1+ #!/usr/bin/env python3
2+ """Fake training script to test Euler workflows."""
3+
4+ import argparse
5+ import time
6+ import os
7+ import json
8+ import random
9+ import numpy as np
10+
11+ def print_gpu_info ():
12+ """Print GPU information if available."""
13+ try :
14+ import torch
15+ if torch .cuda .is_available ():
16+ print (f"PyTorch CUDA available: True" )
17+ print (f"GPU count: { torch .cuda .device_count ()} " )
18+ print (f"GPU name: { torch .cuda .get_device_name (0 )} " )
19+ print (f"GPU memory: { torch .cuda .get_device_properties (0 ).total_memory / 1e9 :.1f} GB" )
20+ else :
21+ print ("No GPU detected, using CPU" )
22+ except ImportError :
23+ print ("PyTorch not installed, skipping GPU check" )
24+
25+ def simulate_epoch (epoch , total_epochs , batch_size , lr ):
26+ """Simulate one training epoch."""
27+ # Fake metrics that improve over time
28+ base_loss = 2.5
29+ loss = base_loss * (0.95 ** epoch ) + random .uniform (- 0.1 , 0.1 )
30+
31+ base_acc = 0.1
32+ acc = min (0.95 , base_acc + (0.85 * epoch / total_epochs ) + random .uniform (- 0.05 , 0.05 ))
33+
34+ # Simulate training time
35+ time .sleep (2 ) # Pretend each epoch takes 2 seconds
36+
37+ return loss , acc
38+
39+ def save_checkpoint (output_dir , epoch , loss , acc ):
40+ """Save a fake checkpoint."""
41+ checkpoint_dir = os .path .join (output_dir , "checkpoints" )
42+ os .makedirs (checkpoint_dir , exist_ok = True )
43+
44+ checkpoint = {
45+ "epoch" : epoch ,
46+ "loss" : loss ,
47+ "accuracy" : acc ,
48+ "model_state" : "fake_model_weights_here"
49+ }
50+
51+ checkpoint_path = os .path .join (checkpoint_dir , f"checkpoint_epoch_{ epoch } .json" )
52+ with open (checkpoint_path , 'w' ) as f :
53+ json .dump (checkpoint , f , indent = 2 )
54+
55+ return checkpoint_path
56+
57+ def main ():
58+ parser = argparse .ArgumentParser (description = 'Fake ML Training Script' )
59+ parser .add_argument ('--data-dir' , type = str , required = True , help = 'Data directory' )
60+ parser .add_argument ('--output-dir' , type = str , required = True , help = 'Output directory' )
61+ parser .add_argument ('--epochs' , type = int , default = 10 , help = 'Number of epochs' )
62+ parser .add_argument ('--batch-size' , type = int , default = 32 , help = 'Batch size' )
63+ parser .add_argument ('--lr' , type = float , default = 0.001 , help = 'Learning rate' )
64+ parser .add_argument ('--seed' , type = int , default = 42 , help = 'Random seed' )
65+
66+ args = parser .parse_args ()
67+
68+ # Set random seed
69+ random .seed (args .seed )
70+ np .random .seed (args .seed )
71+
72+ print ("=" * 60 )
73+ print ("FAKE ML TRAINING SCRIPT" )
74+ print ("=" * 60 )
75+ print (f"Data directory: { args .data_dir } " )
76+ print (f"Output directory: { args .output_dir } " )
77+ print (f"Epochs: { args .epochs } " )
78+ print (f"Batch size: { args .batch_size } " )
79+ print (f"Learning rate: { args .lr } " )
80+ print (f"Random seed: { args .seed } " )
81+ print ("=" * 60 )
82+
83+ # Print GPU info
84+ print ("\n System Information:" )
85+ print_gpu_info ()
86+ print ()
87+
88+ # Create output directory
89+ os .makedirs (args .output_dir , exist_ok = True )
90+
91+ # Simulate data loading
92+ print ("Loading dataset..." )
93+ if os .path .exists (args .data_dir ):
94+ print (f"✓ Found data directory: { args .data_dir } " )
95+ else :
96+ print (f"⚠ Data directory not found, using fake data" )
97+ time .sleep (1 )
98+
99+ # Training loop
100+ print ("\n Starting training..." )
101+ best_loss = float ('inf' )
102+
103+ for epoch in range (args .epochs ):
104+ print (f"\n Epoch { epoch + 1 } /{ args .epochs } " )
105+ print ("-" * 40 )
106+
107+ # Simulate training
108+ loss , acc = simulate_epoch (epoch , args .epochs , args .batch_size , args .lr )
109+
110+ print (f"Loss: { loss :.4f} " )
111+ print (f"Accuracy: { acc :.4f} " )
112+
113+ # Save checkpoint every 5 epochs or if best
114+ if (epoch + 1 ) % 5 == 0 or loss < best_loss :
115+ checkpoint_path = save_checkpoint (args .output_dir , epoch + 1 , loss , acc )
116+ print (f"Saved checkpoint: { checkpoint_path } " )
117+
118+ if loss < best_loss :
119+ best_loss = loss
120+ best_checkpoint = os .path .join (args .output_dir , "checkpoints" , "best_model.json" )
121+ with open (best_checkpoint , 'w' ) as f :
122+ json .dump ({"epoch" : epoch + 1 , "loss" : loss , "accuracy" : acc }, f )
123+ print (f"New best model saved!" )
124+
125+ # Save final results
126+ results = {
127+ "final_epoch" : args .epochs ,
128+ "final_loss" : loss ,
129+ "final_accuracy" : acc ,
130+ "best_loss" : best_loss ,
131+ "hyperparameters" : vars (args )
132+ }
133+
134+ results_path = os .path .join (args .output_dir , "training_results.json" )
135+ with open (results_path , 'w' ) as f :
136+ json .dump (results , f , indent = 2 )
137+
138+ print ("\n " + "=" * 60 )
139+ print ("TRAINING COMPLETED!" )
140+ print (f"Final Loss: { loss :.4f} " )
141+ print (f"Final Accuracy: { acc :.4f} " )
142+ print (f"Best Loss: { best_loss :.4f} " )
143+ print (f"Results saved to: { results_path } " )
144+ print ("=" * 60 )
145+
146+ if __name__ == "__main__" :
147+ main ()
0 commit comments