From c1b8a013aca976156a1317bff6fa8554a7e0092a Mon Sep 17 00:00:00 2001 From: morel Date: Wed, 1 Jan 2025 12:35:54 +0100 Subject: [PATCH] make arguments implicit --- .../CategoryTheory/Adjunction/Opposites.lean | 38 ++++--------------- 1 file changed, 7 insertions(+), 31 deletions(-) diff --git a/Mathlib/CategoryTheory/Adjunction/Opposites.lean b/Mathlib/CategoryTheory/Adjunction/Opposites.lean index bfb7166816fb0..9927857034e4b 100644 --- a/Mathlib/CategoryTheory/Adjunction/Opposites.lean +++ b/Mathlib/CategoryTheory/Adjunction/Opposites.lean @@ -38,46 +38,22 @@ def unop {F : Cᵒᵖ ⥤ Dᵒᵖ} {G : Dᵒᵖ ⥤ Cᵒᵖ} (h : G ⊣ F) : F.u right_triangle_components _ := Quiver.Hom.op_inj (h.left_triangle_components _) @[deprecated (since := "2025-01-01")] alias adjointOfOpAdjointOp := unop - -/-- If `G` is adjoint to `F.op` then `F` is adjoint to `G.unop`. -/ -@[deprecated "Use Adjunction.unop instead." (since := "2025-01-01")] -def adjointUnopOfAdjointOp (F : C ⥤ D) (G : Dᵒᵖ ⥤ Cᵒᵖ) (h : G ⊣ F.op) : F ⊣ G.unop := - unop F G.unop (h.ofNatIsoLeft G.opUnopIso.symm) - -/-- If `G.op` is adjoint to `F` then `F.unop` is adjoint to `G`. -/ -@[deprecated "Use Adjunction.unop instead." (since := "2025-01-01")] -def unopAdjointOfOpAdjoint (F : Cᵒᵖ ⥤ Dᵒᵖ) (G : D ⥤ C) (h : G.op ⊣ F) : F.unop ⊣ G := - unop _ _ (h.ofNatIsoRight F.opUnopIso.symm) - -/-- If `G` is adjoint to `F` then `F.unop` is adjoint to `G.unop`. -/ -@[deprecated "Use Adjunction.unop instead." (since := "2025-01-01")] -def unopAdjointUnopOfAdjoint (F : Cᵒᵖ ⥤ Dᵒᵖ) (G : Dᵒᵖ ⥤ Cᵒᵖ) (h : G ⊣ F) : F.unop ⊣ G.unop := - unop F.unop G.unop (h.ofNatIsoRight F.opUnopIso.symm) +@[deprecated (since := "2025-01-01")] alias adjointUnopOfAdjointOp := unop +@[deprecated (since := "2025-01-01")] alias unopAdjointOfOpAdjoint := unop +@[deprecated (since := "2025-01-01")] alias unopAdjointUnopOfAdjoint := unop /-- If `G` is adjoint to `F` then `F.op` is adjoint to `G.op`. -/ @[simps] -def op (F : C ⥤ D) (G : D ⥤ C) (h : G ⊣ F) : F.op ⊣ G.op where +def op {F : C ⥤ D} {G : D ⥤ C} (h : G ⊣ F) : F.op ⊣ G.op where unit := NatTrans.op h.counit counit := NatTrans.op h.unit left_triangle_components _ := Quiver.Hom.unop_inj (by simp) right_triangle_components _ := Quiver.Hom.unop_inj (by simp) @[deprecated (since := "2025-01-01")] alias opAdjointOpOfAdjoint := op - -/-- If `G` is adjoint to `F.unop` then `F` is adjoint to `G.op`. -/ -@[deprecated "Use Adjunction.op instead." (since := "2025-01-01")] -def adjointOpOfAdjointUnop (F : Cᵒᵖ ⥤ Dᵒᵖ) (G : D ⥤ C) (h : G ⊣ F.unop) : F ⊣ G.op := - (op F.unop _ h).ofNatIsoLeft F.opUnopIso - -/-- If `G.unop` is adjoint to `F` then `F.op` is adjoint to `G`. -/ -@[deprecated "Use Adjunction.op instead." (since := "2025-01-01")] -def opAdjointOfUnopAdjoint (F : C ⥤ D) (G : Dᵒᵖ ⥤ Cᵒᵖ) (h : G.unop ⊣ F) : F.op ⊣ G := - (op _ G.unop h).ofNatIsoRight G.opUnopIso - -/-- If `G.unop` is adjoint to `F.unop` then `F` is adjoint to `G`. -/ -@[deprecated "Use Adjunction.op instead." (since := "2025-01-01")] -def adjointOfUnopAdjointUnop (F : Cᵒᵖ ⥤ Dᵒᵖ) (G : Dᵒᵖ ⥤ Cᵒᵖ) (h : G.unop ⊣ F.unop) : F ⊣ G := - (op _ _ h).ofNatIsoRight G.opUnopIso +@[deprecated (since := "2025-01-01")] alias adjointOpOfAdjointUnop := op +@[deprecated (since := "2025-01-01")] alias opAdjointOfUnopAdjoint := op +@[deprecated (since := "2025-01-01")] alias adjointOfUnopAdjointUnop := op /-- If `F` and `F'` are both adjoint to `G`, there is a natural isomorphism `F.op ⋙ coyoneda ≅ F'.op ⋙ coyoneda`.