-
-
Notifications
You must be signed in to change notification settings - Fork 68
/
cascadeface_aflw_24net.m
94 lines (74 loc) · 2.89 KB
/
cascadeface_aflw_24net.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
function cascadeface_aflw_24net(varargin)
setup;
% -------------------------------------------------------------------------
% Part 4.1: prepare the data
% -------------------------------------------------------------------------
% Load character dataset
imdb = load('C:/Users/zhedong/Desktop/face-database/train24net.mat') ;
imdb = imdb.imdb;
imdb.meta.sets=['train','val'];
ss = size(imdb.images.label);
imdb.images.set = ones(1,ss(2));
imdb.images.set(round(rand(1,60000)*ss(2))) = 2;
% -------------------------------------------------------------------------
% Part 4.2: initialize a CNN architecture
% -------------------------------------------------------------------------
net = f24net() ;
% -------------------------------------------------------------------------
% Part 4.3: train and evaluate the CNN
% -------------------------------------------------------------------------
trainOpts.batchSize = 128 ;
trainOpts.numEpochs = 19 ;
trainOpts.continue = true ;
trainOpts.useGpu = false ;
trainOpts.errorType = 'binary';
trainOpts.learningRate = 0.003 ;
trainOpts.expDir = 'data/24net-experiment' ;
trainOpts = vl_argparse(trainOpts, varargin);
% Take the average image out
imageMean = mean(imdb.images.data(:)) ;
imdb.images.data = imdb.images.data - imageMean ;
% Convert to a GPU array if needed
if trainOpts.useGpu
imdb.images.data = gpuArray(imdb.images.data) ;
end
% Call training function in MatConvNet
[net,info] = cnn_train(net, imdb, @getBatch, trainOpts) ;
% Move the CNN back to the CPU if it was trained on the GPU
if trainOpts.useGpu
net = vl_simplenn_move(net, 'cpu') ;
end
% Save the result for later use
net.layers(end) = [] ;
net.imageMean = imageMean ;
save('data/24net-experiment/f24net.mat', '-struct', 'net') ;
% -------------------------------------------------------------------------
% Part 4.4: visualize the learned filters
% -------------------------------------------------------------------------
figure(2) ; clf ; colormap gray ;
vl_imarraysc(squeeze(net.layers{1}.filters),'spacing',2)
axis equal ; title('filters in the first layer') ;
% -------------------------------------------------------------------------
% Part 4.5: apply the model
% -------------------------------------------------------------------------
% Load the CNN learned before
net = load('data/24net-experiment/f24net.mat') ;
% Load the sentence
im = imread('data/test3.png');
im = imresize(im,[24 24]);
im = im2single(im) ;
im = 256 * (im - net.imageMean) ;
% Apply the CNN to the larger image
res = vl_simplenn(net, im) ;
[value,index]=max(res(8).x);
if(index==2)
disp('no face');
else
disp('is face');
end
% --------------------------------------------------------------------
function [im, labels] = getBatch(imdb, batch)
% --------------------------------------------------------------------
im = imdb.images.data(:,:,:,batch) ;
im = 256 * reshape(im, 24, 24, 3, []) ;
labels = imdb.images.label(1,batch) ;