-
Notifications
You must be signed in to change notification settings - Fork 0
/
defs.lean
229 lines (164 loc) · 7.78 KB
/
defs.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
/-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes
-/
import data.equiv.basic
import algebra.group.defs
import algebra.group.hom
import logic.embedding
/-!
# Definitions of group actions
This file defines a hierarchy of group action type-classes:
* `has_scalar α β`
* `mul_action α β`
* `distrib_mul_action α β`
The hierarchy is extended further by `semimodule`, defined elsewhere.
Also provided are type-classes regarding the interaction of different group actions,
* `smul_comm_class M N α`
* `is_scalar_tower M N α`
## Notation
`a • b` is used as notation for `smul a b`.
## Implementation details
This file should avoid depending on other parts of `group_theory`, to avoid import cycles.
More sophisticated lemmas belong in `group_theory.group_action`.
-/
universes u v w
variables {α : Type u} {β : Type v} {γ : Type w}
open function
/-- Typeclass for types with a scalar multiplication operation, denoted `•` (`\bu`) -/
class has_scalar (α : Type u) (γ : Type v) := (smul : α → γ → γ)
infixr ` • `:73 := has_scalar.smul
/-- Typeclass for multiplicative actions by monoids. This generalizes group actions. -/
@[protect_proj] class mul_action (α : Type u) (β : Type v) [monoid α] extends has_scalar α β :=
(one_smul : ∀ b : β, (1 : α) • b = b)
(mul_smul : ∀ (x y : α) (b : β), (x * y) • b = x • y • b)
/-- A typeclass mixin saying that two actions on the same space commute. -/
class smul_comm_class (M N α : Type*) [has_scalar M α] [has_scalar N α] : Prop :=
(smul_comm : ∀ (m : M) (n : N) (a : α), m • n • a = n • m • a)
export mul_action (mul_smul) smul_comm_class (smul_comm)
/-- Commutativity of actions is a symmetric relation. This lemma can't be an instance because this
would cause a loop in the instance search graph. -/
lemma smul_comm_class.symm (M N α : Type*) [has_scalar M α] [has_scalar N α]
[smul_comm_class M N α] : smul_comm_class N M α :=
⟨λ a' a b, (smul_comm a a' b).symm⟩
instance smul_comm_class_self (M α : Type*) [comm_monoid M] [mul_action M α] :
smul_comm_class M M α :=
⟨λ a a' b, by rw [← mul_smul, mul_comm, mul_smul]⟩
/-- An instance of `is_scalar_tower M N α` states that the multiplicative
action of `M` on `α` is determined by the multiplicative actions of `M` on `N`
and `N` on `α`. -/
class is_scalar_tower (M N α : Type*) [has_scalar M N] [has_scalar N α] [has_scalar M α] : Prop :=
(smul_assoc : ∀ (x : M) (y : N) (z : α), (x • y) • z = x • (y • z))
@[simp] lemma smul_assoc {M N} [has_scalar M N] [has_scalar N α] [has_scalar M α]
[is_scalar_tower M N α] (x : M) (y : N) (z : α) :
(x • y) • z = x • y • z :=
is_scalar_tower.smul_assoc x y z
section
variables [monoid α] [mul_action α β]
lemma smul_smul (a₁ a₂ : α) (b : β) : a₁ • a₂ • b = (a₁ * a₂) • b := (mul_smul _ _ _).symm
variable (α)
@[simp] theorem one_smul (b : β) : (1 : α) • b = b := mul_action.one_smul _
variables {α}
/-- Pullback a multiplicative action along an injective map respecting `•`. -/
protected def function.injective.mul_action [has_scalar α γ] (f : γ → β)
(hf : injective f) (smul : ∀ (c : α) x, f (c • x) = c • f x) :
mul_action α γ :=
{ smul := (•),
one_smul := λ x, hf $ (smul _ _).trans $ one_smul _ (f x),
mul_smul := λ c₁ c₂ x, hf $ by simp only [smul, mul_smul] }
/-- Pushforward a multiplicative action along a surjective map respecting `•`. -/
protected def function.surjective.mul_action [has_scalar α γ] (f : β → γ) (hf : surjective f)
(smul : ∀ (c : α) x, f (c • x) = c • f x) :
mul_action α γ :=
{ smul := (•),
one_smul := λ y, by { rcases hf y with ⟨x, rfl⟩, rw [← smul, one_smul] },
mul_smul := λ c₁ c₂ y, by { rcases hf y with ⟨x, rfl⟩, simp only [← smul, mul_smul] } }
section ite
variables (p : Prop) [decidable p]
lemma ite_smul (a₁ a₂ : α) (b : β) : (ite p a₁ a₂) • b = ite p (a₁ • b) (a₂ • b) :=
by split_ifs; refl
lemma smul_ite (a : α) (b₁ b₂ : β) : a • (ite p b₁ b₂) = ite p (a • b₁) (a • b₂) :=
by split_ifs; refl
end ite
namespace mul_action
variables (α)
/-- The regular action of a monoid on itself by left multiplication. -/
def regular : mul_action α α :=
{ smul := λ a₁ a₂, a₁ * a₂,
one_smul := λ a, one_mul a,
mul_smul := λ a₁ a₂ a₃, mul_assoc _ _ _, }
section regular
local attribute [instance] regular
instance is_scalar_tower.left : is_scalar_tower α α β :=
⟨λ x y z, mul_smul x y z⟩
end regular
variables (α β)
/-- Embedding induced by action. -/
def to_fun : β ↪ (α → β) :=
⟨λ y x, x • y, λ y₁ y₂ H, one_smul α y₁ ▸ one_smul α y₂ ▸ by convert congr_fun H 1⟩
variables {α β}
@[simp] lemma to_fun_apply (x : α) (y : β) : mul_action.to_fun α β y x = x • y :=
rfl
variable (β)
/-- An action of `α` on `β` and a monoid homomorphism `γ → α` induce an action of `γ` on `β`. -/
def comp_hom [monoid γ] (g : γ →* α) :
mul_action γ β :=
{ smul := λ x b, (g x) • b,
one_smul := by simp [g.map_one, mul_action.one_smul],
mul_smul := by simp [g.map_mul, mul_action.mul_smul] }
end mul_action
end
section compatible_scalar
@[simp] lemma smul_one_smul {M} (N) [monoid N] [has_scalar M N] [mul_action N α] [has_scalar M α]
[is_scalar_tower M N α] (x : M) (y : α) :
(x • (1 : N)) • y = x • y :=
by rw [smul_assoc, one_smul]
end compatible_scalar
/-- Typeclass for multiplicative actions on additive structures. This generalizes group modules. -/
class distrib_mul_action (α : Type u) (β : Type v) [monoid α] [add_monoid β]
extends mul_action α β :=
(smul_add : ∀(r : α) (x y : β), r • (x + y) = r • x + r • y)
(smul_zero : ∀(r : α), r • (0 : β) = 0)
section
variables [monoid α] [add_monoid β] [distrib_mul_action α β]
theorem smul_add (a : α) (b₁ b₂ : β) : a • (b₁ + b₂) = a • b₁ + a • b₂ :=
distrib_mul_action.smul_add _ _ _
@[simp] theorem smul_zero (a : α) : a • (0 : β) = 0 :=
distrib_mul_action.smul_zero _
/-- Pullback a distributive multiplicative action along an injective additive monoid
homomorphism. -/
protected def function.injective.distrib_mul_action [add_monoid γ] [has_scalar α γ] (f : γ →+ β)
(hf : injective f) (smul : ∀ (c : α) x, f (c • x) = c • f x) :
distrib_mul_action α γ :=
{ smul := (•),
smul_add := λ c x y, hf $ by simp only [smul, f.map_add, smul_add],
smul_zero := λ c, hf $ by simp only [smul, f.map_zero, smul_zero],
.. hf.mul_action f smul }
/-- Pushforward a distributive multiplicative action along a surjective additive monoid
homomorphism.-/
protected def function.surjective.distrib_mul_action [add_monoid γ] [has_scalar α γ] (f : β →+ γ)
(hf : surjective f) (smul : ∀ (c : α) x, f (c • x) = c • f x) :
distrib_mul_action α γ :=
{ smul := (•),
smul_add := λ c x y, by { rcases hf x with ⟨x, rfl⟩, rcases hf y with ⟨y, rfl⟩,
simp only [smul_add, ← smul, ← f.map_add] },
smul_zero := λ c, by simp only [← f.map_zero, ← smul, smul_zero],
.. hf.mul_action f smul }
variable (β)
/-- Scalar multiplication by `r` as an `add_monoid_hom`. -/
def const_smul_hom (r : α) : β →+ β :=
{ to_fun := (•) r,
map_zero' := smul_zero r,
map_add' := smul_add r }
variable {β}
@[simp] lemma const_smul_hom_apply (r : α) (x : β) :
const_smul_hom β r x = r • x := rfl
end
section
variables [monoid α] [add_group β] [distrib_mul_action α β]
@[simp] theorem smul_neg (r : α) (x : β) : r • (-x) = -(r • x) :=
eq_neg_of_add_eq_zero $ by rw [← smul_add, neg_add_self, smul_zero]
theorem smul_sub (r : α) (x y : β) : r • (x - y) = r • x - r • y :=
by rw [sub_eq_add_neg, sub_eq_add_neg, smul_add, smul_neg]
end