Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

test.py #59

Open
ps-star opened this issue Oct 31, 2024 · 6 comments
Open

test.py #59

ps-star opened this issue Oct 31, 2024 · 6 comments

Comments

@ps-star
Copy link

ps-star commented Oct 31, 2024

We use the scale: 1
-------test-----------
Load the model from ./model\ft_ResNet50\net_119.pth
1 -> 3:
We use the scale: 1
-------test-----------
Load the model from ./model\ft_ResNet50\net_119.pth
1 -> 3:
We use the scale: 1
-------test-----------
Load the model from ./model\ft_ResNet50\net_119.pth
1 -> 3:
We use the scale: 1
-------test-----------
Load the model from ./model\ft_ResNet50\net_119.pth
1 -> 3:
Continuously looping

@layumi
Copy link
Owner

layumi commented Oct 31, 2024

Are you running test.py?
Please check https://github.com/layumi/University1652-Baseline/blob/master/test.py#L229
Did you modify the code?
There are no any for or while loop functions.

@ps-star
Copy link
Author

ps-star commented Oct 31, 2024

Hello, 229 represents' query_statellite '1->' gallery-drone '3, but there is still a loop problem in the image when running test.by

@ps-star
Copy link
Author

ps-star commented Nov 1, 2024

def extract_feature(model,dataloaders, view_index = 1):
features = torch.FloatTensor()
count = 0
for data in dataloaders:
img, label = data
n, c, h, w = img.size()
count += n
print(count)
ff = torch.FloatTensor(n,512).zero_().cuda()

    for i in range(2):
        if(i==1):
            img = fliplr(img)
        input_img = Variable(img.cuda())
        for scale in ms:
            if scale != 1:
                # bicubic is only  available in pytorch>= 1.1
                input_img = nn.functional.interpolate(input_img, scale_factor=scale, mode='bilinear', align_corners=False)
            if opt.views ==2:
                if view_index == 1:
                    outputs, _ = model(input_img, None) 
                elif view_index ==2:
                    _, outputs = model(None, input_img) 
            elif opt.views ==3:
                if view_index == 1:
                    outputs, _, _ = model(input_img, None, None)
                elif view_index ==2:
                    _, outputs, _ = model(None, input_img, None)
                elif view_index ==3:
                    _, _, outputs = model(None, None, input_img)
            ff += outputs
    # norm feature
    if opt.PCB:
        # feature size (n,2048,6)
        # 1. To treat every part equally, I calculate the norm for every 2048-dim part feature.
        # 2. To keep the cosine score==1, sqrt(6) is added to norm the whole feature (2048*6).
        fnorm = torch.norm(ff, p=2, dim=1, keepdim=True) * np.sqrt(6) 
        ff = ff.div(fnorm.expand_as(ff))
        ff = ff.view(ff.size(0), -1)
    else:
        fnorm = torch.norm(ff, p=2, dim=1, keepdim=True)
        ff = ff.div(fnorm.expand_as(ff))

    features = torch.cat((features,ff.data.cpu()), 0)
return features

UnboundLocalError: local variable 'outputs' referenced before assignment
1

@Mayuzhuo0323
Copy link

def extract_feature(model,dataloaders, view_index = 1): features = torch.FloatTensor() count = 0 for data in dataloaders: img, label = data n, c, h, w = img.size() count += n print(count) ff = torch.FloatTensor(n,512).zero_().cuda()

    for i in range(2):
        if(i==1):
            img = fliplr(img)
        input_img = Variable(img.cuda())
        for scale in ms:
            if scale != 1:
                # bicubic is only  available in pytorch>= 1.1
                input_img = nn.functional.interpolate(input_img, scale_factor=scale, mode='bilinear', align_corners=False)
            if opt.views ==2:
                if view_index == 1:
                    outputs, _ = model(input_img, None) 
                elif view_index ==2:
                    _, outputs = model(None, input_img) 
            elif opt.views ==3:
                if view_index == 1:
                    outputs, _, _ = model(input_img, None, None)
                elif view_index ==2:
                    _, outputs, _ = model(None, input_img, None)
                elif view_index ==3:
                    _, _, outputs = model(None, None, input_img)
            ff += outputs
    # norm feature
    if opt.PCB:
        # feature size (n,2048,6)
        # 1. To treat every part equally, I calculate the norm for every 2048-dim part feature.
        # 2. To keep the cosine score==1, sqrt(6) is added to norm the whole feature (2048*6).
        fnorm = torch.norm(ff, p=2, dim=1, keepdim=True) * np.sqrt(6) 
        ff = ff.div(fnorm.expand_as(ff))
        ff = ff.view(ff.size(0), -1)
    else:
        fnorm = torch.norm(ff, p=2, dim=1, keepdim=True)
        ff = ff.div(fnorm.expand_as(ff))

    features = torch.cat((features,ff.data.cpu()), 0)
return features

UnboundLocalError: local variable 'outputs' referenced before assignment 1

@Mayuzhuo0323
Copy link

i have the same problem,how did you fix it

@ps-star
Copy link
Author

ps-star commented Nov 11, 2024

Make numw_workers=0,but when count=701, there will still be an UnboundLocalError: local variable 'outputs' referenced before assignment,which remains unresolved

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants