-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathBigMath.cs
96 lines (79 loc) · 3.31 KB
/
BigMath.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
/*
Copyright © 2017 László Csöndes
This file is part of Secret Splitter.
Secret Splitter is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Secret Splitter is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with Secret Splitter. If not, see <http://www.gnu.org/licenses/>.
*/
using System;
using System.Diagnostics;
using System.Diagnostics.Contracts;
using System.Numerics;
namespace SecretSplit
{
static class BigMath
{
[Conditional("DEBUG")]
private static void CheckRange(this BigInteger n)
{
Contract.Assert(n >= 0);
Contract.Assert(n < Crypto.FieldPrime);
}
private static BigInteger Abs(this BigInteger n)
{
return (n % Crypto.FieldPrime + Crypto.FieldPrime) % Crypto.FieldPrime;
}
private static BigInteger GCD(BigInteger a, BigInteger b)
{
a.CheckRange(); b.CheckRange();
if (b == 0)
return a;
return GCD(b, a % b);
}
private static (BigInteger gcd, BigInteger invA, BigInteger invB) GCD2(BigInteger a, BigInteger b)
{
if (b == 0)
return (a, 1, 0);
var div = BigInteger.DivRem(a, b, out BigInteger rem);
var (g, iA, iB) = GCD2(b, rem);
return (g, iB, iA - iB * div);
}
public static (BigInteger numerator, BigInteger denominator) MultiplyRational(
BigInteger numeratorLhs, BigInteger denominatorLhs,
BigInteger numeratorRhs, BigInteger denominatorRhs)
{
denominatorRhs = denominatorRhs.Abs();
numeratorLhs.CheckRange(); denominatorLhs.CheckRange();
numeratorRhs.CheckRange(); denominatorRhs.CheckRange();
if (denominatorLhs == 0)
throw new ArgumentOutOfRangeException("LHS denominator is zero");
if (denominatorRhs == 0)
throw new ArgumentOutOfRangeException("RHS denominator is zero");
var numerator = (numeratorLhs * numeratorRhs) % Crypto.FieldPrime;
var denominator = (denominatorLhs * denominatorRhs) % Crypto.FieldPrime;
var gcd = GCD(numerator, denominator);
return (numerator / gcd, denominator / gcd);
}
private static BigInteger Inverse(BigInteger n)
{
n.CheckRange();
var inverse = GCD2(Crypto.FieldPrime, n).invB.Abs();
Contract.Assert((n * inverse) % Crypto.FieldPrime == 1);
return inverse;
}
public static BigInteger RationalToWhole(BigInteger numerator, BigInteger denominator)
{
numerator.CheckRange(); denominator.CheckRange();
// Find the multiplicative inverse of the denominator over the field
var invD = Inverse(denominator);
return numerator * invD % Crypto.FieldPrime;
}
}
}