QQQgghjI4ksUIIIYQQwuhIEptPlixZgre3N5aWltSvX59jx44ZOiS9mT17NnXr1qVEiRK4uLjQuXNnQkJCDB1Wvvn8889RqVSMHj3a0KHo1Z07d3jnnXdwdHTEysqKqlWrcuLECUOHpRepqalMnToVHx8frKysKF++PDNnznzpOtyF2b///kunTp1wd3dHpVKxefNmnf2KovDxxx9TunRprKysaN26NZcvXzZMsK/gRfVLTk5m0qRJVK1aFRsbG9zd3enXrx937941XMC59LL/v2cNHjwYlUrFwoULCyw+fchJHYODg3nzzText7fHxsaGunXrcvPmzYIP9hW8rH6xsbEMHz4cT09PrKysqFSpEsuWLTNMsK8gJ5/tCQkJDBs2DEdHR2xtbenWrRv37t0zUMSSxOaL9evXM3bsWKZNm8bJkyepXr06bdu2JTIy0tCh6cW+ffsYNmwYR44c4e+//yY5OZnXX3+duLg4Q4emd8ePH2f58uVUq1bN0KHo1ePHj2ncuDFmZmZs376dixcvMn/+fEqWLGno0PRizpw5LF26lK+//prg4GDmzJnDF198wVdffWXo0F5ZXFwc1atXZ8mSJVnu/+KLL1i8eDHLli3j6NGj2NjY0LZtWxISEgo40lfzovo9ffqUkydPMnXqVE6ePMnGjRsJCQnhzTffNECkr+Zl/38ZNm3axJEjR3B3dy+gyPTnZXW8evUqTZo0wd/fn71793L27FmmTp2KpaVlAUf6al5Wv7Fjx7Jjxw7+97//ERwczOjRoxk+fDhbtmwp4EhfTU4+28eMGcMff/zBr7/+yr59+7h79y5du3Y1XNCK0Lt69eopw4YN095PTU1V3N3dldmzZxswqvwTGRmpAMq+ffsMHYpePXnyRPH19VX+/vtvpXnz5sqoUaMMHZLeTJo0SWnSpImhw8g3HTt2VN577z2dbV27dlX69u1roIj0C1A2bdqkva/RaBQ3Nzdl7ty52m1RUVGKhYWFsm7dOgNEmDfP1y8rx44dUwDlxo0bBROUHmVXv9u3byseHh7K+fPnlbJlyyoLFiwo8Nj0Jas69uzZU3nnnXcME5CeZVW/ypUrKzNmzNDZVqtWLWXKlCkFGJn+PP/ZHhUVpZiZmSm//vqrtkxwcLACKIcPHzZIjNISq2dJSUkEBQXRunVr7TYTExNat27N4cOHDRhZ/omOjgagVKlSBo5Ev4YNG0bHjh11/i+Lii1btlCnTh26d++Oi4sLNWvW5LvvvjN0WHrTqFEjdu3aRWhoKABnzpzhwIEDtG/f3sCR5Y/r168TERGh81y1t7enfv36Rfp9R6VS4eDgYOhQ9EKj0fDuu+8yYcIEKleubOhw9E6j0bB161YqVqxI27ZtcXFxoX79+i/sVmFsGjVqxJYtW7hz5w6KorBnzx5CQ0N5/fXXDR3aK3n+sz0oKIjk5GSd9xl/f3/K7RntvwAAC9hJREFUlCljsPcZSWL17MGDB6SmpuLq6qqz3dXVlYiICANFlX80Gg2jR4+mcePGVKlSxdDh6M3PP//MyZMnmT17tqFDyRfXrl1j6dKl+Pr6snPnToYMGcLIkSNZtWqVoUPTi8mTJ9OrVy/8/f0xMzOjZs2ajB49mr59+xo6tHyR8d5SXN53EhISmDRpEr179y5US2DmxZw5czA1NWXkyJGGDiVfREZGEhsby+eff067du3466+/6NKlC127dmXfvn2GDk8vvvrqKypVqoSnpyfm5ua0a9eOJUuW0KxZM0OHlmtZfbZHRERgbm6e6YujId9nTA1yVVFkDBs2jPPnz3PgwAFDh6I3t27dYtSoUfz9999G01crtzQaDXXq1OGzzz4DoGbNmpw/f55ly5bRv39/A0eXd7/88gtr1qxh7dq1VK5cmdOnTzN69Gjc3d2LRP2Ks+TkZHr06IGiKCxdutTQ4ehFUFAQixYt4uTJk6hUKkOHky80Gg0Ab731FmPGjAGgRo0aHDp0iGXLltG8eXNDhqcXX331FUeOHGHLli2ULVuWf//9l2HDhuHu7m50v+gZy2e7tMTqmZOTE2q1OtNovXv37uHm5magqPLH8OHD+fPPP9mzZw+enp6GDkdvgoKCiIyMpFatWpiammJqasq+fftYvHgxpqampKamGjrEPCtdujSVKlXS2RYQEGA0o4RfZsKECdrW2KpVq/Luu+8yZsyYItuynvHeUtTfdzIS2Bs3bvD3338XmVbY/fv3ExkZSZkyZbTvOTdu3GDcuHF4e3sbOjy9cHJywtTUtMi+78THx/Of//yHL7/8kk6dOlGtWjWGDx9Oz549mTdvnqHDy5XsPtvd3NxISkoiKipKp7wh32ckidUzc3Nzateuza5du7TbNBoNu3btomHDhgaMTH8URWH48OFs2rSJ3bt34+PjY+iQ9KpVq1acO3eO06dPa2916tShb9++nD59GrVabegQ86xx48aZpk4JDQ2lbNmyBopIv54+fYqJie7bm1qt1rYGFTU+Pj64ubnpvO/ExMRw9OjRIvO+k5HAXr58mX/++QdHR0dDh6Q37777LmfPntV5z3F3d2fChAns3LnT0OHphbm5OXXr1i2y7zvJyckkJycb9fvOyz7ba9f+v/buLqSp/48D+Hu/+TBzc6aTmdQ0U5alWf1jpIRbVkIXUoE9XSy1LKhpMym6CAt6ugiUbFBhRSSZBT2ikHWRRUW1wjQqGBYuuxhFiIUPGW3f/0U0WmlOf9r5zd4vOLDzddvnfc7w7MP23Tn/Q3BwsM9xxuFwoKOjQ7LjDKcTjIGysjLk5+dj3rx5MBgMOHz4MHp6elBYWCh1tFFhsVhw7tw5XLt2DSqVyjsXRq1WIywsTOJ0/55Kpfplfm94eDiio6PHzbzfbdu2ITMzEwcPHsSqVatgt9tRXV2N6upqqaONitzcXBw4cAA6nQ4zZ87E06dPUVlZifXr10sdbcS6u7vx6tUr73p7eztaWloQFRUFnU6H0tJS7N+/H8nJyZg6dSrKy8sRFxeH5cuXSxd6GH63fZMmTUJeXh6am5vR0NAAt9vtPe5ERUUhJCREqth+G+r1+7kpDw4ORmxsLPR6/Z+OOmJDbeOOHTuwevVqZGVlYeHChWhsbER9fT1u374tXehhGGr7jEYjduzYgbCwMMTHx+POnTuoqalBZWWlhKn9N9R7u1qtxoYNG1BWVoaoqChERESgpKQEGRkZmD9/vjShJTknwl/AZrMJnU4nQkJChMFgEA8fPpQ60qgBMOBy+vRpqaONmfF2ii0hhKivrxepqakiNDRUTJ8+XVRXV0sdadR8+vRJWK1WodPphEKhEImJiWLXrl2iv79f6mgj1tTUNOD/XX5+vhDi22m2ysvLhVarFaGhoWLRokXC4XBIG3oYfrd97e3tgx53mpqapI7ul6Fev58F4im2/NnGU6dOiaSkJKFQKER6erq4evWqdIGHaajtc7lcoqCgQMTFxQmFQiH0er2oqKgQHo9H2uB+8ue9va+vT2zZskVMnDhRTJgwQaxYsUK4XC7JMsuECOBL2BARERHRX4lzYomIiIgo4LCJJSIiIqKAwyaWiIiIiAIOm1giIiIiCjhsYomIiIgo4LCJJSIiIqKAwyaWiIiIiAIOm1giIiIiCjhsYomIRqigoEDSy7qazWYcPHhQsvr+WLNmDSoqKqSOQUTjEK/YRUQ0AJlM9tu/79mzB9u2bYMQApGRkX8m1A9aW1uRnZ2NN2/eQKlUDnl/k8mE2bNn4/Dhw2Mf7gfPnz9HVlYW2tvboVar/2htIhrfgqQOQET0X+Ryuby3L1y4gN27d8PhcHjHlEqlX83jWLHZbFi5cqWkGfyRmpqKadOm4ezZs7BYLFLHIaJxhNMJiIgGEBsb613UajVkMpnPmFKp/GU6gclkQklJCUpLSzFx4kRotVqcOHECPT09KCwshEqlQlJSEq5fv+5T6/nz51i6dCmUSiW0Wi3MZjM+fPgwaDa3242LFy8iNzfXZ/zo0aNITk6GQqGAVqtFXl4egG/THu7cuYOqqirIZDLIZDI4nU6/aptMJhQXF6O4uBhqtRoajQbl5eX48Uu8wep+l5ubi/Pnzw9r/xMRDYVNLBHRKDpz5gw0Gg3sdjtKSkqwefNmrFy5EpmZmWhubkZOTg7MZjN6e3sBAF1dXcjOzsacOXPw5MkTNDY24t27d1i1atWgNZ49e4aPHz9i3rx53rEnT55g69at2Lt3LxwOBxobG5GVlQUAqKqqQkZGBjZu3AiXywWXy4UpU6b4XfvMmTMICgqC3W5HVVUVKisrcfLkySHrfmcwGGC329Hf3z8q+5iICAAgiIjot06fPi3UavUv4/n5+WLZsmXedaPRKBYsWOBd//r1qwgPDxdms9k75nK5BADx4MEDIYQQ+/btEzk5OT7P+/btWwFAOByOAfNcuXJFyOVy4fF4vGOXLl0SERER4tOnTwM+xmg0CqvV6jPmT22j0ShSUlJ8au3cuVOkpKT4VVcIIVpbWwUA4XQ6B70PEdFw8ZNYIqJRNGvWLO9tuVyO6OhopKWlece0Wi0A4P379wC+/UCrqanJO8dWqVRi+vTpAIDXr18PWKOvrw+hoaE+Pz5bsmQJ4uPjkZiYCLPZjNraWu+nvYPxt/b8+fN9amVkZKCtrQ1ut9uvumFhYQAwZB4iouFgE0tENIqCg4N91mUymc/Y92bQ4/EAALq7u5Gbm4uWlhafpa2t7Zev5b/TaDTo7e3Fly9fvGMqlQrNzc2oq6vDpEmTsHv3bqSnp6Orq2vQrCOp/TN/6nZ2dgIAYmJi/HpOIiJ/sIklIpLQ3Llz8eLFCyQkJCApKclnCQ8PH/Axs2fPBgC8fPnSZzwoKAiLFy/GoUOH8OzZMzidTty6dQsAEBISArfbPaLajx498nncw4cPkZycDLlcPmRd4NuPxyZPngyNRjOynURENAA2sUREErJYLOjs7MTatWvx+PFjvH79Gjdu3EBhYeEvTed3MTExmDt3Lu7du+cda2howJEjR9DS0oI3b96gpqYGHo8Her0eAJCQkIBHjx7B6XTiw4cP8Hg8ftfu6OhAWVkZHA4H6urqYLPZYLVa/aoLAHfv3kVOTs5Y7D4i+ouxiSUiklBcXBzu378Pt9uNnJwcpKWlobS0FJGRkfjnn8EP0UVFRaitrfWuR0ZG4vLly8jOzkZKSgqOHz+Ouro6zJw5EwCwfft2yOVyzJgxAzExMejo6PC79rp169DX1weDwQCLxQKr1YpNmzb5Vffz58+4evUqNm7cOBa7j4j+YrxiFxFRAOrr64Ner8eFCxeQkZExZnX+7ZW+jh07hitXruDmzZujG4yI/nr8JJaIKACFhYWhpqbmtxdF+C8IDg6GzWaTOgYRjUO87CwRUYAymUxSRxhSUVGR1BGIaJzidAIiIiIiCjicTkBEREREAYdNLBEREREFHDaxRERERBRw2MQSERERUcBhE0tEREREAYdNLBEREREFHDaxRERERBRw2MQSERERUcD5P2IZAJs72oIHAAAAAElFTkSuQmCC",
+ "text/plain": [
+ "