-
Notifications
You must be signed in to change notification settings - Fork 0
/
basic.lean
1566 lines (1147 loc) · 58.4 KB
/
basic.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Yury Kudryashov
-/
import algebra.module.basic
import algebra.ring.aut
import linear_algebra.span
import tactic.abel
/-!
# Algebras over commutative semirings
In this file we define associative unital `algebra`s over commutative (semi)rings, algebra
homomorphisms `alg_hom`, and algebra equivalences `alg_equiv`.
`subalgebra`s are defined in `algebra.algebra.subalgebra`.
For the category of `R`-algebras, denoted `Algebra R`, see the file
`algebra/category/Algebra/basic.lean`.
See the implementation notes for remarks about non-associative and non-unital algebras.
## Main definitions:
* `algebra R A`: the algebra typeclass.
* `alg_hom R A B`: the type of `R`-algebra morphisms from `A` to `B`.
* `alg_equiv R A B`: the type of `R`-algebra isomorphisms between `A` to `B`.
* `algebra_map R A : R →+* A`: the canonical map from `R` to `A`, as a `ring_hom`. This is the
preferred spelling of this map.
* `algebra.linear_map R A : R →ₗ[R] A`: the canonical map from `R` to `A`, as a `linear_map`.
* `algebra.of_id R A : R →ₐ[R] A`: the canonical map from `R` to `A`, as n `alg_hom`.
* Instances of `algebra` in this file:
* `algebra.id`
* `pi.algebra`
* `prod.algebra`
* `algebra_nat`
* `algebra_int`
* `algebra_rat`
* `mul_opposite.algebra`
* `module.End.algebra`
## Notations
* `A →ₐ[R] B` : `R`-algebra homomorphism from `A` to `B`.
* `A ≃ₐ[R] B` : `R`-algebra equivalence from `A` to `B`.
## Implementation notes
Given a commutative (semi)ring `R`, there are two ways to define an `R`-algebra structure on a
(possibly noncommutative) (semi)ring `A`:
* By endowing `A` with a morphism of rings `R →+* A` denoted `algebra_map R A` which lands in the
center of `A`.
* By requiring `A` be an `R`-module such that the action associates and commutes with multiplication
as `r • (a₁ * a₂) = (r • a₁) * a₂ = a₁ * (r • a₂)`.
We define `algebra R A` in a way that subsumes both definitions, by extending `has_scalar R A` and
requiring that this scalar action `r • x` must agree with left multiplication by the image of the
structure morphism `algebra_map R A r * x`.
As a result, there are two ways to talk about an `R`-algebra `A` when `A` is a semiring:
1. ```lean
variables [comm_semiring R] [semiring A]
variables [algebra R A]
```
2. ```lean
variables [comm_semiring R] [semiring A]
variables [module R A] [smul_comm_class R A A] [is_scalar_tower R A A]
```
The first approach implies the second via typeclass search; so any lemma stated with the second set
of arguments will automatically apply to the first set. Typeclass search does not know that the
second approach implies the first, but this can be shown with:
```lean
example {R A : Type*} [comm_semiring R] [semiring A]
[module R A] [smul_comm_class R A A] [is_scalar_tower R A A] : algebra R A :=
algebra.of_module smul_mul_assoc mul_smul_comm
```
The advantage of the first approach is that `algebra_map R A` is available, and `alg_hom R A B` and
`subalgebra R A` can be used. For concrete `R` and `A`, `algebra_map R A` is often definitionally
convenient.
The advantage of the second approach is that `comm_semiring R`, `semiring A`, and `module R A` can
all be relaxed independently; for instance, this allows us to:
* Replace `semiring A` with `non_unital_non_assoc_semiring A` in order to describe non-unital and/or
non-associative algebras.
* Replace `comm_semiring R` and `module R A` with `comm_group R'` and `distrib_mul_action R' A`,
which when `R' = Rˣ` lets us talk about the "algebra-like" action of `Rˣ` on an
`R`-algebra `A`.
While `alg_hom R A B` cannot be used in the second approach, `non_unital_alg_hom R A B` still can.
You should always use the first approach when working with associative unital algebras, and mimic
the second approach only when you need to weaken a condition on either `R` or `A`.
-/
universes u v w u₁ v₁
open_locale big_operators
section prio
-- We set this priority to 0 later in this file
set_option extends_priority 200 /- control priority of
`instance [algebra R A] : has_scalar R A` -/
/--
An associative unital `R`-algebra is a semiring `A` equipped with a map into its center `R → A`.
See the implementation notes in this file for discussion of the details of this definition.
-/
@[nolint has_inhabited_instance]
class algebra (R : Type u) (A : Type v) [comm_semiring R] [semiring A]
extends has_scalar R A, R →+* A :=
(commutes' : ∀ r x, to_fun r * x = x * to_fun r)
(smul_def' : ∀ r x, r • x = to_fun r * x)
end prio
/-- Embedding `R →+* A` given by `algebra` structure. -/
def algebra_map (R : Type u) (A : Type v) [comm_semiring R] [semiring A] [algebra R A] : R →+* A :=
algebra.to_ring_hom
/-- Creating an algebra from a morphism to the center of a semiring. -/
def ring_hom.to_algebra' {R S} [comm_semiring R] [semiring S] (i : R →+* S)
(h : ∀ c x, i c * x = x * i c) :
algebra R S :=
{ smul := λ c x, i c * x,
commutes' := h,
smul_def' := λ c x, rfl,
to_ring_hom := i}
/-- Creating an algebra from a morphism to a commutative semiring. -/
def ring_hom.to_algebra {R S} [comm_semiring R] [comm_semiring S] (i : R →+* S) :
algebra R S :=
i.to_algebra' $ λ _, mul_comm _
lemma ring_hom.algebra_map_to_algebra {R S} [comm_semiring R] [comm_semiring S]
(i : R →+* S) :
@algebra_map R S _ _ i.to_algebra = i :=
rfl
namespace algebra
variables {R : Type u} {S : Type v} {A : Type w} {B : Type*}
/-- Let `R` be a commutative semiring, let `A` be a semiring with a `module R` structure.
If `(r • 1) * x = x * (r • 1) = r • x` for all `r : R` and `x : A`, then `A` is an `algebra`
over `R`.
See note [reducible non-instances]. -/
@[reducible]
def of_module' [comm_semiring R] [semiring A] [module R A]
(h₁ : ∀ (r : R) (x : A), (r • 1) * x = r • x)
(h₂ : ∀ (r : R) (x : A), x * (r • 1) = r • x) : algebra R A :=
{ to_fun := λ r, r • 1,
map_one' := one_smul _ _,
map_mul' := λ r₁ r₂, by rw [h₁, mul_smul],
map_zero' := zero_smul _ _,
map_add' := λ r₁ r₂, add_smul r₁ r₂ 1,
commutes' := λ r x, by simp only [h₁, h₂],
smul_def' := λ r x, by simp only [h₁] }
/-- Let `R` be a commutative semiring, let `A` be a semiring with a `module R` structure.
If `(r • x) * y = x * (r • y) = r • (x * y)` for all `r : R` and `x y : A`, then `A`
is an `algebra` over `R`.
See note [reducible non-instances]. -/
@[reducible]
def of_module [comm_semiring R] [semiring A] [module R A]
(h₁ : ∀ (r : R) (x y : A), (r • x) * y = r • (x * y))
(h₂ : ∀ (r : R) (x y : A), x * (r • y) = r • (x * y)) : algebra R A :=
of_module' (λ r x, by rw [h₁, one_mul]) (λ r x, by rw [h₂, mul_one])
section semiring
variables [comm_semiring R] [comm_semiring S]
variables [semiring A] [algebra R A] [semiring B] [algebra R B]
/-- We keep this lemma private because it picks up the `algebra.to_has_scalar` instance
which we set to priority 0 shortly. See `smul_def` below for the public version. -/
private lemma smul_def'' (r : R) (x : A) : r • x = algebra_map R A r * x :=
algebra.smul_def' r x
/--
To prove two algebra structures on a fixed `[comm_semiring R] [semiring A]` agree,
it suffices to check the `algebra_map`s agree.
-/
-- We'll later use this to show `algebra ℤ M` is a subsingleton.
@[ext]
lemma algebra_ext {R : Type*} [comm_semiring R] {A : Type*} [semiring A] (P Q : algebra R A)
(w : ∀ (r : R), by { haveI := P, exact algebra_map R A r } =
by { haveI := Q, exact algebra_map R A r }) :
P = Q :=
begin
unfreezingI { rcases P with ⟨⟨P⟩⟩, rcases Q with ⟨⟨Q⟩⟩ },
congr,
{ funext r a,
replace w := congr_arg (λ s, s * a) (w r),
simp only [←smul_def''] at w,
apply w, },
{ ext r,
exact w r, },
{ apply proof_irrel_heq, },
{ apply proof_irrel_heq, },
end
@[priority 200] -- see Note [lower instance priority]
instance to_module : module R A :=
{ one_smul := by simp [smul_def''],
mul_smul := by simp [smul_def'', mul_assoc],
smul_add := by simp [smul_def'', mul_add],
smul_zero := by simp [smul_def''],
add_smul := by simp [smul_def'', add_mul],
zero_smul := by simp [smul_def''] }
-- From now on, we don't want to use the following instance anymore.
-- Unfortunately, leaving it in place causes deterministic timeouts later in mathlib.
attribute [instance, priority 0] algebra.to_has_scalar
lemma smul_def (r : R) (x : A) : r • x = algebra_map R A r * x :=
algebra.smul_def' r x
lemma algebra_map_eq_smul_one (r : R) : algebra_map R A r = r • 1 :=
calc algebra_map R A r = algebra_map R A r * 1 : (mul_one _).symm
... = r • 1 : (algebra.smul_def r 1).symm
lemma algebra_map_eq_smul_one' : ⇑(algebra_map R A) = λ r, r • (1 : A) :=
funext algebra_map_eq_smul_one
/-- `mul_comm` for `algebra`s when one element is from the base ring. -/
theorem commutes (r : R) (x : A) : algebra_map R A r * x = x * algebra_map R A r :=
algebra.commutes' r x
/-- `mul_left_comm` for `algebra`s when one element is from the base ring. -/
theorem left_comm (x : A) (r : R) (y : A) :
x * (algebra_map R A r * y) = algebra_map R A r * (x * y) :=
by rw [← mul_assoc, ← commutes, mul_assoc]
/-- `mul_right_comm` for `algebra`s when one element is from the base ring. -/
theorem right_comm (x : A) (r : R) (y : A) :
(x * algebra_map R A r) * y = (x * y) * algebra_map R A r :=
by rw [mul_assoc, commutes, ←mul_assoc]
instance _root_.is_scalar_tower.right : is_scalar_tower R A A :=
⟨λ x y z, by rw [smul_eq_mul, smul_eq_mul, smul_def, smul_def, mul_assoc]⟩
/-- This is just a special case of the global `mul_smul_comm` lemma that requires less typeclass
search (and was here first). -/
@[simp] protected lemma mul_smul_comm (s : R) (x y : A) :
x * (s • y) = s • (x * y) :=
-- TODO: set up `is_scalar_tower.smul_comm_class` earlier so that we can actually prove this using
-- `mul_smul_comm s x y`.
by rw [smul_def, smul_def, left_comm]
/-- This is just a special case of the global `smul_mul_assoc` lemma that requires less typeclass
search (and was here first). -/
@[simp] protected lemma smul_mul_assoc (r : R) (x y : A) :
(r • x) * y = r • (x * y) :=
smul_mul_assoc r x y
section
variables {r : R} {a : A}
@[simp] lemma bit0_smul_one : bit0 r • (1 : A) = bit0 (r • (1 : A)) :=
by simp [bit0, add_smul]
lemma bit0_smul_one' : bit0 r • (1 : A) = r • 2 :=
by simp [bit0, add_smul, smul_add]
@[simp] lemma bit0_smul_bit0 : bit0 r • bit0 a = r • (bit0 (bit0 a)) :=
by simp [bit0, add_smul, smul_add]
@[simp] lemma bit0_smul_bit1 : bit0 r • bit1 a = r • (bit0 (bit1 a)) :=
by simp [bit0, add_smul, smul_add]
@[simp] lemma bit1_smul_one : bit1 r • (1 : A) = bit1 (r • (1 : A)) :=
by simp [bit1, add_smul]
lemma bit1_smul_one' : bit1 r • (1 : A) = r • 2 + 1 :=
by simp [bit1, bit0, add_smul, smul_add]
@[simp] lemma bit1_smul_bit0 : bit1 r • bit0 a = r • (bit0 (bit0 a)) + bit0 a :=
by simp [bit1, add_smul, smul_add]
@[simp] lemma bit1_smul_bit1 : bit1 r • bit1 a = r • (bit0 (bit1 a)) + bit1 a :=
by { simp only [bit0, bit1, add_smul, smul_add, one_smul], abel }
end
variables (R A)
/--
The canonical ring homomorphism `algebra_map R A : R →* A` for any `R`-algebra `A`,
packaged as an `R`-linear map.
-/
protected def linear_map : R →ₗ[R] A :=
{ map_smul' := λ x y, by simp [algebra.smul_def],
..algebra_map R A }
@[simp]
lemma linear_map_apply (r : R) : algebra.linear_map R A r = algebra_map R A r := rfl
lemma coe_linear_map : ⇑(algebra.linear_map R A) = algebra_map R A := rfl
instance id : algebra R R := (ring_hom.id R).to_algebra
variables {R A}
namespace id
@[simp] lemma map_eq_id : algebra_map R R = ring_hom.id _ := rfl
lemma map_eq_self (x : R) : algebra_map R R x = x := rfl
@[simp] lemma smul_eq_mul (x y : R) : x • y = x * y := rfl
end id
section punit
instance _root_.punit.algebra : algebra R punit :=
{ to_fun := λ x, punit.star,
map_one' := rfl,
map_mul' := λ _ _, rfl,
map_zero' := rfl,
map_add' := λ _ _, rfl,
commutes' := λ _ _, rfl,
smul_def' := λ _ _, rfl }
@[simp] lemma algebra_map_punit (r : R) : algebra_map R punit r = punit.star := rfl
end punit
section prod
variables (R A B)
instance _root_.prod.algebra : algebra R (A × B) :=
{ commutes' := by { rintro r ⟨a, b⟩, dsimp, rw [commutes r a, commutes r b] },
smul_def' := by { rintro r ⟨a, b⟩, dsimp, rw [smul_def r a, smul_def r b] },
.. prod.module,
.. ring_hom.prod (algebra_map R A) (algebra_map R B) }
variables {R A B}
@[simp] lemma algebra_map_prod_apply (r : R) :
algebra_map R (A × B) r = (algebra_map R A r, algebra_map R B r) := rfl
end prod
/-- Algebra over a subsemiring. This builds upon `subsemiring.module`. -/
instance of_subsemiring (S : subsemiring R) : algebra S A :=
{ smul := (•),
commutes' := λ r x, algebra.commutes r x,
smul_def' := λ r x, algebra.smul_def r x,
.. (algebra_map R A).comp S.subtype }
lemma algebra_map_of_subsemiring (S : subsemiring R) :
(algebra_map S R : S →+* R) = subsemiring.subtype S := rfl
lemma coe_algebra_map_of_subsemiring (S : subsemiring R) :
(algebra_map S R : S → R) = subtype.val := rfl
lemma algebra_map_of_subsemiring_apply (S : subsemiring R) (x : S) :
algebra_map S R x = x := rfl
/-- Algebra over a subring. This builds upon `subring.module`. -/
instance of_subring {R A : Type*} [comm_ring R] [ring A] [algebra R A]
(S : subring R) : algebra S A :=
{ smul := (•),
.. algebra.of_subsemiring S.to_subsemiring,
.. (algebra_map R A).comp S.subtype }
lemma algebra_map_of_subring {R : Type*} [comm_ring R] (S : subring R) :
(algebra_map S R : S →+* R) = subring.subtype S := rfl
lemma coe_algebra_map_of_subring {R : Type*} [comm_ring R] (S : subring R) :
(algebra_map S R : S → R) = subtype.val := rfl
lemma algebra_map_of_subring_apply {R : Type*} [comm_ring R] (S : subring R) (x : S) :
algebra_map S R x = x := rfl
/-- Explicit characterization of the submonoid map in the case of an algebra.
`S` is made explicit to help with type inference -/
def algebra_map_submonoid (S : Type*) [semiring S] [algebra R S]
(M : submonoid R) : (submonoid S) :=
submonoid.map (algebra_map R S : R →* S) M
lemma mem_algebra_map_submonoid_of_mem {S : Type*} [semiring S] [algebra R S] {M : submonoid R}
(x : M) : (algebra_map R S x) ∈ algebra_map_submonoid S M :=
set.mem_image_of_mem (algebra_map R S) x.2
end semiring
section comm_semiring
variables [comm_semiring R]
lemma mul_sub_algebra_map_commutes [ring A] [algebra R A] (x : A) (r : R) :
x * (x - algebra_map R A r) = (x - algebra_map R A r) * x :=
by rw [mul_sub, ←commutes, sub_mul]
lemma mul_sub_algebra_map_pow_commutes [ring A] [algebra R A] (x : A) (r : R) (n : ℕ) :
x * (x - algebra_map R A r) ^ n = (x - algebra_map R A r) ^ n * x :=
begin
induction n with n ih,
{ simp },
{ rw [pow_succ, ←mul_assoc, mul_sub_algebra_map_commutes, mul_assoc, ih, ←mul_assoc] }
end
end comm_semiring
section ring
variables [comm_ring R]
variables (R)
/-- A `semiring` that is an `algebra` over a commutative ring carries a natural `ring` structure.
See note [reducible non-instances]. -/
@[reducible]
def semiring_to_ring [semiring A] [algebra R A] : ring A :=
{ ..module.add_comm_monoid_to_add_comm_group R,
..(infer_instance : semiring A) }
end ring
end algebra
namespace no_zero_smul_divisors
variables {R A : Type*}
open algebra
section ring
variables [comm_ring R]
/-- If `algebra_map R A` is injective and `A` has no zero divisors,
`R`-multiples in `A` are zero only if one of the factors is zero.
Cannot be an instance because there is no `injective (algebra_map R A)` typeclass.
-/
lemma of_algebra_map_injective
[semiring A] [algebra R A] [no_zero_divisors A]
(h : function.injective (algebra_map R A)) : no_zero_smul_divisors R A :=
⟨λ c x hcx, (mul_eq_zero.mp ((smul_def c x).symm.trans hcx)).imp_left
((injective_iff_map_eq_zero (algebra_map R A)).mp h _)⟩
variables (R A)
lemma algebra_map_injective [ring A] [nontrivial A]
[algebra R A] [no_zero_smul_divisors R A] :
function.injective (algebra_map R A) :=
suffices function.injective (λ (c : R), c • (1 : A)),
by { convert this, ext, rw [algebra.smul_def, mul_one] },
smul_left_injective R one_ne_zero
variables {R A}
lemma iff_algebra_map_injective [ring A] [is_domain A] [algebra R A] :
no_zero_smul_divisors R A ↔ function.injective (algebra_map R A) :=
⟨@@no_zero_smul_divisors.algebra_map_injective R A _ _ _ _,
no_zero_smul_divisors.of_algebra_map_injective⟩
end ring
section field
variables [field R] [semiring A] [algebra R A]
@[priority 100] -- see note [lower instance priority]
instance algebra.no_zero_smul_divisors [nontrivial A] [no_zero_divisors A] :
no_zero_smul_divisors R A :=
no_zero_smul_divisors.of_algebra_map_injective (algebra_map R A).injective
end field
end no_zero_smul_divisors
namespace mul_opposite
variables {R A : Type*} [comm_semiring R] [semiring A] [algebra R A]
instance : algebra R Aᵐᵒᵖ :=
{ to_ring_hom := (algebra_map R A).to_opposite $ λ x y, algebra.commutes _ _,
smul_def' := λ c x, unop_injective $
by { dsimp, simp only [op_mul, algebra.smul_def, algebra.commutes, op_unop] },
commutes' := λ r, mul_opposite.rec $ λ x, by dsimp; simp only [← op_mul, algebra.commutes],
.. mul_opposite.has_scalar A R }
@[simp] lemma algebra_map_apply (c : R) : algebra_map R Aᵐᵒᵖ c = op (algebra_map R A c) := rfl
end mul_opposite
namespace module
variables (R : Type u) (M : Type v) [comm_semiring R] [add_comm_monoid M] [module R M]
instance : algebra R (module.End R M) :=
algebra.of_module smul_mul_assoc (λ r f g, (smul_comm r f g).symm)
lemma algebra_map_End_eq_smul_id (a : R) :
(algebra_map R (End R M)) a = a • linear_map.id := rfl
@[simp] lemma algebra_map_End_apply (a : R) (m : M) :
(algebra_map R (End R M)) a m = a • m := rfl
@[simp] lemma ker_algebra_map_End (K : Type u) (V : Type v)
[field K] [add_comm_group V] [module K V] (a : K) (ha : a ≠ 0) :
((algebra_map K (End K V)) a).ker = ⊥ :=
linear_map.ker_smul _ _ ha
end module
set_option old_structure_cmd true
/-- Defining the homomorphism in the category R-Alg. -/
@[nolint has_inhabited_instance]
structure alg_hom (R : Type u) (A : Type v) (B : Type w)
[comm_semiring R] [semiring A] [semiring B] [algebra R A] [algebra R B] extends ring_hom A B :=
(commutes' : ∀ r : R, to_fun (algebra_map R A r) = algebra_map R B r)
run_cmd tactic.add_doc_string `alg_hom.to_ring_hom "Reinterpret an `alg_hom` as a `ring_hom`"
infixr ` →ₐ `:25 := alg_hom _
notation A ` →ₐ[`:25 R `] ` B := alg_hom R A B
namespace alg_hom
variables {R : Type u} {A : Type v} {B : Type w} {C : Type u₁} {D : Type v₁}
section semiring
variables [comm_semiring R] [semiring A] [semiring B] [semiring C] [semiring D]
variables [algebra R A] [algebra R B] [algebra R C] [algebra R D]
instance : has_coe_to_fun (A →ₐ[R] B) (λ _, A → B) := ⟨alg_hom.to_fun⟩
initialize_simps_projections alg_hom (to_fun → apply)
@[simp] lemma to_fun_eq_coe (f : A →ₐ[R] B) : f.to_fun = f := rfl
instance : ring_hom_class (A →ₐ[R] B) A B :=
{ coe := to_fun,
coe_injective' := λ f g h, by { cases f, cases g, congr' },
map_add := map_add',
map_zero := map_zero',
map_mul := map_mul',
map_one := map_one' }
instance coe_ring_hom : has_coe (A →ₐ[R] B) (A →+* B) := ⟨alg_hom.to_ring_hom⟩
instance coe_monoid_hom : has_coe (A →ₐ[R] B) (A →* B) := ⟨λ f, ↑(f : A →+* B)⟩
instance coe_add_monoid_hom : has_coe (A →ₐ[R] B) (A →+ B) := ⟨λ f, ↑(f : A →+* B)⟩
@[simp, norm_cast] lemma coe_mk {f : A → B} (h₁ h₂ h₃ h₄ h₅) :
⇑(⟨f, h₁, h₂, h₃, h₄, h₅⟩ : A →ₐ[R] B) = f := rfl
-- make the coercion the simp-normal form
@[simp] lemma to_ring_hom_eq_coe (f : A →ₐ[R] B) : f.to_ring_hom = f := rfl
@[simp, norm_cast] lemma coe_to_ring_hom (f : A →ₐ[R] B) : ⇑(f : A →+* B) = f := rfl
@[simp, norm_cast] lemma coe_to_monoid_hom (f : A →ₐ[R] B) : ⇑(f : A →* B) = f := rfl
@[simp, norm_cast] lemma coe_to_add_monoid_hom (f : A →ₐ[R] B) : ⇑(f : A →+ B) = f := rfl
variables (φ : A →ₐ[R] B)
theorem coe_fn_injective : @function.injective (A →ₐ[R] B) (A → B) coe_fn := fun_like.coe_injective
theorem coe_fn_inj {φ₁ φ₂ : A →ₐ[R] B} : (φ₁ : A → B) = φ₂ ↔ φ₁ = φ₂ := fun_like.coe_fn_eq
theorem coe_ring_hom_injective : function.injective (coe : (A →ₐ[R] B) → (A →+* B)) :=
λ φ₁ φ₂ H, coe_fn_injective $ show ((φ₁ : (A →+* B)) : A → B) = ((φ₂ : (A →+* B)) : A → B),
from congr_arg _ H
theorem coe_monoid_hom_injective : function.injective (coe : (A →ₐ[R] B) → (A →* B)) :=
ring_hom.coe_monoid_hom_injective.comp coe_ring_hom_injective
theorem coe_add_monoid_hom_injective : function.injective (coe : (A →ₐ[R] B) → (A →+ B)) :=
ring_hom.coe_add_monoid_hom_injective.comp coe_ring_hom_injective
protected lemma congr_fun {φ₁ φ₂ : A →ₐ[R] B} (H : φ₁ = φ₂) (x : A) : φ₁ x = φ₂ x :=
fun_like.congr_fun H x
protected lemma congr_arg (φ : A →ₐ[R] B) {x y : A} (h : x = y) : φ x = φ y :=
fun_like.congr_arg φ h
@[ext]
theorem ext {φ₁ φ₂ : A →ₐ[R] B} (H : ∀ x, φ₁ x = φ₂ x) : φ₁ = φ₂ := fun_like.ext _ _ H
theorem ext_iff {φ₁ φ₂ : A →ₐ[R] B} : φ₁ = φ₂ ↔ ∀ x, φ₁ x = φ₂ x := fun_like.ext_iff
@[simp] theorem mk_coe {f : A →ₐ[R] B} (h₁ h₂ h₃ h₄ h₅) :
(⟨f, h₁, h₂, h₃, h₄, h₅⟩ : A →ₐ[R] B) = f := ext $ λ _, rfl
@[simp]
theorem commutes (r : R) : φ (algebra_map R A r) = algebra_map R B r := φ.commutes' r
theorem comp_algebra_map : (φ : A →+* B).comp (algebra_map R A) = algebra_map R B :=
ring_hom.ext $ φ.commutes
lemma map_add (r s : A) : φ (r + s) = φ r + φ s := map_add _ _ _
lemma map_zero : φ 0 = 0 := map_zero _
lemma map_mul (x y) : φ (x * y) = φ x * φ y := map_mul _ _ _
lemma map_one : φ 1 = 1 := map_one _
lemma map_pow (x : A) (n : ℕ) : φ (x ^ n) = (φ x) ^ n :=
map_pow _ _ _
@[simp] lemma map_smul (r : R) (x : A) : φ (r • x) = r • φ x :=
by simp only [algebra.smul_def, map_mul, commutes]
lemma map_sum {ι : Type*} (f : ι → A) (s : finset ι) :
φ (∑ x in s, f x) = ∑ x in s, φ (f x) :=
φ.to_ring_hom.map_sum f s
lemma map_finsupp_sum {α : Type*} [has_zero α] {ι : Type*} (f : ι →₀ α) (g : ι → α → A) :
φ (f.sum g) = f.sum (λ i a, φ (g i a)) :=
φ.map_sum _ _
lemma map_bit0 (x) : φ (bit0 x) = bit0 (φ x) := map_bit0 _ _
lemma map_bit1 (x) : φ (bit1 x) = bit1 (φ x) := map_bit1 _ _
/-- If a `ring_hom` is `R`-linear, then it is an `alg_hom`. -/
def mk' (f : A →+* B) (h : ∀ (c : R) x, f (c • x) = c • f x) : A →ₐ[R] B :=
{ to_fun := f,
commutes' := λ c, by simp only [algebra.algebra_map_eq_smul_one, h, f.map_one],
.. f }
@[simp] lemma coe_mk' (f : A →+* B) (h : ∀ (c : R) x, f (c • x) = c • f x) : ⇑(mk' f h) = f := rfl
section
variables (R A)
/-- Identity map as an `alg_hom`. -/
protected def id : A →ₐ[R] A :=
{ commutes' := λ _, rfl,
..ring_hom.id A }
@[simp] lemma coe_id : ⇑(alg_hom.id R A) = id := rfl
@[simp] lemma id_to_ring_hom : (alg_hom.id R A : A →+* A) = ring_hom.id _ := rfl
end
lemma id_apply (p : A) : alg_hom.id R A p = p := rfl
/-- Composition of algebra homeomorphisms. -/
def comp (φ₁ : B →ₐ[R] C) (φ₂ : A →ₐ[R] B) : A →ₐ[R] C :=
{ commutes' := λ r : R, by rw [← φ₁.commutes, ← φ₂.commutes]; refl,
.. φ₁.to_ring_hom.comp ↑φ₂ }
@[simp] lemma coe_comp (φ₁ : B →ₐ[R] C) (φ₂ : A →ₐ[R] B) : ⇑(φ₁.comp φ₂) = φ₁ ∘ φ₂ := rfl
lemma comp_apply (φ₁ : B →ₐ[R] C) (φ₂ : A →ₐ[R] B) (p : A) : φ₁.comp φ₂ p = φ₁ (φ₂ p) := rfl
lemma comp_to_ring_hom (φ₁ : B →ₐ[R] C) (φ₂ : A →ₐ[R] B) :
⇑(φ₁.comp φ₂ : A →+* C) = (φ₁ : B →+* C).comp ↑φ₂ := rfl
@[simp] theorem comp_id : φ.comp (alg_hom.id R A) = φ :=
ext $ λ x, rfl
@[simp] theorem id_comp : (alg_hom.id R B).comp φ = φ :=
ext $ λ x, rfl
theorem comp_assoc (φ₁ : C →ₐ[R] D) (φ₂ : B →ₐ[R] C) (φ₃ : A →ₐ[R] B) :
(φ₁.comp φ₂).comp φ₃ = φ₁.comp (φ₂.comp φ₃) :=
ext $ λ x, rfl
/-- R-Alg ⥤ R-Mod -/
def to_linear_map : A →ₗ[R] B :=
{ to_fun := φ,
map_add' := φ.map_add,
map_smul' := φ.map_smul }
@[simp] lemma to_linear_map_apply (p : A) : φ.to_linear_map p = φ p := rfl
theorem to_linear_map_injective : function.injective (to_linear_map : _ → (A →ₗ[R] B)) :=
λ φ₁ φ₂ h, ext $ linear_map.congr_fun h
@[simp] lemma comp_to_linear_map (f : A →ₐ[R] B) (g : B →ₐ[R] C) :
(g.comp f).to_linear_map = g.to_linear_map.comp f.to_linear_map := rfl
@[simp] lemma to_linear_map_id : to_linear_map (alg_hom.id R A) = linear_map.id :=
linear_map.ext $ λ _, rfl
/-- Promote a `linear_map` to an `alg_hom` by supplying proofs about the behavior on `1` and `*`. -/
@[simps]
def of_linear_map (f : A →ₗ[R] B) (map_one : f 1 = 1) (map_mul : ∀ x y, f (x * y) = f x * f y) :
A →ₐ[R] B :=
{ to_fun := f,
map_one' := map_one,
map_mul' := map_mul,
commutes' := λ c, by simp only [algebra.algebra_map_eq_smul_one, f.map_smul, map_one],
.. f.to_add_monoid_hom }
@[simp] lemma of_linear_map_to_linear_map (map_one) (map_mul) :
of_linear_map φ.to_linear_map map_one map_mul = φ :=
by { ext, refl }
@[simp] lemma to_linear_map_of_linear_map (f : A →ₗ[R] B) (map_one) (map_mul) :
to_linear_map (of_linear_map f map_one map_mul) = f :=
by { ext, refl }
@[simp] lemma of_linear_map_id (map_one) (map_mul) :
of_linear_map linear_map.id map_one map_mul = alg_hom.id R A :=
ext $ λ _, rfl
lemma map_smul_of_tower {R'} [has_scalar R' A] [has_scalar R' B]
[linear_map.compatible_smul A B R' R] (r : R') (x : A) : φ (r • x) = r • φ x :=
φ.to_linear_map.map_smul_of_tower r x
lemma map_list_prod (s : list A) :
φ s.prod = (s.map φ).prod :=
φ.to_ring_hom.map_list_prod s
section prod
/-- First projection as `alg_hom`. -/
def fst : A × B →ₐ[R] A :=
{ commutes' := λ r, rfl, .. ring_hom.fst A B}
/-- Second projection as `alg_hom`. -/
def snd : A × B →ₐ[R] B :=
{ commutes' := λ r, rfl, .. ring_hom.snd A B}
end prod
lemma algebra_map_eq_apply (f : A →ₐ[R] B) {y : R} {x : A} (h : algebra_map R A y = x) :
algebra_map R B y = f x :=
h ▸ (f.commutes _).symm
end semiring
section comm_semiring
variables [comm_semiring R] [comm_semiring A] [comm_semiring B]
variables [algebra R A] [algebra R B] (φ : A →ₐ[R] B)
lemma map_multiset_prod (s : multiset A) :
φ s.prod = (s.map φ).prod :=
φ.to_ring_hom.map_multiset_prod s
lemma map_prod {ι : Type*} (f : ι → A) (s : finset ι) :
φ (∏ x in s, f x) = ∏ x in s, φ (f x) :=
φ.to_ring_hom.map_prod f s
lemma map_finsupp_prod {α : Type*} [has_zero α] {ι : Type*} (f : ι →₀ α) (g : ι → α → A) :
φ (f.prod g) = f.prod (λ i a, φ (g i a)) :=
φ.map_prod _ _
end comm_semiring
section ring
variables [comm_semiring R] [ring A] [ring B]
variables [algebra R A] [algebra R B] (φ : A →ₐ[R] B)
lemma map_neg (x) : φ (-x) = -φ x := map_neg _ _
lemma map_sub (x y) : φ (x - y) = φ x - φ y := map_sub _ _ _
@[simp] lemma map_int_cast (n : ℤ) : φ n = n :=
φ.to_ring_hom.map_int_cast n
end ring
section division_ring
variables [comm_semiring R] [division_ring A] [division_ring B]
variables [algebra R A] [algebra R B] (φ : A →ₐ[R] B)
@[simp] lemma map_inv (x) : φ (x⁻¹) = (φ x)⁻¹ :=
φ.to_ring_hom.map_inv x
@[simp] lemma map_div (x y) : φ (x / y) = φ x / φ y :=
φ.to_ring_hom.map_div x y
end division_ring
end alg_hom
@[simp] lemma rat.smul_one_eq_coe {A : Type*} [division_ring A] [algebra ℚ A] (m : ℚ) :
m • (1 : A) = ↑m :=
by rw [algebra.smul_def, mul_one, ring_hom.eq_rat_cast]
set_option old_structure_cmd true
/-- An equivalence of algebras is an equivalence of rings commuting with the actions of scalars. -/
structure alg_equiv (R : Type u) (A : Type v) (B : Type w)
[comm_semiring R] [semiring A] [semiring B] [algebra R A] [algebra R B]
extends A ≃ B, A ≃* B, A ≃+ B, A ≃+* B :=
(commutes' : ∀ r : R, to_fun (algebra_map R A r) = algebra_map R B r)
attribute [nolint doc_blame] alg_equiv.to_ring_equiv
attribute [nolint doc_blame] alg_equiv.to_equiv
attribute [nolint doc_blame] alg_equiv.to_add_equiv
attribute [nolint doc_blame] alg_equiv.to_mul_equiv
notation A ` ≃ₐ[`:50 R `] ` A' := alg_equiv R A A'
namespace alg_equiv
variables {R : Type u} {A₁ : Type v} {A₂ : Type w} {A₃ : Type u₁}
section semiring
variables [comm_semiring R] [semiring A₁] [semiring A₂] [semiring A₃]
variables [algebra R A₁] [algebra R A₂] [algebra R A₃]
variables (e : A₁ ≃ₐ[R] A₂)
instance : ring_equiv_class (A₁ ≃ₐ[R] A₂) A₁ A₂ :=
{ coe := to_fun,
inv := inv_fun,
coe_injective' := λ f g h₁ h₂, by { cases f, cases g, congr' },
map_add := map_add',
map_mul := map_mul',
left_inv := left_inv,
right_inv := right_inv }
/-- Helper instance for when there's too many metavariables to apply
`fun_like.has_coe_to_fun` directly. -/
instance : has_coe_to_fun (A₁ ≃ₐ[R] A₂) (λ _, A₁ → A₂) := ⟨alg_equiv.to_fun⟩
@[ext]
lemma ext {f g : A₁ ≃ₐ[R] A₂} (h : ∀ a, f a = g a) : f = g := fun_like.ext f g h
protected lemma congr_arg {f : A₁ ≃ₐ[R] A₂} {x x' : A₁} : x = x' → f x = f x' :=
fun_like.congr_arg f
protected lemma congr_fun {f g : A₁ ≃ₐ[R] A₂} (h : f = g) (x : A₁) : f x = g x :=
fun_like.congr_fun h x
protected lemma ext_iff {f g : A₁ ≃ₐ[R] A₂} : f = g ↔ ∀ x, f x = g x := fun_like.ext_iff
lemma coe_fun_injective : @function.injective (A₁ ≃ₐ[R] A₂) (A₁ → A₂) (λ e, (e : A₁ → A₂)) :=
fun_like.coe_injective
instance has_coe_to_ring_equiv : has_coe (A₁ ≃ₐ[R] A₂) (A₁ ≃+* A₂) := ⟨alg_equiv.to_ring_equiv⟩
@[simp] lemma coe_mk {to_fun inv_fun left_inv right_inv map_mul map_add commutes} :
⇑(⟨to_fun, inv_fun, left_inv, right_inv, map_mul, map_add, commutes⟩ : A₁ ≃ₐ[R] A₂) = to_fun :=
rfl
@[simp] theorem mk_coe (e : A₁ ≃ₐ[R] A₂) (e' h₁ h₂ h₃ h₄ h₅) :
(⟨e, e', h₁, h₂, h₃, h₄, h₅⟩ : A₁ ≃ₐ[R] A₂) = e := ext $ λ _, rfl
@[simp] lemma to_fun_eq_coe (e : A₁ ≃ₐ[R] A₂) : e.to_fun = e := rfl
@[simp] lemma to_equiv_eq_coe : e.to_equiv = e := rfl
@[simp] lemma to_ring_equiv_eq_coe : e.to_ring_equiv = e := rfl
@[simp, norm_cast] lemma coe_ring_equiv : ((e : A₁ ≃+* A₂) : A₁ → A₂) = e := rfl
lemma coe_ring_equiv' : (e.to_ring_equiv : A₁ → A₂) = e := rfl
lemma coe_ring_equiv_injective : function.injective (coe : (A₁ ≃ₐ[R] A₂) → (A₁ ≃+* A₂)) :=
λ e₁ e₂ h, ext $ ring_equiv.congr_fun h
protected lemma map_add : ∀ x y, e (x + y) = e x + e y := map_add e
protected lemma map_zero : e 0 = 0 := map_zero e
protected lemma map_mul : ∀ x y, e (x * y) = (e x) * (e y) := map_mul e
protected lemma map_one : e 1 = 1 := map_one e
@[simp] lemma commutes : ∀ (r : R), e (algebra_map R A₁ r) = algebra_map R A₂ r :=
e.commutes'
@[simp] lemma map_smul (r : R) (x : A₁) : e (r • x) = r • e x :=
by simp only [algebra.smul_def, map_mul, commutes]
lemma map_sum {ι : Type*} (f : ι → A₁) (s : finset ι) :
e (∑ x in s, f x) = ∑ x in s, e (f x) :=
e.to_add_equiv.map_sum f s
lemma map_finsupp_sum {α : Type*} [has_zero α] {ι : Type*} (f : ι →₀ α) (g : ι → α → A₁) :
e (f.sum g) = f.sum (λ i b, e (g i b)) :=
e.map_sum _ _
/-- Interpret an algebra equivalence as an algebra homomorphism.
This definition is included for symmetry with the other `to_*_hom` projections.
The `simp` normal form is to use the coercion of the `has_coe_to_alg_hom` instance. -/
def to_alg_hom : A₁ →ₐ[R] A₂ :=
{ map_one' := e.map_one, map_zero' := e.map_zero, ..e }
instance has_coe_to_alg_hom : has_coe (A₁ ≃ₐ[R] A₂) (A₁ →ₐ[R] A₂) :=
⟨to_alg_hom⟩
@[simp] lemma to_alg_hom_eq_coe : e.to_alg_hom = e := rfl
@[simp, norm_cast] lemma coe_alg_hom : ((e : A₁ →ₐ[R] A₂) : A₁ → A₂) = e :=
rfl
lemma coe_alg_hom_injective : function.injective (coe : (A₁ ≃ₐ[R] A₂) → (A₁ →ₐ[R] A₂)) :=
λ e₁ e₂ h, ext $ alg_hom.congr_fun h
/-- The two paths coercion can take to a `ring_hom` are equivalent -/
lemma coe_ring_hom_commutes : ((e : A₁ →ₐ[R] A₂) : A₁ →+* A₂) = ((e : A₁ ≃+* A₂) : A₁ →+* A₂) :=
rfl
protected lemma map_pow : ∀ (x : A₁) (n : ℕ), e (x ^ n) = (e x) ^ n := e.to_alg_hom.map_pow
protected lemma injective : function.injective e := equiv_like.injective e
protected lemma surjective : function.surjective e := equiv_like.surjective e
protected lemma bijective : function.bijective e := equiv_like.bijective e
/-- Algebra equivalences are reflexive. -/
@[refl] def refl : A₁ ≃ₐ[R] A₁ := {commutes' := λ r, rfl, ..(1 : A₁ ≃+* A₁)}
instance : inhabited (A₁ ≃ₐ[R] A₁) := ⟨refl⟩
@[simp] lemma refl_to_alg_hom : ↑(refl : A₁ ≃ₐ[R] A₁) = alg_hom.id R A₁ := rfl
@[simp] lemma coe_refl : ⇑(refl : A₁ ≃ₐ[R] A₁) = id := rfl
/-- Algebra equivalences are symmetric. -/
@[symm]
def symm (e : A₁ ≃ₐ[R] A₂) : A₂ ≃ₐ[R] A₁ :=
{ commutes' := λ r, by { rw ←e.to_ring_equiv.symm_apply_apply (algebra_map R A₁ r), congr,
change _ = e _, rw e.commutes, },
..e.to_ring_equiv.symm, }
/-- See Note [custom simps projection] -/
def simps.symm_apply (e : A₁ ≃ₐ[R] A₂) : A₂ → A₁ := e.symm
initialize_simps_projections alg_equiv (to_fun → apply, inv_fun → symm_apply)
@[simp] lemma inv_fun_eq_symm {e : A₁ ≃ₐ[R] A₂} : e.inv_fun = e.symm := rfl
@[simp] lemma symm_symm (e : A₁ ≃ₐ[R] A₂) : e.symm.symm = e :=
by { ext, refl, }
lemma symm_bijective : function.bijective (symm : (A₁ ≃ₐ[R] A₂) → (A₂ ≃ₐ[R] A₁)) :=
equiv.bijective ⟨symm, symm, symm_symm, symm_symm⟩
@[simp] lemma mk_coe' (e : A₁ ≃ₐ[R] A₂) (f h₁ h₂ h₃ h₄ h₅) :
(⟨f, e, h₁, h₂, h₃, h₄, h₅⟩ : A₂ ≃ₐ[R] A₁) = e.symm :=
symm_bijective.injective $ ext $ λ x, rfl
@[simp] theorem symm_mk (f f') (h₁ h₂ h₃ h₄ h₅) :
(⟨f, f', h₁, h₂, h₃, h₄, h₅⟩ : A₁ ≃ₐ[R] A₂).symm =
{ to_fun := f', inv_fun := f,
..(⟨f, f', h₁, h₂, h₃, h₄, h₅⟩ : A₁ ≃ₐ[R] A₂).symm } := rfl
@[simp]
theorem refl_symm : (alg_equiv.refl : A₁ ≃ₐ[R] A₁).symm = alg_equiv.refl := rfl
/-- Algebra equivalences are transitive. -/
@[trans]
def trans (e₁ : A₁ ≃ₐ[R] A₂) (e₂ : A₂ ≃ₐ[R] A₃) : A₁ ≃ₐ[R] A₃ :=
{ commutes' := λ r, show e₂.to_fun (e₁.to_fun _) = _, by rw [e₁.commutes', e₂.commutes'],
..(e₁.to_ring_equiv.trans e₂.to_ring_equiv), }
@[simp] lemma apply_symm_apply (e : A₁ ≃ₐ[R] A₂) : ∀ x, e (e.symm x) = x :=
e.to_equiv.apply_symm_apply
@[simp] lemma symm_apply_apply (e : A₁ ≃ₐ[R] A₂) : ∀ x, e.symm (e x) = x :=
e.to_equiv.symm_apply_apply
@[simp] lemma symm_trans_apply (e₁ : A₁ ≃ₐ[R] A₂) (e₂ : A₂ ≃ₐ[R] A₃) (x : A₃) :
(e₁.trans e₂).symm x = e₁.symm (e₂.symm x) := rfl
@[simp] lemma coe_trans (e₁ : A₁ ≃ₐ[R] A₂) (e₂ : A₂ ≃ₐ[R] A₃) :
⇑(e₁.trans e₂) = e₂ ∘ e₁ := rfl
@[simp] lemma trans_apply (e₁ : A₁ ≃ₐ[R] A₂) (e₂ : A₂ ≃ₐ[R] A₃) (x : A₁) :
(e₁.trans e₂) x = e₂ (e₁ x) := rfl
@[simp] lemma comp_symm (e : A₁ ≃ₐ[R] A₂) :
alg_hom.comp (e : A₁ →ₐ[R] A₂) ↑e.symm = alg_hom.id R A₂ :=
by { ext, simp }
@[simp] lemma symm_comp (e : A₁ ≃ₐ[R] A₂) :
alg_hom.comp ↑e.symm (e : A₁ →ₐ[R] A₂) = alg_hom.id R A₁ :=
by { ext, simp }
theorem left_inverse_symm (e : A₁ ≃ₐ[R] A₂) : function.left_inverse e.symm e := e.left_inv
theorem right_inverse_symm (e : A₁ ≃ₐ[R] A₂) : function.right_inverse e.symm e := e.right_inv
/-- If `A₁` is equivalent to `A₁'` and `A₂` is equivalent to `A₂'`, then the type of maps
`A₁ →ₐ[R] A₂` is equivalent to the type of maps `A₁' →ₐ[R] A₂'`. -/
def arrow_congr {A₁' A₂' : Type*} [semiring A₁'] [semiring A₂'] [algebra R A₁'] [algebra R A₂']
(e₁ : A₁ ≃ₐ[R] A₁') (e₂ : A₂ ≃ₐ[R] A₂') : (A₁ →ₐ[R] A₂) ≃ (A₁' →ₐ[R] A₂') :=
{ to_fun := λ f, (e₂.to_alg_hom.comp f).comp e₁.symm.to_alg_hom,
inv_fun := λ f, (e₂.symm.to_alg_hom.comp f).comp e₁.to_alg_hom,
left_inv := λ f, by { simp only [alg_hom.comp_assoc, to_alg_hom_eq_coe, symm_comp],
simp only [←alg_hom.comp_assoc, symm_comp, alg_hom.id_comp, alg_hom.comp_id] },
right_inv := λ f, by { simp only [alg_hom.comp_assoc, to_alg_hom_eq_coe, comp_symm],
simp only [←alg_hom.comp_assoc, comp_symm, alg_hom.id_comp, alg_hom.comp_id] } }
lemma arrow_congr_comp {A₁' A₂' A₃' : Type*} [semiring A₁'] [semiring A₂'] [semiring A₃']
[algebra R A₁'] [algebra R A₂'] [algebra R A₃'] (e₁ : A₁ ≃ₐ[R] A₁') (e₂ : A₂ ≃ₐ[R] A₂')
(e₃ : A₃ ≃ₐ[R] A₃') (f : A₁ →ₐ[R] A₂) (g : A₂ →ₐ[R] A₃) :
arrow_congr e₁ e₃ (g.comp f) = (arrow_congr e₂ e₃ g).comp (arrow_congr e₁ e₂ f) :=
by { ext, simp only [arrow_congr, equiv.coe_fn_mk, alg_hom.comp_apply],
congr, exact (e₂.symm_apply_apply _).symm }
@[simp] lemma arrow_congr_refl :
arrow_congr alg_equiv.refl alg_equiv.refl = equiv.refl (A₁ →ₐ[R] A₂) :=
by { ext, refl }
@[simp] lemma arrow_congr_trans {A₁' A₂' A₃' : Type*} [semiring A₁'] [semiring A₂'] [semiring A₃']
[algebra R A₁'] [algebra R A₂'] [algebra R A₃'] (e₁ : A₁ ≃ₐ[R] A₂) (e₁' : A₁' ≃ₐ[R] A₂')
(e₂ : A₂ ≃ₐ[R] A₃) (e₂' : A₂' ≃ₐ[R] A₃') :
arrow_congr (e₁.trans e₂) (e₁'.trans e₂') = (arrow_congr e₁ e₁').trans (arrow_congr e₂ e₂') :=
by { ext, refl }
@[simp] lemma arrow_congr_symm {A₁' A₂' : Type*} [semiring A₁'] [semiring A₂']
[algebra R A₁'] [algebra R A₂'] (e₁ : A₁ ≃ₐ[R] A₁') (e₂ : A₂ ≃ₐ[R] A₂') :
(arrow_congr e₁ e₂).symm = arrow_congr e₁.symm e₂.symm :=
by { ext, refl }