-
Notifications
You must be signed in to change notification settings - Fork 295
/
pmid.hpp
295 lines (254 loc) · 13.7 KB
/
pmid.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
#ifndef __PMI_HPP__
#define __PMI_HPP__
#include "ggml_extend.hpp"
#include "clip.hpp"
#include "lora.hpp"
struct FuseBlock : public GGMLBlock {
// network hparams
int in_dim;
int out_dim;
int hidden_dim;
bool use_residue;
public:
FuseBlock(int i_d, int o_d, int h_d, bool use_residue = true)
: in_dim(i_d), out_dim(o_d), hidden_dim(h_d), use_residue(use_residue) {
blocks["fc1"] = std::shared_ptr<GGMLBlock>(new Linear(in_dim, hidden_dim, true));
blocks["fc2"] = std::shared_ptr<GGMLBlock>(new Linear(hidden_dim, out_dim, true));
blocks["layernorm"] = std::shared_ptr<GGMLBlock>(new LayerNorm(in_dim));
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
// x: [N, channels, h, w]
auto fc1 = std::dynamic_pointer_cast<Linear>(blocks["fc1"]);
auto fc2 = std::dynamic_pointer_cast<Linear>(blocks["fc2"]);
auto layer_norm = std::dynamic_pointer_cast<LayerNorm>(blocks["layernorm"]);
struct ggml_tensor* r = x;
// x = ggml_nn_layer_norm(ctx, x, ln_w, ln_b);
x = layer_norm->forward(ctx, x);
// x = ggml_add(ctx, ggml_mul_mat(ctx, fc1_w, x), fc1_b);
x = fc1->forward(ctx, x);
x = ggml_gelu_inplace(ctx, x);
x = fc2->forward(ctx, x);
// x = ggml_add(ctx, ggml_mul_mat(ctx, fc2_w, x), fc2_b);
if (use_residue)
x = ggml_add(ctx, x, r);
return x;
}
};
struct FuseModule : public GGMLBlock {
// network hparams
int embed_dim;
public:
FuseModule(int imb_d)
: embed_dim(imb_d) {
blocks["mlp1"] = std::shared_ptr<GGMLBlock>(new FuseBlock(imb_d * 2, imb_d, imb_d, false));
blocks["mlp2"] = std::shared_ptr<GGMLBlock>(new FuseBlock(imb_d, imb_d, imb_d, true));
blocks["layer_norm"] = std::shared_ptr<GGMLBlock>(new LayerNorm(embed_dim));
}
struct ggml_tensor* fuse_fn(struct ggml_context* ctx,
struct ggml_tensor* prompt_embeds,
struct ggml_tensor* id_embeds) {
auto mlp1 = std::dynamic_pointer_cast<FuseBlock>(blocks["mlp1"]);
auto mlp2 = std::dynamic_pointer_cast<FuseBlock>(blocks["mlp2"]);
auto layer_norm = std::dynamic_pointer_cast<LayerNorm>(blocks["layer_norm"]);
auto prompt_embeds0 = ggml_cont(ctx, ggml_permute(ctx, prompt_embeds, 2, 0, 1, 3));
auto id_embeds0 = ggml_cont(ctx, ggml_permute(ctx, id_embeds, 2, 0, 1, 3));
// concat is along dim 2
auto stacked_id_embeds = ggml_concat(ctx, prompt_embeds0, id_embeds0, 2);
stacked_id_embeds = ggml_cont(ctx, ggml_permute(ctx, stacked_id_embeds, 1, 2, 0, 3));
// stacked_id_embeds = mlp1.forward(ctx, stacked_id_embeds);
// stacked_id_embeds = ggml_add(ctx, stacked_id_embeds, prompt_embeds);
// stacked_id_embeds = mlp2.forward(ctx, stacked_id_embeds);
// stacked_id_embeds = ggml_nn_layer_norm(ctx, stacked_id_embeds, ln_w, ln_b);
stacked_id_embeds = mlp1->forward(ctx, stacked_id_embeds);
stacked_id_embeds = ggml_add(ctx, stacked_id_embeds, prompt_embeds);
stacked_id_embeds = mlp2->forward(ctx, stacked_id_embeds);
stacked_id_embeds = layer_norm->forward(ctx, stacked_id_embeds);
return stacked_id_embeds;
}
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* prompt_embeds,
struct ggml_tensor* id_embeds,
struct ggml_tensor* class_tokens_mask,
struct ggml_tensor* class_tokens_mask_pos,
struct ggml_tensor* left,
struct ggml_tensor* right) {
// x: [N, channels, h, w]
struct ggml_tensor* valid_id_embeds = id_embeds;
// # slice out the image token embeddings
// print_ggml_tensor(class_tokens_mask_pos, false);
ggml_set_name(class_tokens_mask_pos, "class_tokens_mask_pos");
ggml_set_name(prompt_embeds, "prompt_embeds");
// print_ggml_tensor(valid_id_embeds, true, "valid_id_embeds");
// print_ggml_tensor(class_tokens_mask_pos, true, "class_tokens_mask_pos");
struct ggml_tensor* image_token_embeds = ggml_get_rows(ctx, prompt_embeds, class_tokens_mask_pos);
ggml_set_name(image_token_embeds, "image_token_embeds");
struct ggml_tensor* stacked_id_embeds = fuse_fn(ctx, image_token_embeds, valid_id_embeds);
stacked_id_embeds = ggml_cont(ctx, ggml_permute(ctx, stacked_id_embeds, 0, 2, 1, 3));
if (left && right) {
stacked_id_embeds = ggml_concat(ctx, left, stacked_id_embeds, 2);
stacked_id_embeds = ggml_concat(ctx, stacked_id_embeds, right, 2);
} else if (left) {
stacked_id_embeds = ggml_concat(ctx, left, stacked_id_embeds, 2);
} else if (right) {
stacked_id_embeds = ggml_concat(ctx, stacked_id_embeds, right, 2);
}
stacked_id_embeds = ggml_cont(ctx, ggml_permute(ctx, stacked_id_embeds, 0, 2, 1, 3));
class_tokens_mask = ggml_cont(ctx, ggml_transpose(ctx, class_tokens_mask));
class_tokens_mask = ggml_repeat(ctx, class_tokens_mask, prompt_embeds);
prompt_embeds = ggml_mul(ctx, prompt_embeds, class_tokens_mask);
struct ggml_tensor* updated_prompt_embeds = ggml_add(ctx, prompt_embeds, stacked_id_embeds);
ggml_set_name(updated_prompt_embeds, "updated_prompt_embeds");
return updated_prompt_embeds;
}
};
struct PhotoMakerIDEncoderBlock : public CLIPVisionModelProjection {
PhotoMakerIDEncoderBlock()
: CLIPVisionModelProjection(OPENAI_CLIP_VIT_L_14) {
blocks["visual_projection_2"] = std::shared_ptr<GGMLBlock>(new Linear(1024, 1280, false));
blocks["fuse_module"] = std::shared_ptr<GGMLBlock>(new FuseModule(2048));
}
struct ggml_tensor* forward(struct ggml_context* ctx,
struct ggml_tensor* id_pixel_values,
struct ggml_tensor* prompt_embeds,
struct ggml_tensor* class_tokens_mask,
struct ggml_tensor* class_tokens_mask_pos,
struct ggml_tensor* left,
struct ggml_tensor* right) {
// x: [N, channels, h, w]
auto vision_model = std::dynamic_pointer_cast<CLIPVisionModel>(blocks["vision_model"]);
auto visual_projection = std::dynamic_pointer_cast<CLIPProjection>(blocks["visual_projection"]);
auto visual_projection_2 = std::dynamic_pointer_cast<Linear>(blocks["visual_projection_2"]);
auto fuse_module = std::dynamic_pointer_cast<FuseModule>(blocks["fuse_module"]);
struct ggml_tensor* shared_id_embeds = vision_model->forward(ctx, id_pixel_values); // [N, hidden_size]
struct ggml_tensor* id_embeds = visual_projection->forward(ctx, shared_id_embeds); // [N, proj_dim(768)]
struct ggml_tensor* id_embeds_2 = visual_projection_2->forward(ctx, shared_id_embeds); // [N, 1280]
id_embeds = ggml_cont(ctx, ggml_permute(ctx, id_embeds, 2, 0, 1, 3));
id_embeds_2 = ggml_cont(ctx, ggml_permute(ctx, id_embeds_2, 2, 0, 1, 3));
id_embeds = ggml_concat(ctx, id_embeds, id_embeds_2, 2); // [batch_size, seq_length, 1, 2048] check whether concat at dim 2 is right
id_embeds = ggml_cont(ctx, ggml_permute(ctx, id_embeds, 1, 2, 0, 3));
struct ggml_tensor* updated_prompt_embeds = fuse_module->forward(ctx,
prompt_embeds,
id_embeds,
class_tokens_mask,
class_tokens_mask_pos,
left, right);
return updated_prompt_embeds;
}
};
struct PhotoMakerIDEncoder : public GGMLRunner {
public:
SDVersion version = VERSION_SDXL;
PhotoMakerIDEncoderBlock id_encoder;
float style_strength;
std::vector<float> ctm;
std::vector<ggml_fp16_t> ctmf16;
std::vector<int> ctmpos;
std::vector<ggml_fp16_t> zeros_left_16;
std::vector<float> zeros_left;
std::vector<ggml_fp16_t> zeros_right_16;
std::vector<float> zeros_right;
public:
PhotoMakerIDEncoder(ggml_backend_t backend, ggml_type wtype, SDVersion version = VERSION_SDXL, float sty = 20.f)
: GGMLRunner(backend, wtype),
version(version),
style_strength(sty) {
id_encoder.init(params_ctx, wtype);
}
std::string get_desc() {
return "pmid";
}
void get_param_tensors(std::map<std::string, struct ggml_tensor*>& tensors, const std::string prefix) {
id_encoder.get_param_tensors(tensors, prefix);
}
struct ggml_cgraph* build_graph( // struct ggml_allocr* allocr,
struct ggml_tensor* id_pixel_values,
struct ggml_tensor* prompt_embeds,
std::vector<bool>& class_tokens_mask) {
ctm.clear();
ctmf16.clear();
ctmpos.clear();
zeros_left.clear();
zeros_left_16.clear();
zeros_right.clear();
zeros_right_16.clear();
ggml_context* ctx0 = compute_ctx;
struct ggml_cgraph* gf = ggml_new_graph(compute_ctx);
int64_t hidden_size = prompt_embeds->ne[0];
int64_t seq_length = prompt_embeds->ne[1];
ggml_type type = GGML_TYPE_F32;
struct ggml_tensor* class_tokens_mask_d = ggml_new_tensor_1d(ctx0, type, class_tokens_mask.size());
struct ggml_tensor* id_pixel_values_d = to_backend(id_pixel_values);
struct ggml_tensor* prompt_embeds_d = to_backend(prompt_embeds);
struct ggml_tensor* left = NULL;
struct ggml_tensor* right = NULL;
for (int i = 0; i < class_tokens_mask.size(); i++) {
if (class_tokens_mask[i]) {
ctm.push_back(0.f); // here use 0.f instead of 1.f to make a scale mask
ctmf16.push_back(ggml_fp32_to_fp16(0.f)); // here use 0.f instead of 1.f to make a scale mask
ctmpos.push_back(i);
} else {
ctm.push_back(1.f); // here use 1.f instead of 0.f to make a scale mask
ctmf16.push_back(ggml_fp32_to_fp16(1.f)); // here use 0.f instead of 1.f to make a scale mask
}
}
if (ctmpos[0] > 0) {
left = ggml_new_tensor_3d(ctx0, type, hidden_size, 1, ctmpos[0]);
}
if (ctmpos[ctmpos.size() - 1] < seq_length - 1) {
right = ggml_new_tensor_3d(ctx0, type,
hidden_size, 1, seq_length - ctmpos[ctmpos.size() - 1] - 1);
}
struct ggml_tensor* class_tokens_mask_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ctmpos.size());
{
if (type == GGML_TYPE_F16)
set_backend_tensor_data(class_tokens_mask_d, ctmf16.data());
else
set_backend_tensor_data(class_tokens_mask_d, ctm.data());
set_backend_tensor_data(class_tokens_mask_pos, ctmpos.data());
if (left) {
if (type == GGML_TYPE_F16) {
for (int i = 0; i < ggml_nelements(left); ++i)
zeros_left_16.push_back(ggml_fp32_to_fp16(0.f));
set_backend_tensor_data(left, zeros_left_16.data());
} else {
for (int i = 0; i < ggml_nelements(left); ++i)
zeros_left.push_back(0.f);
set_backend_tensor_data(left, zeros_left.data());
}
}
if (right) {
if (type == GGML_TYPE_F16) {
for (int i = 0; i < ggml_nelements(right); ++i)
zeros_right_16.push_back(ggml_fp32_to_fp16(0.f));
set_backend_tensor_data(right, zeros_right_16.data());
} else {
for (int i = 0; i < ggml_nelements(right); ++i)
zeros_right.push_back(0.f);
set_backend_tensor_data(right, zeros_right.data());
}
}
}
struct ggml_tensor* updated_prompt_embeds = id_encoder.forward(ctx0,
id_pixel_values_d,
prompt_embeds_d,
class_tokens_mask_d,
class_tokens_mask_pos,
left, right);
ggml_build_forward_expand(gf, updated_prompt_embeds);
return gf;
}
void compute(const int n_threads,
struct ggml_tensor* id_pixel_values,
struct ggml_tensor* prompt_embeds,
std::vector<bool>& class_tokens_mask,
struct ggml_tensor** updated_prompt_embeds,
ggml_context* output_ctx) {
auto get_graph = [&]() -> struct ggml_cgraph* {
// return build_graph(compute_allocr, id_pixel_values, prompt_embeds, class_tokens_mask);
return build_graph(id_pixel_values, prompt_embeds, class_tokens_mask);
};
// GGMLRunner::compute(get_graph, n_threads, updated_prompt_embeds);
GGMLRunner::compute(get_graph, n_threads, true, updated_prompt_embeds, output_ctx);
}
};
#endif // __PMI_HPP__